

A. NSK Linear Rolling Guide Products	A1 - A402
B. Ball Screws	B1 - B590
C. Monocarrier™	C1 - C142
	D1
D. Other	D24
E. Appendices	E1 - E10

Preface

We are proud to present this revised edition of our catalog of NSK precision machine components.

Market needs for more sophisticated and diversified equipment continue to grow, and NSK linear motion products rise to meet these needs across a variety of fields.

As crucial machine components, NSK ball screws, NSK linear guides, and Monocarriers must be highly reliable, maintenance-free, compact, and lightweight. They must also reduce waste and function in special environments. We've spared no effort in creating an extensive lineup of products to match your application.

Products are organized by category with each containing selection guides and extensive technical explanations, including the results of the latest experiments and research, as well as dimension tables and figures. Section D contains pages detailing requirements in special environments and lubrication considerations for precision products.

We hope the variety of information in this catalog will aid in selecting the most suitable products for your purpose and look forward to serving you.

Contents

A. NSK Linear Rolling Guide Products
A-1 Characteristics of NSK Linear Rolling Guides
Comparision of Rolling Guides and Sliding Guides A2 Types of NSK Linear Rolling Guides A3
A-2 NSK Linear Guides TM 1. Structure of NSK Linear GuidesA5 2. Characteristics of NSK Linear GuidesA5 3. Linear Guide ModelsA7 4. Types and Characteristics of NSK Linear GuidesA9
A-3 Selection of NSK Linear Rolling Guides 1. Selection Flow Chart ————————————————————————————————————
A-4 Technical Descriptions and Dimension Tables for NSK Linear Guides 1. General Purpose Series A103 2. Long-Life Series A235 4. High Rigidity Series A297 5. High-Accuracy Series A355
A-5 Other Linear Rolling Guide Products 1. Linear Rolling Bushing

B. Ball Screws

3	1. Selection Guide for NSK Ball Screw 1. Features of NSK Ball Screws	
ı	4. Procedures to Select Ball Screw	
ı		
ı	5. When Placing OrdersB31	
100	1. Accuracy	
	10. Dust Prevention for Ball Screws	
3	 Ball Screw Dimension Tables Dimension Tables and Reference Numbers for Standard Ball Screws	

C. Monocarrier™

C-1 Monocarrier™
1. Features
2. Classifications and ModelsC7
3. Accessories ······C9
4. Selection of MonocarrierC10
5. MCM ModelC25
6. MCH ModelC73
C-2 Toughcarrier™
1. Features
2. Classifications and ModelsC95
3. Accessories
4. Selection of Toughcarrier C98
5. TCH Model Dimension Tables for Standard
ProductsC111
6. AccessoriesC117
7. Motor Bracket Compatibility Table C130
8. Sensor Rail and Top Cover Unit
Combination TableC131
9. Toughcarrier High-Thrust Model C134
C-3 Technical Guide
1. Sensor SpecificationsC137
2. Characteristics and Evaluation Method
C139
3. Special SpecificationsC140
4. Maintenance······C141
5. NSK Clean Grease LG2 Specifications

D. Other

1. Special EnvironmentsD1
2. LubricationD13
3. RoHS Compliance D24
E Appendices: Tables
• •
1. Conversion from International System of
Units (SI) E1
2. Conversion Table between N and kgf E3
3. Conversion Table between kg and lb E4
4. Conversion Table of Hardness E5
5. Tolerances for Shaft Diameters E7

NSK Linear Rolling Guide Products

ì	ŀ	V	4	
Ī	5			
Ц	Y.			

A31 -A102

Stainless steelA71	1.1 NH Model A105
Surface treatmentA71	1.2 VH ModelA125
pecial EnvironmentsA72	1.3 NS Model A145
Heat-resistant specificationsA72	1.4 LW Model A163
Vacuum and cleanroom	2. Long-Life Series
specificationsA72	2.1 DH ModelA179
NSK linear guides for sanitary	2.2 Dust-Resistant DV Model
environments (food processing	A199
machinery/medical equipment)	2.3 DS ModelA217
A73	3. Miniature Series
Specifications for special	3.1 PU Model A237
environmentsA75	3.2 LU Model A247
Responsiveness of NSK linear	3.3 PE Model A259
guides for special environments	3.4 LE Model A269
A76	3.5 Miniature LH Model A283
Precautions for handlingA76	3.6 LL Model A293
Arrangement and Mounting of	4. High Rigidity Series
Linear Guide A77	4.1 RA Model

A-1 Characteristics of NSK Linear Rolling Guides 1 Comparison of Rolling Guides and

٠.	Companson of noming durdes and
	Sliding GuidesA
2.	Types of NSK Linear Rolling
	GuidesA

A-2 NSK Linear Guides™

1. Structure of NSK Linear Guides	;
	A5
2. Characteristics of NSK Linear	
Guides	A5
3. Linear Guide Models	A7
4. Types and Characteristics of	
NSK Linear Guide	Δ9

A-

	Selection of NSK
	Linear Rolling Guides
1. Sel	lection Flow ChartA31
2. Rat	ting Life and Basic Load Rating
	A33
	Life and Basic Load Rating A33
	Life
	Rating fatigue lifeA33
	Basic load ratings in
0.	compliance with ISO standard
	A33
1	Basic dynamic load rating A33
5.	Calculation of rating fatigue life
_	
	Dynamic equivalent load ···· A34
	Basic static load rating A34
8.	Basic static moment load rating
	A34
9.	Basic load rating by load
	directionA34
2.2	How to Calculate the Life A35
1.	Setting operating condition of

linear guide ············A35

2. Calculate load to a slide A35

3. Calculation of dynamic
equivalent load ······ A39
4. Calculation of mean effective
load A41
5. Various coefficients A42
6. Calculation of rating life ····· A43
7. Examination of the basic static
load ratingA44
8. Design precautions regarding
life A45
3. Preload
1. Objective of preload ············A46
2. Preload and rigidityA46
3. Selection of preload
classificationA47
4. Estimation of elastic
deformation
5. Application examples of preload
6. Load and rating life when
preload is taken into account
A49
7. Calculating friction force by
preloadA49
4. Accuracy
1. Accuracy standard A50
2. Definition of accuracyA50
3. Application examples of accuracy
grade and preloadA54
4. Combination of accuracy grade
and preload ······A55
5. Maximum Rail Length A57
6. Lubrication ·······A58
1. NSK K1™ / K1-L™
lubrication units A58
2. Types of Lubrication ······ A62
7. Dust Resistance······A66
1. Standard specification parts - A66
2. Dust-resistant partsA67
8. Rust Prevention (Stainless Steel

and Surface Treatment)......A71

2. Surface treatmentA71
9. Special EnvironmentsA72
1. Heat-resistant specifications A72
2. Vacuum and cleanroom
specificationsA72
3. NSK linear guides for sanitary
environments (food processing
machinery/medical equipment)
А73
4. Specifications for special
environmentsA75
5. Responsiveness of NSK linear
guides for special environments
A76
6. Precautions for handlingA76
10. Arrangement and Mounting of
Linear GuideA77
1. Arrangement ·······A77
2. Mounting accuracy A79
3. Installation
4. Interchangeable linear guides
A87
5. Butting rail specification A87
Handling preloaded assembly
A88
11. Drills to Select Linear Guide ··· A89
 Single axis material handling
systemA89
2. Machining center ······ A94
12. Reference
13. Guide to Technical Services
A101
14. Linear Guides: Handling
Precautions

A-4 Technical Descriptions and Dimension Tables for **NSK Linear Guides**

1. General Purpose Series

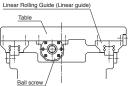
A-5	Other	Linear	Rolling
	Guide	Produ	cts

5. High-Accuracy Series

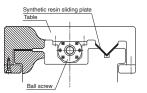
1. Linear Rolling Bushing A385
2. Roller Pack A395

4.2 RB Model A321

5.1 HA Model......A357 5.2 HS Model A371


A-1 Characteristics of NSK Linear Rolling Guides

Characteristics of NSK linear rolling guides:


- Designs are simple and economic. This contributes to a highly accurate and low cost guide way system.
- Low friction coefficient facilitates a compact and low cost driving mechanism.
- Ultra-high purity of materials and superb processing technology ensure long-term reliable operation.
- Prompt delivery thanks to a variety of interchangeable components.
- Users can select the most suitable guide from a wide variety of ball guides and roller guides.

A-1-1 Comparision of Rolling Guides and Sliding Guides

The following describes the characteristics of general rolling and sliding guideways:

Example rolling guide

Example sliding guide

Comparative characteristics of rolling and sliding guideways

Function	Rolling guide	Sliding guide
Friction	Friction coefficient: 0.01 or lower	Friction is high.
	• Difference between static and dynamic friction is small.	• The difference between static and dynamic friction coefficient is significant.
	• The fluctuation of friction force due to varying speed is far less than sliding guides.	
Positioning accuracy	Lost motion is minimal.	Greater lost motion
	Stick-slip is minimal.	Stick-slip at low speed
	Easy to achieve sub-micron positioning	Difficult to achieve sub-micron positioning
Life	Possible to estimate useful life	Difficult to estimate useful life
Static rigidity	Generally high	Rigidity is great against load from a particular direction.
	No play because of preload	There is mechanical play.
	Easy to estimate rigidity	Difficult to estimate rigidity
Speed	Wide range of use from low to high speed	 Unsuitable for extremely low or high speed
Maintenance, reliability	Long life through simple maintenance	Precision is greatly lost if the guideway surface is worn.

Today's rolling guides respond to needs for high speed, precision, quality, and easy maintenance. Utilizing the technology we have sharpened in rolling bearings, NSK makes various types of rolling linear guides which are highly accurate and reliable.

A1 A

A-1-2 Types of NSK Linear Rolling Guides

Product	Appearance	Shape	Rolling element	Load capacity
NSK Linear Guides	Ball Guide (This term is for NH Model)		Ball	High vertical load carrying capacity
NSK Line	Roller Guide		Roller	Four-way equal load carrying capacity
Linear rolling bushing			Ball	P
Roller pack			Roller	

Rigidity: 💢 , Extremely high; 🔘 , High; 🔘 , Medium; 🔾 , Low
Friction: O, Low; O, Normal
Ease of installation: O, Good; O, Fair

Rigidity	Friction	Ease of installation	Major applications	Page
			Industrial robots Materials handling equipment Semiconductor manufacturing equipment Laser cutting machines Electric discharge machines Packaging/packing machines	A105
\Rightarrow	0	0	Machining centers NC lathes Heavy cutting machine tools Various types of NC grinders Gear-cutting machines Press machines Electric discharge machines	A299
	0		Materials handling equipment Packaging/packing machines Medical equipment Pneumatic equipment Office equipment Assembling machines	A385
			Large machine tools Conveyor system for heavy objects (guide ways for heavy loads)	A395

A3 A4

A-2 NSK Linear Guides™

A-2-1 Structure of NSK Linear Guides

By avoiding structural complexity, and by reducing the number of components, we not only enhanced the precision of linear guides, but also are able to keep costs low. NSK's unique and patented structure added to the original invention (Fig. 1) helps contribute to higher precision and lower prices.

NSK linear guides consist of a rail and a slide (**Fig. 2**). The balls or rollers roll on the surface and are scooped up by the end caps attached to both ends of the ball or roller slide. Then, the balls or rollers go through a passage made in the slide and circulate back to the other end.

A-2-2 Characteristics of NSK Linear Guides

The use of a unique offset Gothic arch groove (Fig. 3) allows ball type NSK linear guides to satisfy groove designs required for specific purposes.

This unique design facilitates precise measurement of the ball groove, thus enabling stable and highly accurate production of interchangeable rails and slides. (Fig. 4)

On top of that, we have developed and marketed NSK Roller Guides, representing the culmination of NSK's analysis technology and tribology.

Such technologies ensure the features of NSK linear guides outlined below.

(1) High precision and quality

 High precision and quality come from our superb production and measuring technologies, strengthened by extensive experience in rolling bearings and ball screw production. Our quality assurance extends to the smallest components.

(2) High reliability and durability

- · Logical simplicity in shape, along with stable processing, maintains high precision and reliability.
- Super-clean materials, our advanced heat treatment, and processing technologies increase product durability.

(3) Abundant types for any purpose

 Various models are available with sizes standardized to satisfy any requirement. Our technology, polished by abundant experience in the use of special materials and surface treatments, meets your most pressing needs.

(4) Development of interchangeable parts for short delivery time

• The adoption of the Gothic arch groove which makes measuring easy and a new reliable quality control method has made mixing and matching of the rails and the ball slides possible. The parts are stocked as standard products, thereby reducing delivery time.

(5) Patented static load carrying capacity (impact resistance)

When a super-high load (impact) is applied, our Gothic arch groove spreads the load to surfaces which usually
do not come into contact in ball-type NSK linear guides. This increases impact load resistance (Fig. 5).

(6) Ultra high load capacity lineup

• The LA model provides top class high-load capacity through a unique load carrying configuration with three ball recirculation circuits on one side.

By installing rollers with the largest possible diameter and length, NSK roller linear guides realize ultrahigh load capacity far superior to various competing products.

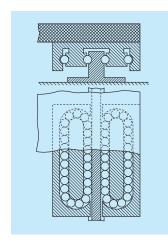


Fig. 1 • French Patent in 1932.

· Inventor: Gretsh (German)

NSK added its patented technology to the invention in Fig. 1, and improved the linear guide structure and realized low cost design.

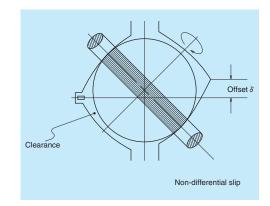


Fig. 3 Two contact point at offset Gothic arch groove

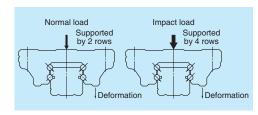


Fig. 5 Shock-resistance

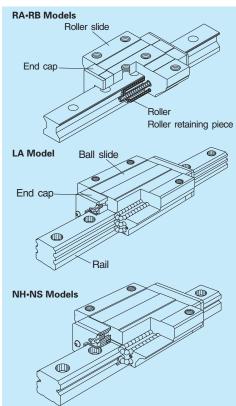


Fig. 2 Structure of NSK linear guides

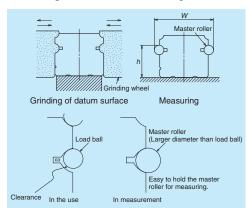
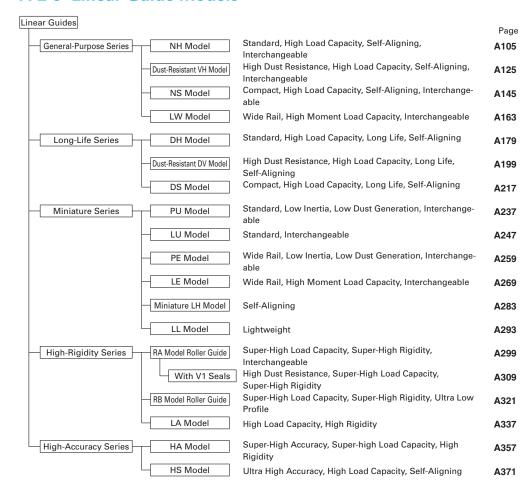



Fig. 4 Processing and measuring grooves

Measuring grooves accuracy is easy. You can obtain highly accurate results for all NSK linear guide models. This is why you can purchase interchangeable rails and slides seperately.

A-2-3 Linear Guide Models

A7 A8

A-2-4 Types and Characteristics of NSK Linear Guides

Series	Model	Category/appearance	Slide shape code	Shape/installation method	Rolling element contact structure/ Load direction, capacity
			AN BN		Rolling element: ball
General Purpose Series	NH	High vertical load carrying capacity Self-aligning	AL BL		↓
			EM GM		•

Rigidity: ☆, Extremely high; ◎, High; ○, Medium; ○, Low	
Friction: O, Low; O, Normal	
Fase of installation: O Good: Fair	

Ease of insta	ıllation: (), Good; (), Fair		ı
Features	Characteristics	Applications	Page
Rigiidity: Friction: Ease of installation:	The NH model is applicable across a wide range, from general industrial use to high-accuracy applications. Interchangeable rails and ball slides are standard. The contact angle between the ball and ball groove is set at 50 degrees. This design increases the load carrying capacity against vertical directions, which is the main load acting direction in most operations. The DF contact structure greatly absorbs installation error in the perpendicular direction to the rail. Balls make contact at two points thanks to the offset Gothic arch groove. This keeps friction to a minimum. High resistance against shock load due to the unique load-carrying structure. Gothic arch groove makes measuring of grooves accurate and easy. Rails and slides can be purchased separately in the standard interchangeable lineup. Stainless steel standard is also available for small sizes (NH15 to NH30).	Cartesian type robots Robots that remove plastic molds from injection machine Material handling equipment Food processing machines Packaging/packing machines Printing machines Woodworking machines Paper manufacturing machines Paper manufacturing machines Measuring equipment Inspecting equipment Semiconductor manufacturing equipment Flat panel display manufacturing equipment Medical equipment Electric discharge machines Laser cutting machines Press machines Tool grinders Tool grinders Flat surface grinders NC lathes Machining centers Automatic tool changers	A105
Н	igh-load types AN · AL L ₁ EM	L ₁	
S	super-high-load types	<u>L</u> 1	
	BN · BL L ₁ GM		

Series	Model	Category/appearance	Slide shape code	Shape/installation method	Rolling element contact structure/ Load direction, capacity
			AN BN		Rolling element: ball
General Purpose Series	High- resistant VH	High vertical load carrying capacity Self-aligning	AL BL		
			EM GM		

Features	Characteristics	Applications	Page
Rigiidity: © Friction: © Ease of installation:	The VH model delivers outstanding dust- resistant functionality and thus ensures long operating life under contaminated environments. Interchangeable rails and ball slides are standard. The contact angle between the ball and the raceway is set at 50 degrees. This design increases the load carrying capacity against vertical directions, which is the main load acting direction in most operations. The DF contact structure greatly absorbs installation error in the perpendicular direction to the rail. Thanks to the offset Gothic arch groove, balls make contact at two points. This keeps friction to a minimum. High resistance against shock load due to the unique load carrying structure. Gothic arch groove makes measuring grooves accurate and easy. Rails and slides can be purchased separately in the standard interchangeable lineup. Penetration of fine contaminants has been reduced by 90% or more. Operating life under contaminated environments is more than 5 times longer.	Automotive manufacturing equipment Press machines Machine tools loader/ un-loader Tire molding machines Woodworking machines Automatic doors	A125
	High-load types AN · AL EM	L.	
	Super-high-load types BN · BL GM GM	L.	

A11 A12

\mathbf{V}_{i}	3	N

Series	Model	Category/appearance	Slide shape code	Shape/installation method	Rolling element contact structure/ Load direction, capacity
	NS	High vertical load carrying capacity Self-aligning	AL CL		Rolling element: ball
General Purpose Series			EM JM		+ + + + + + + + + +
	LW	High vertical load carrying capacity High moment capacity	EL		Rolling element: ball

Features	Characteristics	Applications	Page
Rigiidity: Friction: Ease of installation:	The NS model is low in height and is applicable across a wide range, from general industrial use to high-accuracy applications. Interchangeable rails and ball slides are standard. Compact and low profile. The contact angle between the ball and the groove is set at 50 degrees. This design increases the load carrying capacity against vertical directions, which is the main load direction prevalent in most operations. The DF contact structure greatly absorbs installation error in the perpendicular direction of the rail. Thanks to the offset Gothic arch groove, balls make contacts at two points. This keeps friction to a minimum. High resistance against shock load due to the unique load carrying structure. Gothic arch groove makes measuring grooves accurate and easy. Rails and slides can be purchased separately in the standard interchangeable lineup. Stainless steel is also available. High-load types AL L1 EM Medium-load types CL JM Medium-load types	Cartesian robots Robots that remove plastic molds from injection machine Material handling equipment Food processing machines Packaging/packing machines Printing machines Woodworking machines Paper manufacturing machines Measuring equipment Inspection equipment Semiconductor manufacturing equipment Flat panel display manufacturing equipment Medical equipment Electric discharge machines Laser cutting machines Press machines	A14!
Rigiidity: Friction: Ease of installation:	High-moment rigidity and low profile products are most suited for a single rail linear guideway system. Interchangeable rails and ball slides are standard. The wide rail contributes to a high rolling moment carrying capacity and to great moment rigidity of a single rail linear guideway system. Balls contact at two points in the Gothic arch groove, thus keeping friction to a minimum. High resistance against shock load Rails and slides can be purchased separately in the standard interchangeable lineup.	Semiconductor manufacturing equipment Flat panel display manufacturing equipment Conveyor systems Medical equipment Microscope XY stages	A163

A13 A14

5K	
	ı

Series	Model	Category/appearance	Slide shape code	Shape/installation method	Rolling element contact structure/ Load direction, capacity
			AN BN		Rolling element: ball
Long-Life Series	DH	High vertical load carrying capacity Self-aligning	AL BL		
			EM GM		_

		i	
Features	Characteristics	Applications	Page
Rigiidity: O	The DH model is applicable across a wide range, from general industrial use to high accuracy applications. The contact angle between the ball and ball groove is set at 50 degrees. This design increases the load carrying capacity against the vertical directions, which is the main load acting direction in most operations. Applying our special TF heat treatment, life is doubled compared to NH model. The DF contact structure greatly absorbs the installation error in the perpendicular direction to the rail. Balls make contact at two points thanks to the offset Gothic arch groove. This keeps friction to a minimum. A High resistance against shock load due to the unique load-carrying structure. Gothic arch groove makes measuring of grooves accurate and easy.	Cartesian type robots Robots that remove plastic molds from injection machine Material handling equipment Printing machines Woodworking machines Paper manufacturing machines Semiconductor manufacturing equipment Flat panel display manufacturing equipment Electric discharge machines Laser cutting machines Press machines Tool grinders Flat surface grinders NC lathes Machining centers Automatic tool changers	A179
ŀ	High-load types	<u>L</u> 1	
	AN AL L1 EM		
٤	Super-high-load types BN · BL L1 GM	L ₁	

A15 A16

Series	Model	Category/appearance	Slide shape code	Shape/installation method	Rolling element contact structure/ Load direction, capacity
			AN BN		Rolling element: ball
Long-Life Series	High- resistant DV	High vertical load carrying capacity Self-aligning	AL BL		
			EM GM		

	ı		
Features	Characteristics	Applications	Page
Rigiidity: © Friction: © Ease of installation:	 The VH model delivers outstanding dust-resistant functionality and thus ensures long operating life under contaminated environments. Applying our special TF heat treatment, life is doubled compared to VH model. The contact angle between the ball and the raceway is set at 50 degrees. This design increases the load carrying capacity against vertical directions, which is the main load acting direction in most operations. The DF contact structure greatly absorbs installation error in the perpendicular direction to the rail. Thanks to the offset Gothic arch groove, balls make contact at two points. This keeps friction to a minimum. High resistance against shock load due to the unique load carrying structure. Gothic arch groove makes measuring grooves accurate and easy. Penetration of fine contaminants has been reduced by 90% or more. Operating life under contaminated environments is more than 5 times longer. 	Automotive manufacturing equipment Press machines Machine tools loader/ un-loader Tire molding machines Woodworking machines Automatic doors	A199
	High-load types AN · AL EM	L.	
	Super-high-load types BN · BL GM	L,	

A17 A18

Series	Model	Category/appearance	Slide shape code	Shape/installation method	Rolling element contact structure/ Load direction, capacity
Series		High vertical load carrying capacity Self-aligning	AL CL		Rolling element: ball
Long-Life Series	DS		EM JM		↓ ↑ ↑

Features	Characteristics	Applications	Page
Rigiidity: Friction: Ease of installation:	 The DS model is low in height and is applicable across a wide range, from general industrial use to high-accuracy applications. Applying our special TF heat treatment, life is doubled compared to DS model. Compact and low profile. The contact angle between the ball and the groove is set at 50 degrees. This design increases the load carrying capacity against vertical directions, which is the main load direction prevalent in most operations. The DF contact structure greatly absorbs installation error in the perpendicular direction of the rail. Thanks to the offset Gothic arch groove, balls make contacts at two points. This keeps friction to a minimum. High resistance against shock load due to the unique load carrying structure. Gothic arch groove makes measuring grooves accurate and easy. 	Cartesian robots Robots that remove plastic molds from injection machine Material handling equipment Printing machines Woodworking machines Paper manufacturing machines Semiconductor manufacturing equipment Flat panel display manufacturing equipment Electric discharge machines Laser cutting machines Press machines	A217
	High-load types AL L1 EM	L1	
	Medium-load types	,	
	CL L1 JM		

A19 A20

Features	Characteristics	Applications	Page
Rigiidity: Friction: Ease of installation:	Low inertia and low dust generation miniature model. Low dust generation and highly smooth operation Super-compact size Stainless steel is the standard material. A ball retainer is standard equipment. Rails and slides can be purchased separately in the standard interchangeable lineup.	Semiconductor manufacturing equipment Flat panel display manufacturing equipment Medical equipment Optical stages Microscope XY stages Conveying system of optical fibers	A237
Rigiidity: Friction: Ease of installation:	 Miniature model Extremely compact size Stainless steel is the standard material. A ball retainer is standard equipment. Rails and slides can be purchased separately in the standard interchangeable lineup. 	Miniature robots Computer peripherals Pneumatic equipment	A247
Rigiidity: Friction: Ease of installation:	Wide rail miniature with low inertia and low dust generation. Low dust generation and highly smooth operation Super-compact size Stainless steel is the standard material. A ball retainer is standard equipment. Rails and slides can be purchased separately in the standard interchangeable lineup.	Semiconductor manufacturing equipment Flat panel display manufacturing equipment Medical equipment Optical stages Microscope XY stages Conveying system of optical fibers	A259
Rigiidity: Friction: Ease of installation:	Miniature wide model Super-small size in wide rail type Stainless steel is the standard material. A ball retainer is standard equipment. Rails and slides can be purchased separately in the standard interchangeable lineup.	Miniature robots Computer peripherals Pneumatic equipment	A269
'	Standard types High-load types AL · TL · AR · TR BL · UL · BR · UR PE · LE	Medium-load types CL · SL (LE only)	

Series	Model	Category/appearance	Slide shape code	Shape/installation method	Rolling element contact structure/ Load direction, capacity
	PU	Four-way equal load carrying capacity/Standard	AL AR TR UR BL		Rolling element: ball
	LU	Four-way equal load carrying capacity/Standard	AL TL AR TR BL UL		→
Miniature Series	PE	Four-way equal load carrying capacity/High moment capacity	AR TR UR BR		Rolling element: ball
	LE	Four-way equal load carrying capacity/High moment capacity	AL TL AR TR BL UL CL SL		↓ ← ↑
Standard types AL · TL · AR · TR BL · UL · UR PU · LU L1					

Sta	ndard types	High-load types	Medium-load types
	$AL \cdot TL \cdot AR \cdot TR$	$BL \cdot UL \cdot BR \cdot UR$	CL · SL (LE only)
PE · LE	<u>L</u> 1	- L 1 -	<u>-L1</u>

Series	Model	Category/appearance	Slide shape code	Shape/installation method	Rolling element contact structure/ Load direction, capacity
Miniature Series	LH	High vertical load carrying capacity Self-aligning	AN		Rolling element: ball
	LL	Four-way equal load carrying capacity/Stsandard	PL		Rolling element: ball

Features	Characteristics	Applications	Page
Rigiidity: Friction: Ease of installation:	High vertical load carrying capacity and selfaligning miniature model The contact angle between the ball and ball groove is set at 50 degrees. This design increases the load carrying capacity against vertical directions, which is the main load acting direction in most operations. The DF contact structure greatly absorbs installation error in the perpendicular direction to the rail. Balls make contact at two points thanks to the offset Gothic arch groove. This keeps friction to a minimum. High resistance against shock load due to the unique load-carrying structure. Gothic arch groove makes measuring of ball grooves accurate and easy. A ball retainer is standard equipment. (LH10~12) Stainless steel type is standard.	Semiconductor manufacturing equipment Flat panel display manufacturing equipment Medical equipment Optical stages Microscope XY stages Miniature robots Computer peripherals Pneumatic equipment	A283
Rigiidity: Friction: Ease of installation:	The LL model is a compact and lightweight miniature linear guide for press molding. Rails and ball slides are made of thin steel plate, and thus making them very light. Stainless steel is the standard material.	 Platter pen heads Robot hands Pneumatic equipment 	A293

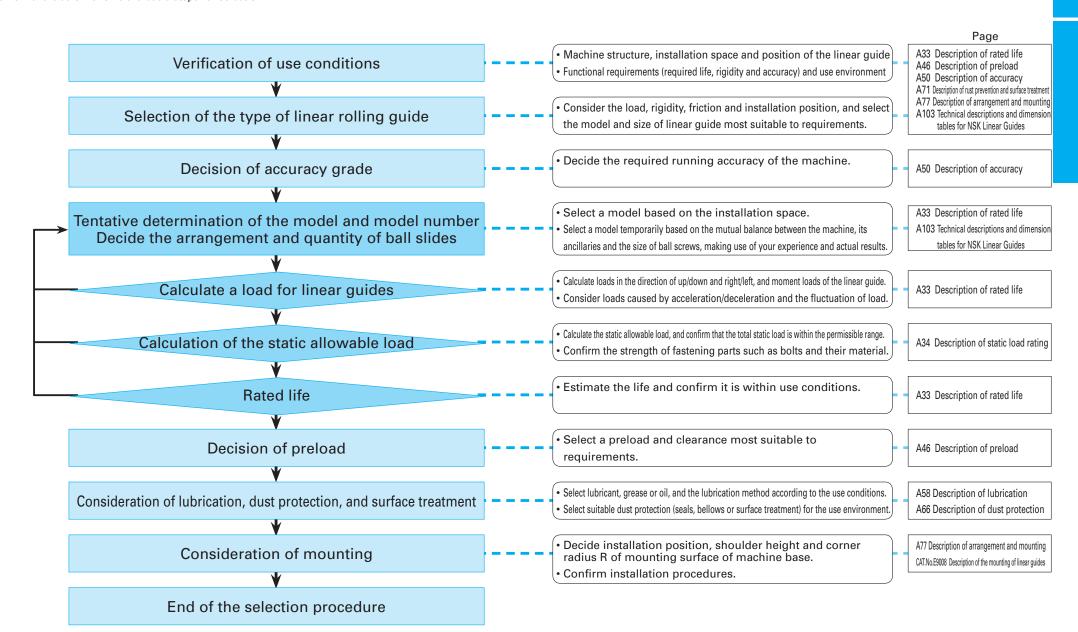
A23 A24

Series	Model	Category/appearance	Slide shape code	Shape/installation method	Rolling element contact structure/ Load direction, capacity	Features	Characteristics	Applications	Page
		Four-way equal load carrying capacity/Super-high rigidity	AN BN		Rolling element: roller		RA model roller guides have realized the world's highest load capacity. Super-high rigidity and smooth motion contribute to higher performance of machine tools. Unique and optimum design of rollers and other components facilitates high-load capacity and high rigidity. The installation of a retaining piece achieves smooth motion.	 Machining centers NC lathes Heavy cutting machine tools Gear cutters Electric discharge machines Press machines Various types of grinders 	
	RA	. Signatura de la composição de la compo	AL BL			Rigiidity: ☆ Friction: ◎ Ease of	Rails and slides can be purchased separately in the standard interchangeable lineup. Also available dust-resistant V1 end seals with enhanced abrasion resistance (RA25~65). High-load types		A299
						installation	AN · AL L ₁ EM	L ₁	
ity series			EM GM				Super-high-load types BN · BL GM		
High-rigidity series		Four-way equal load carrying capacity/Super-high rigidity	AL TL BL UL		Rolling element: roller	Rigiidity:	With low mounting height, the RB model is effective for compact machine design, while maintaining the load capacity of the RA model. Unique and optimum design of rollers and other components facilitates high-load capacity and high rigidity. The installation of a retaining piece achieves smooth motion.	 Machining centers NC lathes Heavy cutting machine tools Gear cutters Electric discharge machines Press machines Various types of grinders 	A321
						High-load typ	es AL·TL (excluding RB55AL) RB55AL	EM	
	RB		EM GM		1	Super-high-load to	ppes BL (excluding RB55 and RB65) UL GM L ₁ GM CM CM CM CM CM CM CM CM CM	RB55BL · RB65BL	

Series	Model	Category/appearance	Slide shape code	Shape/installation method	Rolling element contact structure/ Load direction, capacity
			AN BN		Rolling element: ball
High-rigidity series	LA	Four-way equal load carrying capacity/Super rigid	AL BL		
High-rig			EL GL		↓ ←
			FL HL		1
		Four-way equal load carrying capacity/Super rigid/ High accuracy	AN		Rolling element: ball
High-accuracy series	НА	High accuracy	AL		
High			EM		1

Features	Characteristics	Applications	Page	
Rigiidity: O Friction: C Ease of installation: O	The LA model provides top class high-load capacity for ball linear guides. This model is most suited for machine tools. The contact angle between the ball and the raceway is set at 45 degrees. This makes load carrying capacity and rigidity equal in vertical and lateral directions. Six-row ball grooves support the load from vertical and lateral directions, enhancing rigidity and increasing load carrying capacity. Appropriate friction Best suited for machine tools.	Machining centers NC lathes Heavy cutting machine tools Gear cutters Electric discharge machines Press machines Various types of grinders		
	High-load types AN · AL Super-high-load types BN · BL GL · HL		A337	
Rigiidity: Friction: Ease of installation:	HA Model ball guide with high-precision and high-load carrying capacity, featuring highmotion accuracy equivalent to hydrostatic linear bearings. Ball passage vibration has been reduced to one-third that of conventional models thanks to ultra-long ball slides and new design specifications. The contact angle between the ball and the raceway is set at 45 degrees. This makes load carrying capacity and rigidity equal in vertical and lateral directions. High motion accuracy is realized by a superfinished ball groove (optional). End seals, bottom seals, and inner seals of highly dust-resistant specifications are standard equipment. Contributes to higher quality machined surfaces.	Die molding machines High precision processing machine Heavy cutting machine tools Gear cutters Press machines Various types of NC grinders	A357	

N	5	K	


Series	Model	Category/appearance	Slide shape code	Shape/installation method	Rolling element contact structure/ Load direction, capacity
y series		High vertical load carrying capacity Self-aligning/High accuracy	AL		Rolling element: ball
High-accuracy series	HS		EM		↓ → • • •

Features	Characteristics	Applications	Page
Rigiidity: O Friction: Ease of installation:	HS Model ball guide with high-precision featuring high-motion accuracy equivalent to hydrostatic linear bearings. Ball passage vibration has been reduced to onethird that of conventional models thanks to ultra-long ball slides and new design specifications. The contact angle between the ball and the raceway is set at 50 degrees. The load carrying capacity against vertical directions, which is the main load acting direction in most operations, increases by this design. The DF contact structure greatly absorbs installation error in the perpendicular direction of the rail. Thanks to the offset Gothic arch groove, balls make contact at two points, thus keeping friction low.	High precision processing machines Electric discharge machines Various types of NC grinders Flat panel display manufacturing equipment	A371
	AL Li EM	L ₁	

A-3 Selection of NSK Linear Rolling Guides

A-3-1 Selection Flow Chart

The flow chart below shows the basic steps for selection.

A31 A32

A-3-2 Rating Life and Basic Load Rating

A-3-2.1 Life and Basic Load Rating

1. Life

Although used in appropriate conditions, the linear guide deteriorates after a certain period of operation, and eventually becomes unusable. Broadly, this period until the linear guide becomes unusable is called "life." There is also "fatigue life " caused by flaking, and "accuracy life" resulting from wear of components.

2. Rating fatigue life

When the linear guide runs under load, the rolling elements and the rolling contact surface of the grooves are exposed to repetitive stress. This brings about fatigue to the material and generates flaking. Flaking is scale-like damage to the surface of the rolling contact surface.

Total running distance until first appearance of flaking is called "fatigue life." This is "life" in the narrow sense. The fatigue life varies significantly even in linear guides produced in the same lot, and even when they are operated under the same conditions. This is attributable to the inherent variation in fatigue of the material itself.

"Rating fatigue life" is the total running distance which allows 90% of a group of linear guides of the same reference number to run without flaking when they are independently run under the same conditions. The rating fatigue life is sometimes indicated by total operating hours when the linear guides run at a certain speed.

3. Basic load ratings in compliance with ISO standard

NSK defines the basic load rating in compliance with the ISO standard.

The basic load ratings listed in "A-5 Technical Descriptions and Dimension Table for NSK Linear Guides" comply with the ISO standard.

ISO: International Organization for

Standardization

[Basic dynamic load ratings]

ISO 14728-1; Rolling bearings — Linear motion rolling bearings

Part 1: Dynamic load ratings and rating life

[Basic static load ratings]

ISO 14728-2; Rolling bearings — Linear motion rolling bearings

Part 2: Static load ratings

4. Basic dynamic load rating

- ISO international standard basic dynamic load rating, which indicates load carrying capacity of the linear guide, is a load whose direction and volume do not change, and which furnishes 100 km of rating fatigue life.
- In case of the linear guides, it is a constant load applied downward to the center of the slide.
- For balls as rolling elements, some linear guide manufacturers in Japan and Asian countries define the load for the basic fatigue life of 50 km as the basic dynamic load rating.
- The following formula may be used to convert the basic dynamic load rating for 50 km (C_{50}) into the dynamic load rating for 100 km (C_{100}) rated fatigue life.
- For balls as rolling elements
- For rollers as rolling elements $C_{100} = \frac{C_{50}}{1.23}$

5. Calculation of rating fatigue life

 In general, the rating fatigue life "L" can be calculated from the basic dynamic load rating "C" and the load "F" to a slide using the following formula.

[For balls as rolling elements] The third power of

For the basic dynamic load rating for 100 km

$$L=100\times\left[\frac{C_{100}}{F}\right]$$

For the basic dynamic load rating for 50 km

$$L=50\times\left(\frac{C_{50}}{F}\right)$$

[For rollers as rolling elements] The ten third power of the index.

For the basic dynamic load rating for 100 km

$$L = 100 \times \left(\frac{C_{100}}{F}\right)^{\frac{10}{3}}$$

For the basic dynamic load rating for 50 km

$$L=50\times \left(\frac{C_{50}}{F}\right)^{\frac{10}{3}}$$

L; Rating fatigue life (km)

 C_{100} ; Basic dynamic load rating for 100 km rated fatique life (N)

 C_{50} ; Basic dynamic load rating for 50 km rated fatique life (N)

F; Load to a slide (dynamic equivalent load) (N)

6. Dynamic equivalent load

 Loads applied to the linear guide (slide load) come from various directions up/down and right/ left and/or as moment loads. Sometimes more than one type of load is applied simultaneously. Sometimes the volume and direction of the load may change.

Various loads cannot be used as they are to calculate the life of the linear guide. Therefore, it is necessary to use a hypothetical load on the slide with a constant volume, which would generate a value equivalent to an actual fatigue life. This is called "dynamic equivalent load." For actual calculations, refer to "A-3-2.2 3. Calculation of dynamic equivalent load"

7. Basic static load rating

- When an excessive load or a momentary large impact is applied to the linear guide, local permanent deformation takes place on the rolling elements and on the rolling contact surfaces. After exceeding a certain level, the deformation hampers smooth linear guide operation.
- Basic static load rating is a static load when:
 [Permanent deformation of the rolling elements]
 + [permanent deformation of the rolling contact
- + [permanent deformation of the rolling contact surfaces] becomes approximately 0.0001 times of the rolling element diameter.
- In the case of linear guides, it is a load which is applied in downward direction to the center of the slide.
- Values of basic static load rating C₀ are shown in "A-4 Technical Descriptions and Dimension Tables for NSK Linear Guides."

8. Basic static moment load rating

 Generally, NSK linear guides use a set of two rails and four slides for the guide way of one axis.
 Under some operating conditions, static moment load should be taken into account.

"M₀," which is the limit of static moment load, and calculated from permanent deformation in such use is shown in "A-4 Technical Descriptions and Dimension Tables for NSK Linear Guides."

9. Basic load rating by load direction

• The basic load rating is considered to be a downward load to the slide and is indicated in the dimension tables as the dynamic load rating C and the static load rating C_0 respectively. However, the load may be applied to a slide in upward or lateral directions in actual use. As shown in **Table 2.1**. For example, basic dynamic/static load ratings for RA, LA, etc. models are the same regardless of load direction, whereas the load ratings for NH, NS, etc. models differ based on direction as shown.

Table 2.1 Basic load ratings by load direction

Load rating	Basic dy	namic lo	ad rating	Basic static load rating			
Load Model direction	Downward	Upward	Lateral	Downward	Upward	Lateral	
NH,VH,NS,LW, DH,DS,DV,LH,HS	С	С	0.84 <i>C</i>	C _o	0.78 <i>C</i> ₀	0.65 <i>C</i>	
PU,LU,PE,LE,LL, RA,RB,LA,HA	С	С	С	C _o	C ₀	C ₀	

A-3-2.2 How to Calculate the Life

1. Setting operating condition of linear guide

- · First, set operating conditions to determine whether the temporarily selected model satisfies the required life.
- · Major operating conditions are as follows. Set all values to calculate applied loads to each slide. (Refer to Table 2.2.)

Axis set up : Horizontal or vertical : Single rail or multiple Rail combination

Applied loads : F_v , F_v and F_v (N)

Slide span : l (mm)Rail span : L (mm) Position of load action point : X, Y, Z (mm)Center of driving mechanism : X_b , Y_b , Z_b (mm) Operating speed : V (mm/sec) Time in acceleration : t (sec) Operating frequency (duty cycle)

2. Calculating load to a slide

- Table 2.2 shows a formula to calculate loads applied to each assembled slide in a machine. The Table shows six typical patterns of linear quide installation.
- · In the Tables, directions indicated by arrows denote "plus" for the applied loads (F_x, F_y, F_z) and the loads which are applied to the slides. $(F_{r}, F_{s}, M_{r}, M_{o}, M_{v})$
- · Codes in the Tables are as follows:
- F.: Vertical loads to the slide (N)
- F_c: Lateral loads to the slide (N)
- M_r : Rolling moment to the slide (N · mm)
- $M_{\rm p}$: Pitching moment to the slide (N · mm)
- M_{\bullet} : Yawing moment to the slide (N · mm)

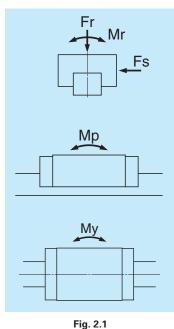
Suffixes (1, 2, ...) to the above $F_r - M_v$: Slide number

- F_{xi} : Load applied in X direction (i = 1 to n; n is the number of loads applied in X direction) (N)
- F_{vi} : Load applied in Y direction (j = 1 to n; n is the number of loads applied in Y direction) (N)
- F_{rk} : Load applied in Z direction (k = 1 to n; n is the number of loads applied in Z direction) (N)

Coordinates (X_{xi}, Y_{xi}, Z_{xi}) : Point where load F_{xi} (mm) is applied.

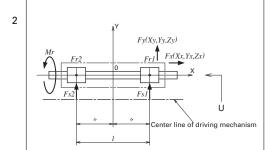
Coordinates (X_{vi}, Y_{vi}, Z_{vi}) : Point where load F_{vi} (mm) is applied.

Coordinates (X_{zk}, Y_{zk}, Z_{zk}) : Point where load F_{zk} (mm) is applied.


l: Slide span (mm)

L: Rail span (mm)

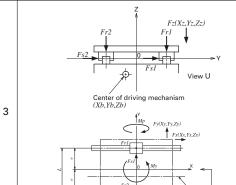
Coordinates (X_b, Y_b, Z_b) : Center of driving mechanism


 K_r : Vertical direction rigidity of the slide (N/ μ m)

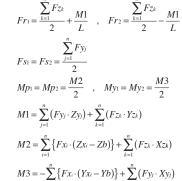
 K_s : Lateral direction rigidity of the slide (N/ μ m)

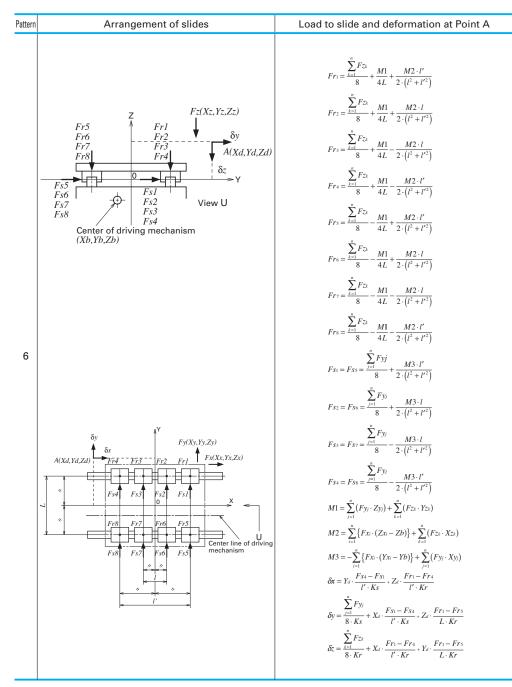
Table 2.2	Loads	applied	to	the	slides	
-----------	-------	---------	----	-----	--------	--

	Table 2.2 Loads appl	led to the slides
Pattern	Arrangement of slides	Load to slide
1	Fr I View U View U Center of driving mechanism (Xb, Yb, Zb)	$Fr_{1} = \sum_{k=1}^{n} Fz_{k} , Fs_{1} = \sum_{j=1}^{n} Fy_{j}$ $Mr_{1} = \sum_{j=1}^{n} (Fy_{j} \cdot Zy_{j}) + \sum_{k=1}^{n} (Fz_{k} \cdot Yz_{k})$ $Mp_{1} = \sum_{i=1}^{n} \{Fx_{i} \cdot (Zx_{i} - Zb_{i})\} + \sum_{k=1}^{n} (Fz_{k} \cdot Xz_{k})$ $My_{1} = -\sum_{i=1}^{n} \{Fx_{i} \cdot (Yx_{i} - Yb_{i})\} + \sum_{j=1}^{n} (Fy_{j} \cdot Xy_{j})$
	$F_{z}(X_{z},Y_{z},Z_{z})$	$Fr_1 = \frac{\sum_{k=1}^{n} Fz_k}{2} + \frac{M2}{I}$, $Fr_2 = \frac{\sum_{k=1}^{n} Fz_k}{2} - \frac{M2}{I}$



Center of driving mechanism


(Xb, Yb, Zb)


 $Fs_1 = \frac{\sum_{j=1}^{n} Fy_j}{2} + \frac{M3}{I}$, $Fs_2 = \frac{\sum_{j=1}^{n} Fy_j}{2} - \frac{M3}{I}$

Center line of driving mechanism

Pattern	Arrangement of slides	Load to slide and deformation at Point A
4	$F_{S}(X_{z},Y_{z},Z_{z})$ $F_{S}(X_{z},Y_{z},Z_{z})$ δy $F_{S}(X_{z},Y_{z},Z_{z})$ δy $F_{S}(X_{z},Y_{z},Z_{z})$ δy $F_{S}(X_{z},Y_{z},Z_{z})$ $V_{S}(X_{z},Y_{z},Z_{z})$	$Fr_{1} = \sum_{k=1}^{n} Fz_{k} + \frac{M1}{4} + \frac{M2}{2L} + \frac{M2}{2l} , Fr_{2} = \sum_{k=1}^{n} Fz_{k} + \frac{M1}{4} - \frac{M2}{2l}$ $Fr_{3} = \sum_{k=1}^{n} Fz_{k} - \frac{M1}{4} - \frac{M2}{2L} + \frac{M2}{2l} , Fr_{4} = \sum_{k=1}^{n} Fz_{k} - \frac{M1}{4} - \frac{M2}{2l} - \frac{M2}{2l}$ $Fs_{1} = Fs_{3} = \sum_{i=1}^{n} Fy_{i} + \frac{M3}{4} + \frac{M3}{2l} , Fs_{2} = Fs_{4} = \sum_{j=1}^{n} Fy_{j} - \frac{M3}{4} - \frac{M3}{2l}$ $M1 = \sum_{j=1}^{n} (Fy_{j} \cdot Zy_{j}) + \sum_{k=1}^{n} (Fz_{k} \cdot Yz_{k})$ $M2 = \sum_{i=1}^{n} \{Fx_{i}(Zx_{i} - Zb)\} + \sum_{k=1}^{n} (Fz_{k} \cdot Xz_{k})$ $M3 = -\sum_{i=1}^{n} \{Fx_{i}(Xx_{i} - Yb)\} + \sum_{k=1}^{n} (Fy_{j} \cdot Xy_{j})$
	Fiel Fig Center line of driving mechanism	$\delta x = Y_d \cdot \frac{F_{S2} - F_{S1}}{l \cdot K_S} + Z_d \cdot \frac{F_{F1} - F_{F2}}{l \cdot K_F}$ $\delta y = \frac{\sum_{j=1}^{n} F_{y_j}}{4 \cdot K_S} + X_d \cdot \frac{F_{S1} - F_{S2}}{l \cdot K_S} + Z_d \cdot \frac{F_{F1} - F_{F3}}{L \cdot K_F}$ $\delta z = \frac{\sum_{k=1}^{n} F_{Zk}}{4 \cdot K_F} + X_d \cdot \frac{F_{F1} - F_{F2}}{l \cdot K_F} \cdot Y_d \cdot \frac{F_{F1} - F_{F3}}{L \cdot K_F}$
5	$Frd \qquad Frl \qquad Fz(Xz,Yz,Zz) \\ Frd \qquad Frd \qquad \delta y \\ \delta z \qquad A(Xd,Yd,Zd) \\ \hline Fsd \qquad Fss \qquad View U \\ Center of driving mechanism \\ (Xb,Yb,Zb)$	$Fr_{1} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} + \frac{M1}{3L} + \frac{M2}{2l} , Fr_{2} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} + \frac{M1}{3L}$ $Fr_{3} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} + \frac{M1}{3L} - \frac{M2}{2l} , Fr_{4} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} - \frac{M1}{3L} + \frac{M2}{2l}$ $Fr_{5} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} - \frac{M1}{3L} , Fr_{6} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} - \frac{M1}{3L} - \frac{M2}{2l}$ $Fs_{1} = Fs_{4} = \frac{\sum_{j=1}^{n} Fy_{j}}{6} + \frac{M3}{2l} , Fs_{2} = Fs_{5} = \frac{\sum_{j=1}^{n} Fy_{j}}{6}$ $Fs_{3} = Fs_{6} = \frac{\sum_{j=1}^{n} Fy_{j}}{6} - \frac{M3}{2l}$
	$A(Xd,Yd,Zd)$ δx $Fr3$ $Fr2$ $Fr4$ $Fr6$ $Fr5$ $Fr5$ $Fr5$ $Fr5$ $Fr6$ $Fr5$ $Fr7$ $Fr8$ $Fr8$ $Fr8$ $Fr8$ $Fr8$ $Fr8$ $Fr9$ $Fr8$	$M1 = \sum_{j=1}^{n} (Fy_{j} \cdot Zy_{j}) + \sum_{k=1}^{n} (Fz_{k} \cdot Yz_{k})$ $M2 = \sum_{i=1}^{n} \{Fx_{i} \cdot (Zx_{i} - Zb)\} + \sum_{k=1}^{n} (Fz_{k} \cdot Xz_{k})$ $M3 = -\sum_{i=1}^{n} \{Fx_{i} \cdot (Yx_{i} - Yb)\} + \sum_{j=1}^{n} (Fy_{j} \cdot Xy_{j})$ $\delta x = Y_{d} \cdot \frac{Fs_{3} - Fs_{1}}{l \cdot Ks} + Z_{d} \cdot \frac{Fr_{1} - Fr_{3}}{l \cdot Kr}$ $\delta y = \frac{\sum_{j=1}^{n} Fy_{j}}{6 \cdot Ks} + X_{d} \cdot \frac{Fs_{1} - Fs_{3}}{l \cdot Ks} + Z_{d} \cdot \frac{Fr_{1} - Fr_{4}}{L \cdot Kr}$ $\delta z = \frac{\sum_{k=1}^{n} Fz_{k}}{6 \cdot Kr} + X_{d} \cdot \frac{Fr_{1} - Fr_{3}}{l \cdot Kr} + Y_{d} \cdot \frac{Fr_{1} - Fr_{4}}{L \cdot Kr}$

3. Calculation of dynamic equivalent load

• For the calculation of dynamic equivalent load, use the load in Table 2.3 which matches the intended use of the linear guide.

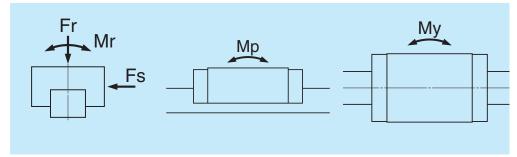
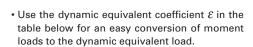



Fig. 2.2

Table 2.3 Loads by arrangement

	Assessment of linear	Loads nec	essary to c	alculate dy	valent load				
Pattern	Arrangement of linear guide	Lo	ad	M	oment lo	ad	Dynamic equivalent load		
	guide	Up/down (vertical)	Right/left (lateral)	Rolling	Pitching	Yawing	loud		
1		F,	F _s	M,	$M_{\scriptscriptstyle m p}$	M _y	$F_r = F_r$ $F_{se} = F_s \cdot \tan \alpha$		
2		F,	Fs	M _r			$F_{\text{re}} = \mathcal{E}_{\text{r}} \cdot M_{\text{r}}$ $F_{\text{pe}} = \mathcal{E}_{\text{p}} \cdot M_{\text{p}}$ $F_{\text{ye}} = \mathcal{E}_{\text{y}} \cdot M_{\text{y}}$		
3		F,	Fs		M _p	M _y	α : Contact angle NH, VH, NS, LW, DH, DV, DS, LH, HS Models $\alpha=50^\circ$		
4		F,	F _s				PU, LU, PE, LE, RA, RB, LA, HA Models α = 45°		

- The coefficient of each moment direction is as follows.
- \mathcal{E}_r : Rolling direction
- \mathcal{E}_{n} : Pitching direction
- \mathcal{E}_{v} : Yawing direction

Table 2.4 Dynamic equivalent coefficients

Unit: 1/m

NSK

										,	JIIIL. 1/111
Model	arepsilon ,	$arepsilon_{\mathtt{p}}$	$oldsymbol{arepsilon}_{_{v}}$	Model	arepsilon ,	$arepsilon_{ extsf{p}}$	$arepsilon_{\scriptscriptstyle y}$	Model	arepsilon ,	$\varepsilon_{{}_{\scriptscriptstyle{D}}}$	$oldsymbol{arepsilon}_{_{y}}$
No.			,	No.				No.			
NH15	188	111	132	DH45L	60	30	36	LE12	90	125	125
NH15L	188	72	86	DH55	51	31	37	LE12S	90	233	233
NH20	142	81	97	DH55L	51	25	30	LE12L	90	86	86
NH20L	142	57	68	DH65	43	27	32	LE15	50	102	102
NH25	123	68	81	DH65L	43	20	24	LE15S	50	174	174
NH25L	123	51	61	DV15	188	111	132	LE15L	50	68	68
NH30A	98	70	83	DV15L	188	72	86	LH08	316	269	321
NH30EF	98	58	<u>69</u>	DV20	142	81	97	LH10	253	203	242
NH30L	98	44	52	DV20L	142	57	68	LH12	223	136	162
NH35	78	51	61	DV25	123	68	81	RA15	105	95	95
NH35L	78	36	43	DV25L	123	51	61	RA15L	105	70	70
NH45	60	38	45	DV30A	98	70	83	RA20	79	74	74
NH45L	60	30 31	36	DV30E	98	58	69	RA20L	79	55	55
NH55	51	31	37	DV30L	98	44	52	RA25	71	64	64
NH55L	51	25 27	30	DV35	<u>78</u>	51	61	RA25L	71	50	50
NH65	43 43	20	32 24	DV35L	78	36 38	43 45	RA30	56	58	58 44
NH65L				DV45	60			RA30L	56	44	
VH15	188	111 72	132	DV45L	60	30	36	RA35	46	52	52 39
VH15L VH20	188 142	81	86 97	DV55 DV55L	<u>51</u> 51	31 25	37 30	RA35L RA45	46 37	39	40
VH20L	142	<u>81</u> 57	68	DS15	177	116	138	RA45 RA45L	37	40 30	30
VH25	123	68	81	DS 15	177	174	208	RA55			30
VH25L	123	51	61	DS 155	127	94	112	RA55L	32 32	33 24	33 24
VH30A	98	70	83	DS20S	127	136	162	RA65	26	28	28
VH30E	98	58	69	DS25	111	70	83	RA65L	26	19	19
VH30L	98	44	52	DS25S	111	108	129	RB30	56	58	58
VH35	78	51	61	DS200	94	63	75	RB30L	56	44	44
VH35L	78 78	36	43	DS30 DS30S	94	102	121	RB35	46	52	52
VH45	60	38	45	DS35	<u>34</u> 76	54	64	RB35L	46	39	39
VH45L	60	30	36	DS35S	76 76	87	104	RB45	37	40	40
VH55	51	31	37	PU09	215	222	222	RB45L	37	30	30
VH55L	51	25	30	PU09L	215	136	136	RB55	32	33	33
NS15	177	116	138	PU12	163	204	204	RB55L	32	24	24
NS15S	177	174	208	PU12L	163	125	125	RB65	26	28	28
NS15S NS20	127	94	112	PU15	133	174	174	RB65L	26	19	19
NS20S	127	136	162	PU15L	133	102	102	LA25	122	76	76
NS25	111	70	83	LU05	385	359	359	LA25L	122	47	47
NS25S	111	108	129	LU07	286	305	305	LA30	105	63	63
NS30	94	63	75	LU09	217	242	242	LA30L	105	43	43
NS30 NS30S	94	102	121	LU09L	217	138	138	LA35	84	54	54
NS35	76	54	64	LU09R	217	203	203	Ι Δ35Ι	84	37	37
NS35 NS35S	76	87	104	LU12	167	204	204	LA45	60	41	41
LW17	66	125	149	LU12L	167	116	116	LA45L	60	31	31
LW21	59	108	129	LU15	133	174	174	LA55	51	33 26	33 26
LW27	53	76	91	LU15L	133	94	94	LA55L	51	26	26
LW35	32	51	61	PE09	123	161	161	LA65	43	29	29
LW50	25	38	46	PE09L	123	108	108	LA65L	43	20	20
DH15	188	111	132	PE12	90	136	136	HA25	122	33	33
DH15L	188	72	86	PE12L	90	90	90	HA30	105	27	27
DH20	142	81	97	PE15	50	111	111	HA35	84	23	23
DH20L	142	57	68	PE15L	50	72	72	HA45	60	20	20
DH25	123	68	81	LE05	196	248	248	HA55	51	16	16
DH25L	123	51	61	LE05S	196	323	323	HS15	177	45	54
DH30A	98	70	83	LE07	141	188	188	HS20	127	39	47
DH30E	98	58	69	LE07S	141	349	349	HS25	111	33	39
DH30L	98	44	52	LE07L	141	122	122	HS30	94	27	32
DH35	78	51	61	LE09	123	149	149	HS35	76	23	28
DH35L	78	36	43	LE09S	123	277	277				
DH45	60	38	45	LE09L	123	102	102				

Definitions of codes appearing at the end of the Model No. in Table 2.4:

: Super-high-load ; NH45<u>L</u> S : Medium load ; NS25<u>S</u> No code: High-load ; NH45_

: Ball slide shape is square ; NH30A (only NH30, VH30, DH30, and DV30)

: Ball slide shape is flanged (EM type) ; NH30E (only NH30, VH30, DH30, and DV30) : Miniature Model with ball retainer ; LU09R (only LU and LE)

- After obtaining the dynamic equivalent coefficient in Table 2.4, the full dynamic equivalent load can be obtained using the appropriate equation below as determined by the magnitude of the load:
- When Fr is the largest load : Fe = Fr + 0.5Fse + 0.5Fre + 0.5Fpe + 0.5Fye
- When Fse is the largest load: Fe = 0.5Fr + Fse + 0.5Fpe + 0.5Fpe + 0.5Fve
- When Fre is the largest load : Fe = 0.5Fr + 0.5Fse + Fre + 0.5Fpe + 0.5Fye
- When Fpe is the largest load : Fe = 0.5Fr + 0.5Fse + 0.5Fre + Fpe + 0.5Fye
- When Fye is the largest load : Fe = 0.5Fr + 0.5Fse + 0.5Fre + 0.5Fpe + Fye

The values for dynamic equivalent load in the formulas above should be absolute values that disregard load directions.

• It is necessary to include the amount of preload for the calculation of rating life when selecting "Z3 medium preload" or "Z4 heavy preload". For the calculation of full dynamic equivalent loads that consider preload, see "A-3-3 6" on page A49.

4. Calculation of mean effective load

When the load on a slide varies, obtain a mean effective load which becomes equal to the life of slide under variable load conditions. If the load does not vary, use the full dynamic equivalent load as it is.

(1) When load and running distance vary stepwise (Fig. 2.3)

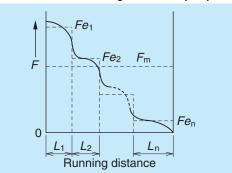


Fig. 2.3 Stepwise load change

Running distance while full dynamic equivalent load Fe₁ is applied: L₁

Running distance while full dynamic equivalent load Fe₂ is applied: L₂

Running distance while full dynamic equivalent load Fe₃ is applied: L₃

Running distance while full dynamic equivalent load Fe_n is applied: L_n

From the above, mean effective load F_m can be obtained by the following formula.

For rollers:

$$F_{m} = \sqrt[3]{\frac{1}{L} (Fe_{1}^{3}L_{1} + Fe_{2}^{3}L_{2} + \dots + Fe_{n}^{3}L_{n})} \qquad \qquad F_{m} = \sqrt[\frac{10}{3}\sqrt{\frac{1}{L} (Fe_{1}^{\frac{10}{3}}L_{1} + Fe_{2}^{\frac{10}{3}}L_{2} + \dots + Fe_{n}L_{n})}$$

 F_{m} : Mean effective load of the deviating load (N)

L: Running distance (ΣL_n)

(2) When load changes almost linearly (Fig. 2.4) Approximate mean effective load F_m can be

obtained by the following formula.

$$F_{\rm m} = \frac{1}{3} (F_{\rm min} + 2F_{\rm max})$$

 F_{\min} : Minimum value of dynamic equivalent load (N)

 F_{max} : Maximum value of dynamic equivalent load (N)

(3) When load changes in a sinusoidol pattern (Fig. 2.5)

At time of (a): $F_{\rm m} = 0.65 F_{\rm max}$ At time of (b): $F_{m} = 0.75 F_{max}$

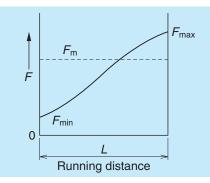
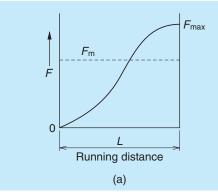



Fig. 2.4 Linear load change

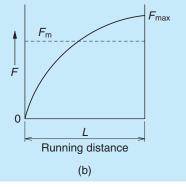


Fig. 2.5 Load that changes in a sinusoidal pattern

5. Various coefficients

(1) Load factors

- · Although a load applied to the slide can be calculated, the actual load becomes larger than the calculated value due to the machine's vibration and impact.
- · Therefore, calculation of load on the slide should take into consideration the load factors in Table 2.5.

Table 2.5 Load factor f_w

Impact/Vibration	Load factor				
No external impact/	1.0 – 1.5				
vibration.	1.0 – 1.5				
There is impact/	1.5 – 2.0				
vibration from outside.					
There is significant	2.0 – 3.0				
impact/vibration.	2.0 – 3.0				

For balls:

(2) Hardness coefficient

- · For linear guides to function optimally, both the rolling elements and contact surface must have a hardness of HRC58 or higher.
- NSK linear guides typically have a hardness at or above HRC58 and thus satisfy this requirement; however, if the guide uses a special material by request and the hardness is HRC58 or lower, use the following formulas for adjustment.

$$C_{H} = f_{H} \cdot C$$

 $C_{OH} = f_{H} \cdot C_{O}$

 $C_{\rm H}$: Basic dynamic load rating adjusted by hardness coefficient

: Hardness coefficient (Refer to Fig. 2.6)

 C_{OH} : Basic static load rating adjusted by hardness coefficient

 f_{H} : Static hardness coefficient (Refer to Fig. 2.6)

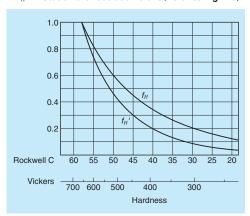


Fig. 2.6 Hardness coefficient

(3) Reliability coefficient

• In general, a reliability of 90% is customary. In this case, reliability coefficient is 1. Therefore, the reliability coefficient does not have to be included in calculations.

6. Calculation of rating life

(1) Life calculation formula

The life calculation formula for stroke movement with normal lubrication has the following relationships between the slide mean effective load F_m (N), the basic dynamic load rating to load application direction C (N), and the rating fatigue life L (km).

[For balls as rolling elements]

For the basic dynamic load rating for 100 km

$$L = 100 \times \left(\frac{f_{\text{H}} \cdot C_{100}}{f_{\text{w}} \cdot F_{\text{m}}} \right)^3$$

For the basic dynamic load rating for 50 km

$$L = 50 \times \left(\frac{f_{\text{H}} \cdot C_{50}}{f_{\text{w}} \cdot F_{\text{m}}} \right)$$

[For rollers as rolling elements]

For the basic dynamic load rating for 100 km

$$L = 100 \times \left(\frac{f_{\text{H}} \cdot C_{100}}{f_{\text{w}} \cdot F_{\text{m}}} \right)^{\frac{10}{3}}$$

For the basic dynamic load rating for 50 km

$$L = 50 \times \left(\frac{f_{\text{H}} \cdot C_{50}}{f_{\text{W}} \cdot F_{\text{m}}} \right)^{\frac{1}{3}}$$

L: Rating fatigue life (km)

 C_{100} : Basic dynamic load rating for 100 km rated fatigue life (N)

 C_{50} : Basic dynamic load rating for 50 km rated fatique life (N)

: Hardness coefficient

: Load coefficient

F_m: Average load (N)

Note: Do not use the basic static load rating C_0 or basic static moment ratings M_{PO}, M_{PO} or M_{VO} for calculations of life.

(2) Life as an entire guide way system

In those cases when several slides comprise

a single guide way system (such as a single-axis table), the life of the slide to which the most strenuous condition is applied is considered to be the life of the entire system.

Fig. 2.7 Life of a

system

For example, in Fig. 2.7, if "slide A" is the slide which receives the largest mean

effective load, or if "slide A" is the one which has the shortest life, the life of the system is considered to be the life of "slide A."

7. Examination of the basic static load rating

(1) Considerations for the basic static load rating

• Examine the static equivalent load P_0 , which is applied to the slide, from the basic static load rating C_0 and the static permissible load factor fs.

$$fs = \frac{C_0}{P_0}$$

When the static equivalent load P_0 is a combination of vertical loads Fr and lateral load Fs, calculate it using formulas below.

For NH, VH, NS, LW, DH, DV, DS, LH, and HS Models:

If compressed load and lateral load are combined $P_0 = Fr + 1.54Fs$

If tensile load and lateral load are combined $P_0 = 1.28Fr + 1.54Fs$

For PU, LU, PE, LE, LL, RA, RB, LA and HA Models: $P_0 = Fr + Fs$

• The table below shows guidelines of fs for general industrial use.

Table 2.6 Slides with balls as rolling elements

Use conditions	$f_{ m s}$
Under normal operating conditions	1 – 2
Operating under vibration/impact	1.5 – 3

Table 2.7 Slides with rollers as rolling elements

Use conditions	$f_{ m s}$
Under normal operating conditions	2 -3
Operating under vibration/impact	2.5 – 4

- · Basic static load rating is not a destructive force on the balls, rollers, rails, or slides. The balls can withstand a load more than seven times larger than the basic static load rating. It is sufficient as a safety factor to the destructive load designed for general machines.
- · However, when a heavy load is applied to the rail and slide in the direction the bolts are tightened, the strength of the bolts securing the rail and the ball slide affects the strength of the entire system. Strength of the bolt and its material should be considered.

(2) Considerations for static moment load rating

• Examine the static permissible moment load Ma from the basic static moment load M_{pq} and the $\frac{y}{y}$ static permissible load factor fs.

$$fs = \frac{M_{P0}}{M_0}$$

If more than one moment load in any direction is combined, please consult NSK.

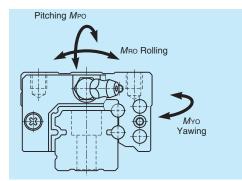


Fig. 2.8 Moment load directions

8. Design precautions regarding life

The following points must be heeded in examining life.

In case of oscillating motion

- If the rolling elements rotate only halfway, and if this minute stroke is repeated, lubricant disappears from the contact surface of rolling elements and raceways. This generates "fretting," a premature wear. Fretting cannot be entirely prevented, but it can be mitigated.
- A grease which prevents fretting is recommended for oscillating stroke operations. When a standard grease is used, the life can be markedly prolonged by adding a normal stroke travel (about the slide length) once every several thousand cycles.

When applying pitching or yawing moments

- The load applied to rolling element rows inside the slide is inconsistent if a pitching or yawing moment load is applied. Loads are heavy on the rolling elements at the both ends of a row.
- In such case, a heavy load lubricant grease or oil are recommended. Another countermeasure is using one size larger model of linear guide to reduce the load per rolling element.
- The moment load to a ball slide is insignificant for 2-rail, 4-slide combination which is commonly used.

When an extraordinary high load is applied during stroke

- If an extraordinary large load is applied at certain positions of the stroke, calculate not only the life based on the mean effective load, but also the life based on the load in this range.
- When an extraordinary heavy load is applied and thus the application of high tensile stress to fixing bolts of the rails and slides is foreseen, the strength of the bolts should be considered.

When the calculated life is extraordinarily short (Less than 3 000 km in calculated life)(*)

- In such cases, the contact pressure to the rolling elements and the rolling contact surface is extraordinarily high.
- If the linear guides are operated under such states continually, their life is significantly affected by the loss of lubrication and the presence of dust, and thus the actual life becomes shorter than calculated.
- Reduce load on the slides by reviewing the linear guide arrangement, the number of slides, and the model or Model No.
- It is necessary to consider preload for calculation of rating life when selecting Z3 (medium preload) or Z4 (heavy preload) as a preload. For the calculation of full dynamic equivalent loads that consider preload, see "A-3-3 6" on page A49.
- (*) For DH, DV, and DS models, less than 6 000 km.

Application at high speed

- The standard maximum allowable speed of a linear guide under normal conditions is 100 m/min. However, the maximum allowable speed can be affected by accuracy of installation, operating temperature, external loading etc.
- End caps with high speed specifications must be used when the operating speed exceeds the permissible speed. In such a case, please consult NSK.

A-3-3 Preload

1. Objective of preload

- Eliminating the clearance between the raceway and rolling elements allows mechanical play to be eliminated.
- When a preload is applied, the deformation of linear guides by external vertical load is further improved thus increasing the system stiffness.
- Preloading method
 The preload is applied by inserting rolling elements slightly bigger than the space of two raceways as shown in Fig. 3.1.

2. Preload and rigidity

- In NSK linear guides, slight size changes of rolling elements, which are inserted in the slide, control the clearance and amount of preload.
- In NSK linear guides, rigidity is further increased and elastic deformation is reduced by applying preload.
- In general, the load range of ball guide system in which the preload is effective is about 2.8 times the preload (Fig.3.2). For roller guide system, it becomes about 2.2 times the preload.
- Fig. 3.3 shows the relationship between ball slide deformation and external vertical load under a specified preload. NH35 is used as an example.
- The following show the definition of linear guide rigidity.
- (1) Radial rigidity: Rigidity of vertical and lateral directions, up/down and right/left (Fig. 3.4).
- (2) Moment rigidity: Three moment directions, pitching, rolling, and yawing (Fig. 3.5).

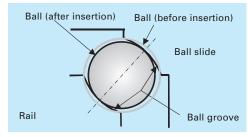


Fig. 3.1 Preloading method

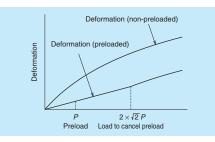


Fig. 3.2 Elastic deformation

Fig. 3.3 Rigidity of NH35, downward direction load (example)

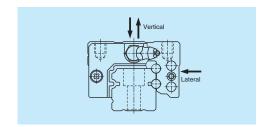


Fig. 3.4 Radial rigidity

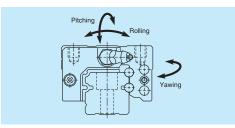
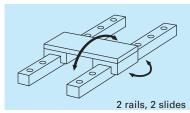
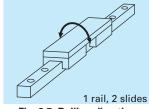




Fig. 3.5 Moment rigidity

- · Since two rails and four slides are used in general as a pair, consideration only for the radial rigidity is sufficient.
- · However, in cases as shown in Fig. 3.6, Fig. 3.7 and Fig. 3.8, it is necessary to take into account the moment rigidity in addition to the radial rigidity.

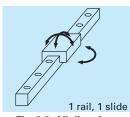


Fig. 3.6 Pitching and vawing direction

Fig. 3.7 Rolling direction Fig. 3.8 All directions

3. Selection of preload classification

- The preload supported by NSK linear guides varies by model.
- Types of preload available are shown in Table 3.1. Table 3.2 shows selection criteria for preload.

Table 3.1 Classification of preload by model

		Preloaded	l assembly ((not interch	angeable)	Inte	rchangeable t	ype
	Preload	Heavy preload	Medium preload	Slight preload	Fine clearance	Medium preload	Slight preload	Fine clearance
	Model \	Z4	Z3	Z1	Z0	ZH	ZZ	ZT
	NH, NS		0	0	0	0	0	0
	VH		0	0	0		0	0
	LW		(0)	0	0		0	0
	DH, DS		0	0	0			
	DV		0	0	0			
Dall avida	PU, LU			0	0			0
Ball guide	PE, LE			0	0			0
	Miniature LH			0	0			
	LL				0			
	LA	0	0					
	HA		0	0				
	HS		0	0				
Roller guide	RA		0	0		0	0	
holler guide	RB		0					

Table 3.2 Selection criteria for preload

Classification of preload	Use condition	Applications					
Z0 and ZT (Fine clearance)	A set of two parallel linear guides (four slides/two rails) is used to sustain a unidirectional load with low vibration and impact. Accuracy is not very necessary but a friction force must be minimized.	Welding machines, Glass processing machines, Packaging/packing machines, Materials handling equipment					
Z1 and ZZ (Slight preload)	Moment loads are applied. Highly accurate operation.	Industrial robots, Inspection/measuring equipment, Laser cutting machine, Electric discharge machines, PCB drillers, Chip mounters					
Z3, ZH, and Z4 (Medium preload, Heavy preload)	Extremely high stiffness is essential. Vibration and impact load will be applied.	Machining centers, Lathes, Milling machines, Boring machines, Grinders					

4. Estimation of elastic deformation

Load and deformation have the following relationship:

- Without preload
- When the rolling elements are balls The deformation is proportional to the 2/3 power of the load.
- When rolling elements are rollers The deformation is proportional to the 9/10 power of the load.
- With preload The deformation is directly proportional to the

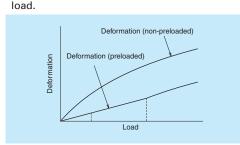


Fig. 3.9 Elastic deformation

A preloaded linear guide deforms proportionally to the load as shown in Fig. 3.9; the calculation of system deformation can be done using the deformation curve. The factors required for an estimation of the system deformation are listed below. The stiffness of slide is shown on the relevant explanation for the particular model.

- <Required conditions to calculate deformation>
- Volume of load
- Direction of load
- Point of load application
- · Position of deformation calculation
- · Arrangement of rails and ball slides
- · Position of driving mechanism

Please refer to the calculation formula of deformation for typical table structures on pages A36 to A38.

Table 3.3 shows typical NSK linear guide applications for the type of preload.

Refer to this table when selecting "
or your application

Table 3.3 Application examples of preload

Preload

٣I		Preloaded assembly Interchangeable ty									
machine	Application										
a	Application	Heavy preload	Medium preload	Slight preload	Fine clearance	Medium	Slight preload	Fine clearan			
E		Z4	Z3	Z1	ZO	ZH	ZZ	ZT			
۲	NA - I - I - I - I - I - I - I - I - I -	24		21	20	ZH		<u> </u>			
	Machining centers	9	0			9		_			
	Jig borers	0	Q			Q					
	Grinder	0	0			0					
	Lathes	0	0			0					
1	Milling machines	0	0			0					
	Drilling machines	0	0			0					
	Boring machines	Õ	Õ			Õ					
	Gear cutters	ŏ	ŏ			Ŏ					
	Laser cutting machines		$\stackrel{\smile}{\sim}$			$\stackrel{\smile}{\sim}$	$\stackrel{\smile}{\sim}$				
		0	$\stackrel{\sim}{\sim}$	\vdash	0	1	-				
1	Electric discharge machines	$\frac{\circ}{\circ}$	1			2		-			
	Turning centers	0	0	_		Ŭ.					
	Transport section (including ATC, etc.)		0	0	0	0	0				
	Punch presses		0	0		0	0				
	Other processing machines		0	0		0					
٦	Press machines		0	0	0	0	0	0			
1	Welding machines		ň	ň	ŏ	ň	ň	Ĭ			
1	Painting machines		$\stackrel{\sim}{\sim}$	\vdash	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	\vdash	\vdash			
1			\vdash	\vdash	\sim	1	\vdash	\vdash			
1	Coil winders		9	2	9	9	9	<u> </u>			
-	Woodworking machines		0	0	0	0	0	C			
	Glass processing machines		0			0	0				
	Stone cutting machines		0	0	0	0	0	l C			
ı	Industrial robots		0	0	0	0	0	С			
ı	Assembling devices		0		0	0	0	C			
٠	Material handiing equipment		Ŏ	Ŏ	Ŏ	Ŏ	ñ	Č			
٠	Packing machines		Ä	Ä	<u>~</u>	<u> </u>	Ä	1			
1			8	$\stackrel{\sim}{\sim}$	\sim	1	\sim	\vdash			
1	Paper manufacturing machines		1	1	9	2	1	1			
1	Steel machinery		<u>Q</u>	0	0	Ŏ	<u> </u>	<u> </u>			
	Textile machines		Û	0	0	0	0	<u>_</u>			
1	Tire manufacturing equipment		0	0	0	0	0	C			
	Measuring/inspection equipment					0	0				
	Image processing device		0	0	0	0	0				
	Three-dimensional measuring equipment		0	0		0	0				
	Medical equipment			Ô	0	Ô	Ô				
	Food processing equipment			Ŏ	Ŏ	Ŏ	Õ	Č			
	OA equipment			ŏ	<u>~</u>	ŏ	ŏ	1			
				ŏ	$\stackrel{\sim}{\sim}$	1	ŏ	\vdash			
	Pneumatic equipment				0	0					
	Platform door (railway related)			0			0	_			
	Rechargeable battery		0	0	0		0				
	manufacturing equipment					_		_			
	Other inspection equipment		0	0	0	0	0	C			
	Other machines					0		LC			
	Wafer slicers		0			0	0				
	Chemical processing equipment		0	0	0	0	0				
╛	Lithographic machines		0	0		0	0				
₽	Prohers		Ŏ	ň		Ŏ	Ŏ				
5	Wafer dicers		ă	\vdash		ŏ	ŏ				
į	Lithographic machines Probers Wafer dicers Bonders		\vdash			1	\vdash				
Ď	DUTIUETS		1			1	\vdash				
ď	vvire bonders		2	0		2	2	<u> </u>			
5	IC handlers		0	0	0	0	0	LC			
ş	Printed circuit board drilling machines		0	0			0				
3	Electronic component mounting machines		0	0	0		0				
5	Wire bonders IC handlers Printed circuit board drilling machines Electronic component mounting machines Semiconductor/flat panel										
=	display inspection equipment			0		0	0	_			
1	Other semiconductor/flat							_			
1	panel display equipment							ΙC			

A47 A48

6. Load and rating life when preload is taken into account

- It is necessary to include the amount of preload for the calculation of rating life when the Z3 (medium preload) or the Z4 (heavy preload) preload type is specified.
- Full dynamic equivalent load when the preload is taken into account can be obtained by the following formulas.

For balls as rolling elements

$$Fe_{P} = P \left(1 + \frac{Fe}{2.83 \times P} \right)^{\frac{3}{2}}$$

P: Preload (N)

However, when the full dynamic equivalent load taking account of preload is larger than the load at which preload is removed, $Fe_P = Fe$. For this case, preload is lost at $F_{PO} = 2^{\frac{3}{2}}P$

For rollers as rolling elements

$$Fe_{P} = P \left[1 + \frac{Fe}{2.16 \times P} \right]^{\frac{10}{9}}$$

P: Preload (N)

However, when the full dynamic equivalent load taking preload into account is larger than the load at which preload is removed, $Fe_P = Fe$. For this case, preload is lost at $F_{PO} = 2^{\frac{10}{9}}P$

7. Calculating friction force by preload

- Dynamic friction force per one slide of the ball guide can be calculated from a preload value.
- The following is a simple calculation to obtain the criterion of dynamic friction force.
 Use the slight preload (Z1) of a preloaded linear guide to find the slight preload (ZZ) of an interchangeable linear guide.

F = iP

F: Dynamic friction force (N)

P: Preload (N)

i : Contact coefficient

Use the following contact coefficient values (i). NH, VH, NS, LW, DH, DV, DS, LH, and HS Models

: 0.004 LA and HA Models : 0.010 PU, LU, PE, and LE Models : 0.026

 The starting friction force when the slide begins to move depends on lubrication conditions.
 Roughly estimate it at 1.5 to 2 times the dynamic friction obtained by the above method.

Calculation example

In case of NH35AN - Z3

i = 0.004

P = 2350 (N) (refer to NH model preload)

F = iP

 $= 0.004 \times 2350 = 9.4 (N)$

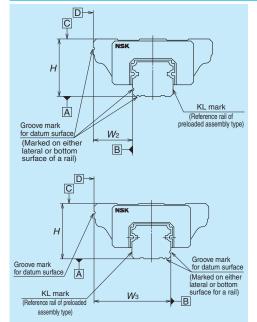
Therefore, the criteria of the dynamic friction force of NH35AN - Z3 is 9.4 N.

For seal friction, refer to seal friction of each model.

NSK

A-3-4 Accuracy

1. Accuracy standard


The accuracy of a particular model of linear guide is specified by its assembled height, assembled width, and running parallelism. We also specify the mutual variation of a pair of linear guides in the assembled height and assembled width. The accuracy of the table equipped with a set of linear guides is depending on other accuracies and many factors besides the accuracy of linear guides. Those are the accuracy of the mounting surface of the machine, the mounting span between two linear guides, the span of ball slides, the number of ball slides, and the location of the point where accuracy is required. The accuracy of a linear guide can be selected to match your application.

2. Definition of accuracy

• Table 4.1, Fig. 4.1 and Fig. 4.2 show accuracy characteristics.

Table 4.1 Definition of accuracy

	Characteristics	Definition (Figs. 4.1 and 4.2)
	Mounting height H	Distance from A (rail bottom datum surface) to C (slide top surface)
	Variation of <i>H</i>	Variation of H in slides assembled to the rails of a set of linear guides
	Mounting width	Distance from B (rail side datum surface) to D (slide side datum surface).
_	W_2 or W_3	Applicable only to the reference linear guide.
	Variation of W_2 or W_3	Difference of the width (W_2 or W_3) between the assembled slides
		which are installed in the same rail. Applicable only to the reference
		linear guide.
	Running parallelism of	Variation of C (slide top surface) to A (rail bottom datum surface) when
	slide, surface C to surface A	slide is moving.
	Running parallelism of	Variation of D (slide side datum surface) to B (rail side datum surface)
	slide, surface D to surface B	when a slide is moving.

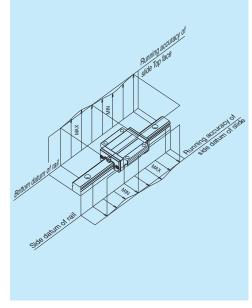
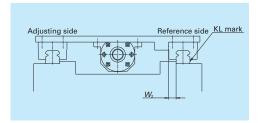



Fig. 4.1 Assembled dimensions

Fig. 4.2 Running parallelism of slide

Mounting width: W_2 and W_3

· Mounting width differs depending on the arrangement of the datum surfaces of the rail and slide on the reference linear guide (indicated as KL on the rail). (Fig. 4.3 and Fig. 4.4)

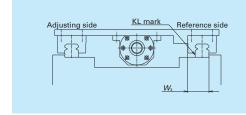


Fig. 4.3 Mounting width W₂

Fig. 4.4 Mounting width W₃

Running Parallelism of Slide

The running parallelism is set to match the characteristics of each model. These are shown in Tables 4.2 and 4.3. Note that applicable accuracy grades differ by model. Refer to Table 4.5 "Accuracy grade and applicable models" on page A55 for more information.

Table 4.2 Running parallelism of slide for NH, VH, NS, LW, DH, DV, DS, RA, RB, LA, HA, HS Models $_{Unit:\ \mu m}$

Accuracy grade	le l										
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	High precision PH	Normal grade PC				
- 50	2	2	2	4	5	2	5				
50 – 80	2	2	3	4	5	3	5				
80 – 125	2	2	3	4	5	3	5				
125 – 200	2	2	3.5	5	6	3.5	6				
200 – 250	2	2.5	4.5	6	7.5	4.5	7.5				
250 – 315	2	2.5	5	6.5	8.5	5	8.5				
315 – 400	2	3	5.5	7	9.5	5.5	9.5				
400 - 500	2	3	6	7.5	11	6	11				
500 - 630	2	3.5	6.5	8.5	12	6.5	12				
630 – 800	2	4	7	9.5	13	7	13				
800 – 1 000	2.5	4.5	7.5	10	15	7.5	15				
1 000 – 1 250	3	5	8.5	12	16	8.5	16				
1 250 – 1 600	3.5	5.5	9.5	13	17	9.5	17				
1 600 – 2 000	4	6.5	11	14	19	11	19				
2 000 – 2 500	4.5	7.5	12	16	21	12	21				
2 500 – 3 150	5.5	8.5	13	18	23	13	23				
3 150 – 4 000	6	9.5	14	19	25	14	25				

Accuracy	Pr	Preloaded assembly (not interchangeable) Interchangeable type										
Rail length (mm) over or less	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC							
- 50	2	2	4.5	6	6							
50 – 80	2	3	5	6	6							
80 – 125	2	3.5	5.5	6.5	6.5							
125 – 200	2	4	6	7	7							
200 – 250	2.5	5	7	8	8							
250 – 315	2.5	5	8	9	9							
315 – 400	3	6	9	11	11							
400 - 500	3	6	10	12	12							
500 - 630	3.5	7	12	14	14							
630 - 800	4.5	8	14	16	16							
800 – 1 000	5	9	16	18	18							
1 000 – 1 250	6	10	17	20	20							
1 250 – 1 600	7	11	19	23	23							
1 600 – 2 000	8	13	21	26	26							
2 000 – 2 500	10	15	22	29	29							
2 500 – 3 150	11	17	25	32	32							
3 150 – 4 000	16	23	30	34	34							

3. Application examples of accuracy grade and preload

Table 4.4 shows examples of accuracy grade and preload of NSK linear guides for specific purposes. Refer to this table when selecting the accuracy grade and preload type for your application.

Table 4.4 Application examples of accuracy grade and preload

_		Accuracy grade							Proload						
ž e		-	rolos				Interchang	nahla +	Preload Preloaded assembly Interchangeable type						
Type of machine	Application	Ultra	reload Super		Semb Precision		Interchang High	Normal	Heavy	Medium	Slight	mbly Fine	Medium		le type Fine
Typ	Αρριισατίστι		precision	precision	grade	grade	precision	grade	preload		preload	clearance	preload		clearance
		P3	P4	P5	P6	PN	PH	PC	Z4	Z3	Z1	Z0	ZH	ZZ	ZT
	Machining centers		0	0	0		0		0	0			0		
	Jig borers	0	Ŏ	Ŏ	Ŏ		Ŏ		Ŏ	Ŏ			Ŏ		
	Grinder	Ŏ	Ŏ	Ŏ	Ŏ		Ŏ		Ŏ	Ŏ			Ŏ		
	Lathes		Ŏ	Ŏ	Ŏ		Ŏ		Ŏ	Ŏ			Ŏ		
s	Milling machines		Ŏ	Ŏ	Ŏ		Ó		Ő	Ŏ			Ó		
Machine tools	Drilling machines		0	0	0		0		0	0			0		
e tc	Boring machines		0	0	0		0		0	0			0		
Ξ	Gear cutters		Ŏ	Ŏ	Ŏ		Ŏ		Ŏ	Ŏ			Ŏ	0	
ac	Laser cutting machines		0	0	0		0			0	0	0	0	O	
Σ	Electric discharge machines	0	Ŏ	Ô			Õ		0	Ŏ	Ô		Õ		
	Turning centers		Ô	Ô	0		Ô		Ô	Ô			Ô		
	Transport section (including ATC, etc.)				Õ	0	Õ	0		Ŏ	0	0	Õ	0	
	Punch presses		0	0	Ŏ		Ŏ	Ŏ		Õ	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ
	Other processing machines		Ŏ	Ŏ	Ŏ		Ŏ			Ŏ	Ŏ	Ŭ	Ŏ		
	Press machines		Ĭ		0	0	0	0		0	0	0	0	0	
	Welding machines				0		0	$\overline{}$		Ö	Õ	0	0	0	Ö
	Painting machines				Õ	Ŏ	Õ	Ŏ		Ŏ	Õ	Õ	Õ	Õ	Ŏ
	Coil winders				0	C	Õ	\sim		Õ	0	0	Ô	Õ	Ö
	Woodworking machines				Õ	Ô	Ô	Ŏ		Ŏ	0	0	0	Ô	Ŏ
	Glass processing machines				O		Ŏ	Ö		Ŏ	0	Ö	Ö	Ö	$\overline{}$
	Stone cutting machines				Õ	Õ	Õ	Ö		Õ	Õ	Õ	Õ	Õ	Ŏ
Ĭ	Industrial robots			0	0		Ö	Ö		Ö	$\overline{\circ}$	0	0	Õ	Ŏ
me	Assembling devices			Õ	Õ		Ŏ	Ŏ		Ŏ	$\overline{\circ}$	Õ	Õ	Õ	Ŏ
qin	Material handiing equipment			Õ	Ŏ	C	Ŏ	Ŏ		Ŏ	Ŏ	Õ	Ŏ	Ŏ	Ŏ
edi	Packing machines				Ŏ	\sim	Ŏ	Ŏ		Ŏ	Ŏ	Ŏ	Ŏ	Ô	Ŏ
pu	Paper manufacturing machines				Ŏ	Ŏ	Ŏ	Ŏ		Ŏ	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ
s S	Steel machinery				Ŏ	Ŏ	Ŏ	Ŏ		Ŏ	0	Ŏ	Ŏ	Õ	Ŏ
ne	Textile machines				Ö	C	Ö	Ŏ		Ŏ	Ŏ	Ö	Õ	Õ	Ŏ
chi	Tire manufacturing equipment				Ŏ	Ö	Õ	Ŏ		Ŏ	Ö	Ô	Ô	Ô	Ŏ
Шa	Measuring/inspection equipment	0	0	0	Ŏ		Ŏ				Õ		Ŏ	Õ	
a	Image processing device	Õ	Ŏ	Õ	Õ		Ŏ			\cap	Ŏ	\cap	Õ	Õ	
str	Three-dimensional measuring equipment	Ŏ	Ŏ	Õ	Õ		Ŏ			Ŏ	Ŏ		Õ	Õ	
ndustrial machines and equipment	Medical equipment	-	Ŏ	Ŏ	Ŏ		Ŏ				$\overline{0}$		Õ	Õ	
드	Food processing equipment				Ö	0	Ö	O			$\overline{\circ}$	Ô	Ô	O	$\overline{}$
	OA equipment				0	0	Ŏ	Ŏ			0	0	0	0	Ŏ
	Pneumatic equipment						Ö	$\overline{}$			Õ	Ô	0	0	Ŏ
	Platform door (railway related)					Ŏ		Ŏ			Ŏ			Ŏ	
	Rechargeable battery manufacturing equipment			0	0	C	0	\sim		0	0	0	0	Õ	
	Other inspection equipment		0	Õ	Ô		Ô			Ŏ	Õ	Ô	0	Ŏ	Ŏ
	Other machines			Ŏ	Ŏ		Ŏ			Ŏ	$\overline{}$	Õ	Ŏ	Ŏ	$\overline{}$
>	Wafer slicers	\cap		0						0				0	
pla	Chemical processing equipment	$\overline{}$	Ô	0	$\tilde{}$		0			Ŏ	\bigcirc	0	0	Ö	
gig	Lithographic machines	$\tilde{\circ}$	0	0	Ŏ		Ŏ			Õ	0		0	0	
inel	Probers	0	Ô				Ô			Ŏ	Ö		0	0	
Semiconductor and flat panel display manufacturing equipment	Wafer dicers	$\overline{}$	0							0			0	0	
flat	Bonders									Ŏ	0		0	0	
ring	Wire bonders									Õ	0		0	Õ	
or s	IC handlers		0	0	$\overline{}$		Ö	0		Ŏ	$\overline{\circ}$	0	0	Ö	
uct	Printed circuit board drilling machines		0	0			Ŏ			Ŏ	Õ		0	0	
nd	Electronic component mounting machines		0	0	0		0			0	0	0	0	0	
ic Di	Semiconductor/flat panel display inspection equipment										0		0	0	$\overline{}$
)err	Other semiconductor/flat panel display equipment										0		0	0	
	Other semiconductor/hat paner display equipment				\cup			\cup			\cup				

Note: Only Z1 and Z0 are available for PN grade.
For interchangeable types, preload "ZH" and "ZZ" are available for PH grade. For PC grade, "ZH", "ZZ" and "ZT" are available.

4. Combination of accuracy grade and preload

(1) Accuracy grades

- · Available accuracy grades are determined by the characteristics of the NSK linear guide model.
- Table 4.5 shows the accuracy grades available for each model.
- Refer to "3. Application examples of accuracy grade and preload" which shows cases of appropriate accuracy grades for specific purposes.

Table 4.5 Accuracy grades and applicable models

	ı	Preloaded ass	embly (not int	erchangeable)	Interchang	eable type
Model	Ultra precision	Ultra precision Super precision		Precision grade	Normal grade	High precision	Normal grade
	P3	P4	P5	P6	PN	PH	PC
NH, NS	0	0	0	0	0	0	0
VH	0	0	0	0	0		0
LW			0	0	0		0
DH, DS	0	0	0	0	0		
DV	0	0	0	0	0		
PU, LU, PE, LE		0	0	0	0		0
Miniature LH		0	0	0	0		
LL					0		
RA	0	0	0	0		0*	
RB	0	0	0	0			
LA	0	0	Ó	0			
HA, HS	0	0	0				

^{*)} Only RA25 to RA65 are available as interchangeable types.

(2) Preload

- · Available preload types are determined by the characteristics of the NSK linear guide model.
- Table 4.6 shows the preload classifications available for each model.
- Refer to the specifications of each model for details of radial clearance, preload, and rigidity.
- "3. Application examples of accuracy grade and preload" shows cases of appropriate preload classifications and accuracy grades for specific purposes.

Table 4.6 Classification of preload

	Preload	led assembly	(not interchan	geable)	Inte	rchangeable t	уре
Model	Heavy preload	Medium preload	Slight preload	Fine clearance	Medium preload	Slight preload	Fine clearance
	Z4	Z3	Z1	Z0	ZH	ZZ	ZT
NH, NS		0	0	0	0	0	0
VH		0	0	0		0	0
LW		(()	0	0		0	0
DH, DS		0	0	0			
DV		0	0	0			
PU, LU, PE, LE			0	0			0
Miniature LH			0	0			
LL				0			
RA		0	0		0	0	
RB		0					
LA	0	0					
HA, HS			0				

Notes: 1) Z3 preload classification is only applicable to LW35 and LW50 in the LW model.

- 2) Only RA25 to RA65 are available as interchangeable types.
- 3) Preload code of "Z" is omitted from the Ref. No. Only the preload classification code is specified at the end of the reference number. (Refer to the reference numbers for each model.)

(3) Combinations of accuracy grade and preload

• Combinations of accuracy grade and preload are shown in Table 4.7.

Table 4.7 Combinations of accuracy grade and preload type

	Accuracy grade	Preload
Dual and ad a securible.	P3 – P6	Z4 – Z0
Preloaded assembly	PN	Z1, Z0
Interchangeable type	PC, PH*1,*2	ZH, ZZ, ZT

- *1) The interchangeable type is available for models RA25 to RA65. PH grade is set for the accuracy.
- *2) ZH and ZZ preload are available for the PH accuracy grade.

A-3-5 Maximum Rail Length

General-Purpose Models

Unit: mm

Model	Size Material	15	20	25	30	35	45	55	65
NH	Special high carbon steel	2 980	3 960	3 960	4 000	4 000	3 990	3 960	3 900
INF	Stainless steel	1 800	3 500	3 500	3 500				
VH	Special high carbon steel	2 000	3 960	3 960	4 000	4 000	3 990	3 960	
VП	Stainless steel	1 800	3 500	3 500	3 500				
NS	Special high carbon steel	2 920	3 960	3 960	4 000	4 000			
149	Stainless steel	1 800	3 500	3 500	3 500	3 500			

Unit: mm

Model	Size Material	17	21	27	35	50
LW	Special high carbon steel	1 000	1 600	2 000	2 000	2 000

Long-Life Series

Unit: mm

								_	
Model	Size Material	15	20	25	30	35	45	55	65
DH	Special high carbon steel	2 980	3 960	3 960	4 000	4 000	3 990	3 960	3 900
DV	Special high carbon steel	2 000	3 960	3 960	4 000	4 000	3 990	3 960	
DS	Special high carbon steel	2 920	3 960	3 960	4 000	4 000			

Miniature Models

Unit: mm

Model	Size Material	05	07	08	09	10	12	15
PU	Stainless steel				600		800	1 000
LU	Special high carbon steel				1 200		1 800	2 000
LO	Stainless steel	210	375		600		800	1 000
PE	Stainless steel				800		1 000	1 200
LE	Stainless steel	150	600		800		1 000	1 200
LH	Stainless steel			375		600	800	

High Rigidity Models

Unit: mm

Model	Size Material	15	20	25	30	35	45	55	65
RA	Special high carbon steel	2 000	3 000	3 900	3 900	3 900	3 650	3 600	3 600
RB	Special high carbon steel				3 900	3 900	3 650	3 600	3 600
LA	Special high carbon steel			3 960	4 000	4 000	3 990	3 960	3 900

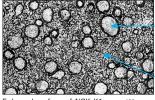
High-Accuracy Models

Unit: mm

Model	Size Material	15	20	25	30	35	45	55
HA	Special high carbon steel			3 960	4 000	4 000	3 990	3 960
HS	Special high carbon steel	2 000	3 960	3 960	4 000	4 000		
пъ	Stainless steel	1 300	3 500	3 500	3 500	3 500		

A-3-6 Lubrication

1. NSK K1[™]/K1-L[™] lubrication units


NSK K1 and K1-L lubrication units reduce costs and environmental impacts.

Long-term, maintenance-free operation

Linear guides equipped with NSK K1 units do not require maintenance for five years or up to 10 000 km of operation.

Unique lubricating structure

NSK K1 and K1-L lubrication units consist a porous synthetic resin with abundant lubricating oil. As NSK K1 and NSK K1-L units contact the raceway surface close to the rolling element contact point, fresh oil seeps out from the resin to provide continuous lubrication.

Enlarged surface of NSK K1

Polyolefin

Unlike vinyl chloride products, polyolefin does not produce dioxin. Polyolefin is also being used increasingly at supermarkets for food wrapping.

Lubrication oil

Uses a mineral oil-based lubricant. The oil has a viscosity of 100

The revolutionary NSK K1 lubrication unit

With a porous resin structure full of oil, NSK K1 units are installed on the inner side of end seals where they enhance lubricating capabilities.

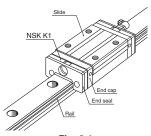


Fig. 6.1

In food processing machinery and medical equipment where hygiene control is essential, we offer NSK K1 units for sanitary environments. For details, refer to Sec. A-3-9 3.

The NSK K1-L lubrication unit—for even longer maintenance-free operation!

NSK K1-L units offer greatly improved lubricating capabilities and even longer maintenance-free operation compared to NSK K1 units. NSK K1-L units are available for NH, VH, NS, DH, DV, DS, and HS models.

For more details, please see the NSK K1-L catalog (No. E3335).

A57 A58

(1) Features

NSK K1 and NSK K1-L are compact and efficient lubrication units that keep linear guides lubricated longer.

1) Extended maintenance intervals

NSK K1 and K1-L units provide long-term, maintenance-free grease lubrication ideal for systems and environments where replenishing is difficult.

For automotive component processing lines, etc.

2) Clean and efficient

A very small volume of grease combined with NSK K1 or NSK K1-L units can provide sufficient lubrication in environments where grease would normally be undesirable and in environments where high cleanliness is required.

Food processing/medical equipment, flat panel display/semiconductor manufacturing equipment, etc.

We also provide NSK K1 lubrication units for sanitary environments; ideal for food processing machinery and medical equipment where hygiene control is essential. For details, refer to A-3-9 3.

(2) Functionality

The high-performance functionality of NSK K1 units has been tested thoroughly at NSK and in the field.

1) Durability test at high speed with no other lubrication

Fig. 6.2 shows test results for a linear guide operated with no lubrication and the NSK K1 unit alone. Typically, the linear guide breaks down and is unable to travel after a short period; however, when equipped with NSK K1, the guide easily travels 25 000 km.

Test Conditions

: LH30AN (preload Z1) Sample

Travel speed: 200 m/min Stroke : 1800 mm

3) Excels in wet environments

Using NSK K1 or K1-L units with grease prolongs the life of equipment even when the machine is exposed to rain, wind, or wash water.

Food processing equipment, housing/construction machines, etc.

4) Maintains lubrication in environments with dust

In environments where oil- and grease-absorbing dust is produced, NSK K1 or K1-L units with grease maintain lubrication long-term and prevent foreign matter entry.

Woodworking machines, etc.

*Stainless steel linear guides are available for use in corrosive environments or other environments where rusting is a potential problem.

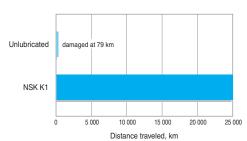


Fig. 6.2 Durability test at high speed, with no lubrication (lubricated by NSK K1 only)

2) Immersion test

Fig. 6.3 shows test results after immersing a linear guide in water once per week for 24 hours at a time before 2 700 km of travel. Without NSK K1, the ball groove surface wore out at an early stage and broke. With NSK K1, the wear generated was reduced to about 1/3 (Table 6.1) that of the initial test, proving the powerful effect of the NSK K1.

Test Conditions

Sample : LS30 Stainless steel (preload Z1)

Travel speed: 24 m/min Stroke : 400 mm Load : 4 700 N/Slide

Lubricant : Fully packed with grease (*) Exclusively for food processing machines

Immersion conditions:

Immersed and traveled once per week for 24 hours at a time.

* Grease made in U.S.A.

Characteristics

Consistency : 280 Base oil viscosity: 580 (cSt)

Table 6.1 Comparison in wear of grooves and steel balls (2 700 km)

	•	•	Unit: µm
Lubricating condition	Ball slide groove	Rail groove	Steel balls
With NSK K1	16 – 18	2 – 3	6 – 8
Without NSK K1	30 – 45	9 – 11	17 – 25

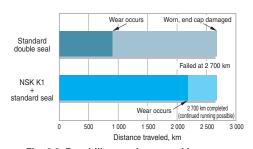


Fig. 6.3 Durability test immersed in water

4) Dust generation

Fig. 6.5 shows a comparison of dust generated with NSK K1. The combination of NSK K1 and NSK LG2 Cleanroom Grease (low dust generation grease) generates as little dust as fluorine grease (vacuum grease).

3) Durability test with wood chips

Wood chips absorb lubricant making it extremely difficult to maintain lubrication in such environments. Fig. 6.4 shows that the life of a linear guide equipped with NSK K1 and a standard seal is two times longer than the life when two seals are combined (standard double seal).

Test Conditions

Sample : LH30AN (preload Z1)

Travel speed: 24 m/min Stroke : 400 mm Load : 490 N/Slide Seal specifications/lubricant:

Standard double Seal ······ Standard double Seal

+ AS2 Grease

NSK K1-----NSK K1 + Standard seal

+ AS2 Grease

Wood chip conditions:

1·····Volume of wood chips: Large

2·····Volume of wood chips: Medium

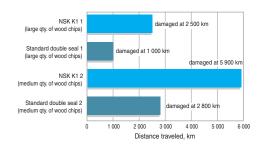


Fig. 6.4 Durability test with wood chips

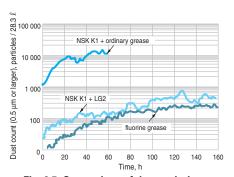


Fig. 6.5 Comparison of dust emissions

(3) Specifications

1) Applicable models and sizes

a) NSK K1

Can be installed in LW, PU, LU, PE, LE, LH, RA, RB, LA, and HA models.

- b) NSK K1-L
- Can be installed in NH, VH, NS, DH, DV, DS, and HS models. NSK K1-L is standard equipment for the VH model.
- c) Can be used with stainless steel materials and surface-treated items.

2) Standard specifications

- a) NSK K1/NSK K1-L units are installed between the end seal and end cap.
- (Double-seal specifications and specifications with a protector are also available upon request.)
- b) NSK standard grease is packed inside the slide. (The type of grease may be specified.)
- c) Accuracy and preload classifications are the same as standard items. (Dynamic friction will increase slightly when NSK K1/NSK K1-L units are present.)

3) Number of installed NSK K1

Normally, one NSK K1 unit should be installed on both ends (two K1 units for one slide).

However, more NSK K1 units may be required under more stringent operating conditions and environments. Please consult NSK for details in such cases.

Handling Precautions

To maintain the high functionality of NSK K1 and K1-L units for a long period, observe the following precautions:

- 1. Operating temperature range: Maximum operating temperature: 50°C
 - (Momentary maximum temperature: 80°C)
- 2. Chemicals to avoid: Do not allow NSK K1 or K1-L units to make contact

with organic solvents that remove oil, such as hexane and oil thinners. Do not leave NSK K1 or K1-L units in white kerosene or rust preventive oils that contain white

kerosene.

Note: Water- and oil-based cutting fluid and grease (mineral oil or ester-based) will not cause damage.

NSK

2. Types of Lubrication

Linear guides generally use either grease or oil lubrication.

Use a lubricant agent and method most suitable to conditions, requirements, and purpose to optimize linear quide functions.

In general, lubricants with low base oil kinematic viscosity are used in low temperatures and in highspeed operations where thermal expansion has a large impact.

Lubricants with high base oil kinematic viscosity are used in high temperatures and under oscillating operations or low speeds.

The following provides more details on grease and oil lubrication methods.

(1) Grease Lubrication

Grease lubrication is widely used because it does not require a special oil supply system or piping. Grease lubrication accessories available from NSK include:

- A variety of grease types in bellows tubes that can be attached to a hand grease pump with one touch.
- NSK Grease Units that consist of a hand grease pump and various nozzles. These are compact and easy to use.

1) NSK grease lubricants

Table 6.2 shows the types of general grease widely used for linear guides. In addition to these, NSK provides special greases for specific conditions and purposes. Please see page D13 for properties of NSK Grease, etc.

Table 6.2 Grease lubricant for linear guides

Туре	Thickener	Base oil	Base oil kinematic viscosity mm²/s (40°C)	Usage temperature (°C)	Purpose
AS2*1	Lithium type	Mineral oil	130	-10 to 110	For general use at high load
PS2*2	Lithium type	Synthetic oil + synthetic hydrocarbon oil	15.9	-50 to 110	For low temperature and high frequency operation
LG2	Lithium type	Mineral oil + synthetic hydrocarbon oil	32	-20 to 70	For cleanroom environments
LGU	Diurea	Synthetic hydrocarbon oil	95.8	–30 to 120	For cleanroom environments
NF2	Urea composite type	Synthetic hydrocarbon oil	26	-40 to 100	For fretting resistance

- *1) Standard grease of NH, VH, NS, LW, DH, DV, DS, LH, RA, RB, LA, HA, and HS Models.
- *2) Standard grease of PU, LU, PE, and LE Models.

2) How to replenish grease

Use grease fittings unless a specialized grease supply system is used. Supply the required amount of grease with a grease pump.

Wipe off old grease and accumulated dust before supplying new grease. If the grease fitting cannot be used due to size limitations, apply grease directly to the rail. Remove the seal if possible, and move the slide a few strokes to allow the grease to permeate. NSK offers a hand grease pump exclusively for the easy lubrication of linear guides.

Please see page D19 onward for hand grease pump, various types of grease in bellows containers that can be attached to the pump, and grease nozzles.

3) Volume of grease to be replenished

Once grease is applied, another supply is typically not required for a long time. However, some operational conditions require more periodic grease replenishment.

Here are a few methods:

• If using a specialized grease supply system and the volume from the spout can be controlled:

Replenish to fill about 50% of the internal space of the slide.

This method eliminates grease waste and is efficient. Table 6.4 on Page A64 shows the internal space of the slide by model.

• If using a grease pump:

Use the pump to fill the inside of the slide with grease until it comes out from the slide area.

Move the slide by hand while filling so that the grease permeates all areas.

Do not operate the machine immediately after replenishing.

Always perform a run-in with several trial runs to spread the grease throughout the system and to remove excess grease from inside. Running-in is necessary because the sliding force of the linear guide greatly increases immediately after replenishment (when fully packed) due to stirring resistance and may cause problems.

Wipe off any excess grease that accumulates at the end of the rail after trial runs so that the grease does not spread to other areas.

4) Intervals of checks and replenishments

Even high-quality grease gradually deteriorates and loses its lubricating functionality. Additionally, grease in the slide is gradually removed by stroke movement. In some environments, the grease may become dirty and foreign matter may enter the slide. New grease should be supplied depending on the frequency of use. The following is a guide of intervals of grease replenishment for linear guides.

Table 6.3 Intervals of checks and replenishments for grease lubrication

Intervals of checks	Items to be checked	Intervals of replenishments		
	Dirt, foreign matter such as cutting	ting Usually once per year is sufficient. Every 3 000 km		
3-6 months	chips	for a system such as material handling equipment		
3 0 1110111113		that travels more than 3 000 km per year.		
		Replenish if check results warrant it necessary.		

Notes: 1) As a general rule, do not mix greases of different brands. Grease structures may be destroyed if greases of different thickeners are mixed. Even when greases have the same thickener, different additives in them may have an adverse effect on each other.

Grease viscosity varies by temperature. Viscosity is particularly high in winter due to low temperatures. Pay attention to increases in linear guide sliding resistance in such occasions.

		Unit: cm ²	
Model	NH, DH		
Model No.	High-load type	Super-high-load type	
15	3	4	
20	6	8	
25	9	13	
30	13	20	
35	22	30	
45	47	59	
55	80	100	
65	139	186	

VH. DV Models

NH, DH Models

,	Unit: cm³		
Model	VH, DV		
Model No.	High-load type	Super-high-load type	
15	3	4	
20	6	8	
25	9	13	
30	13	20	
35	22	30	
45	47	59	
55	80	100	

NS. DS Models

,	Unit: cm³		
Model	NS, DS		
Model No.	Medium-load type	High-load type	
15	2	3	
20	3	4	
25	5	8	
30	8	12	
35	12	19	

LW Model

	Office Citi
Model No.	LW
17	3
21	3
27	7
35	24
50	52

Table 6.4 Internal space of the slide

PU, LU Models

Unit: cm				Unit: cm³	
Model	PU		LU		
Model No.	Standard type	High-load type	Standard type	High-load type	
05	-	-	0.1	_	
07	-	ı	0.1	-	
09	0.2	0.3	0.2	0.3	
12	0.3	0.4	0.3	0.4	
15	0.8	1.1	0.8	1.1	

PE, LE Models

					Unit: cm
Model	PE		LE		
Model No.	Standard type	High-load type	Medium-load type	Standard type	High-load type
05	-	-	0.1	0.1	_
07	-	-	0.1	0.2	0.3
09	0.4	0.5	0.2	0.4	0.5
12	0.5	0.7	0.3	0.5	0.7
15	1.2	1.6	0.8	1.2	1.6

Miniature LH Model

	Unit: cm
Model Model No.	LH
08	0.2
10	0.4
12	1.2

RA Model

		Offic. Cit	
Model	RA		
Model No.	High-load type	Super-high-load typ	
15	1	1.5	
20	2	2.5	
25	3	3.5	
30	5	6	
35	6	8	
45	10	13	
55	15	20	
65	33	42	

LA Model

Est mode.		Unit: cm
Model	L	A
Model No.	High-load type	Super-high-load typ
25	8	12
30	14	18
35	21	29
45	38	48
55	68	86
65	130	177

RB Model

nd Wouei			
	Unit: cm³		
Model	R	В	
Model No.	High-load type	Super-high-load type	
30	5	6	
35	6	8	
45	10	13	
55	15	20	
65	33	42	

HA, HS Models

		Unit: cm
Model Model No.	НА	HS
15	-	5
20	1	9
25	16	16
30	27	25
35	42	40
45	67	-
55	122	_

(2) Oil lubrication

The required amount of new oil is regularly supplied by:

- · A manual or automatic intermittent supply system or
- An oil mist lubricating system via piping.

Equipment for oil lubrication is more costly than for grease lubrication. However, an oil mist lubricating system supplies air as well as oil, thus raising the inner pressure of the slide. This prevents foreign matter from entering, and the air cools the system.

Use an oil with a high atomizing rate such as ISO VG 32-68 for oil mist lubrication systems.

ISO VG 68-220 are recommended for common intermittent replenishment systems. The approximate volume of oil $\it Q$ for a linear guide slide per hour can be obtained by the following formula:

For ball-type linear guides excluding the LA model:

 $Q \ge n/150 \text{ (cm}^3/\text{hr)}$

For LA, RA, and RB models:

 $Q \ge n/100 \text{ (cm}^3/\text{hr)}$

n: Linear guide size code

e.g. When NH45 is used,

n = 45,

Therefore,

 $Q = 45/150 = 0.3 \text{ cm}^3/\text{hr}$

For oil lubrication supplied by gravity, the oil supply position and installation position of the slide are crucial. In linear guides, unless installed in a horizontal position, oil will only drip downward and not spread to all raceway surfaces.

This may cause insufficient lubrication. Please consult NSK to correct such situations prior to use.

NSK has internal designs which allow oil lubricant to flow throughout the system.

Table 6.7 shows the criteria for oil checks and replenishments.

Table 6.7 Intervals of checks and replenishments

Method	Intervals of checks	Items to check	Replenishment/change intervals
Automatic intermittent supply	Weekly	Volume of oil, dirt, etc.	Replenish at each check with a suitable volume for the tank capacity
Oil bath	Daily before operation	Oil surface	Make a suitable criterion based on consumption

Notes: 1) As with grease lubrication, do not mix oil lubricant with different types.

- 2) Some components of the linear guide are made of plastic. Avoid using an oil that adversely affects synthetic resin.
- 3) When using oil mist lubricating systems, please confirm oil supply amounts at each outlet port.

A-3-7 Dust Resistance

1. Standard specification parts

- To keep foreign matter from entering inside the slide, NSK linear guides have end seals on both ends, bottom seals at the bottom surfaces, and an inner seal in the inside of slide.
- Table 7.1 shows standard specification seals by model.
- Seal friction force for a standard slide is shown in the dust resistance section of a model's technical description.

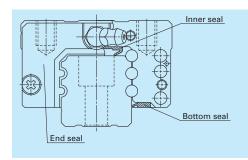


Fig. 7.1

Table 7.1 Standard seals

		End	Bottom	Inner
		seal	seal	seal
NH Model	NH15	0	0	-
ivid ividaei	NH20, NH25, NH30, NH35, NH45, NH55, NH65	0	0	Δ
VH Model	VH15	0	0	-
v n iviouei	VH20, VH25, VH30, VH35, VH45, VH55	0	0	Δ
NS Model	NS15	0	0	-
INS IVIOUEI	NS20, NS25, NS30, NS35	0	0	Δ
LW Model	LW17, LW21, LW27, LW35, LW50	0	0	-
DH	DH15	0	0	_
	DH20, DH25, DH30, DH35, DH45, DH55, DH65	0	0	\triangle
DV	DV15	0	0	-
DV	DV20, DV25, DV30, DV35, DV45, DV55	0	0	\triangle
DS	DS15	0	0	-
DS	DS20, DS25, DS30, DS35	0	0	Δ
PU Model	PU09, PU12, PU15	0	_	_
LU Model	LU05, LU07, LU09	\triangle	_	_
LO Model	LU12, LU15	0	_	-
PE Model	PE09, PE12, PE15	0	_	-
LE Model	LE05, LE07, LE09, LE12, LE15	0	_	-
Miniature	LH08, LH10	0	-	-
LH Model	LH12	0	0	-
RA Model	RA15, RA20	0	0	\triangle
INA MOUEI	RA25, RA30, RA35, RA45, RA55, RA65	0	0	0
RB Model	RB30, RB35, RB45, RB55, RB65	0	0	0
LA Model	LA25, LA30, LA35, LA45, LA55, LA65			\triangle
HA Model	HA25, HA30, HA35, HA45, HA55	0	0	0
HS Model	HS15, HS20, HS25, HS30, HS35	0	Δ	_
	O . Favinged as a standard facture			

○ : Equipped as a standard feature

△ : Available upon request

2. Dust-resistant parts

• NSK offers a variety of dust-resistant options to suit your environment.

Table 7.2 Optional dust-resistant parts

Name	Purpose	Reference page
NSK K1 lubrication unit	A lubrication device that combines oil and resin in a single unit. Enhances lubricating functions.	A58 – 61
Double seal	Combines tow end seals for enhanced seal effectiveness.	A67
Protector	Protects the end seal from hot and hard contaminants.	A68
Rail cap	Prevents foreign matter, such as swarf generated in cutting operations, from clogging the rail-mounting holes.	A68
Inner seal	Installed inside the slide to prevent foreign matter from entering and affecting the rolling contact surface.	A69
Bellows	Covers the linear guide.	A69
Rail cover *	Covers the rail top surface, and prevents foreign matter, such as cutting dust, from collecting in the rail mounting holes.	A306

^{*)} In the RA model, rail covers are only available for RA25 to RA65.

(1) Double seal

- It is a combination of two end seals to enhance seal functions.
- When the double seal is installed, the end seal section becomes thicker than standard items.
 Please pay attention to the increase in slide length when designing the mounting dimension of slide and the table stroke. Refer to the dust resistance section of a model's technical description for details on dimensional increases in the rail axial direction when mounting double seals.
- Double-seal set: Can be installed to a completed standard ball slide assembly later upon request.
 It comprises two end seals, two collars, and two machine screws for installation (Fig. 7.2).
 The product reference numbers of each model are described in the dust resistance section of a model's technical description.
- Attaching a grease fitting to the end cap after the double seal is equipped requires a connector shown in Fig. 7.2. Please specify the connector set when ordering linear guides.
- For VH, DV, RA, RB, LA, HA, and HS Models, the double-seal set can be only installed before shipping from the factory.

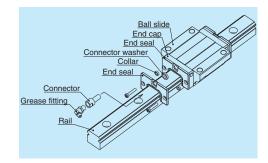


Fig. 7.2 Double seal

(2) Protector

- A protector is usually installed outside the end seal to prevent high-temperature fine particles such as welding spatter and other hard foreign matter from entering the slide.
- Same as the case with the double seal, when the protector is installed, the slide becomes longer.
 Take this thickness of slide into consideration for determining the relevant dimensions such as the system stroke and the ball slide installation envelope. Refer to the dust resistance section of a model's technical description for details on dimensional increases in the rail axial direction when installing a protector.
- Protectors are available from stock and can be installed to standard assemblies upon request.
 Refer to the dust resistance section of a model's technical description for details on protector reference numbers.
- Attaching a grease fitting to the end cap after the protector is equipped requires the connector shown in Fig. 7.3. Please specify the connector set when ordering linear guides.
- For VH, DV, RA, RB, LA, HA, and HS Models, the protector can only be installed only before shipping from the factory.

(3) Bolt-hole caps to plug the bolt holes for rail mounting

- After the rail is mounted to the machine base, a bolt-hole cap is used to plug the bolt hole to prevent foreign matter from clogging up the hole and from entering into the slide (Fig. 7.4).
- The bolt-hole cap is made of synthetic resin which has superb resistance to oil and abrasion.
- Refer to the dust resistance section of a model's technical description for details on bolt sizes and reference numbers.
- To insert the cap into the rail bolt hole, use a flat dolly block (Fig. 7.5). Pound the cap gradually until its height becomes flush with the rail top surface.
- You can reorder extra bolt hole caps. Refer to the dust resistance section of a model's technical description for details on bolt cap sizes and reference numbers.
- · Caps made of metal also available upon request.

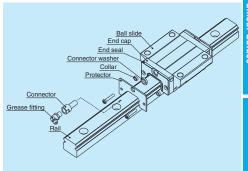


Fig. 7.3 Protector

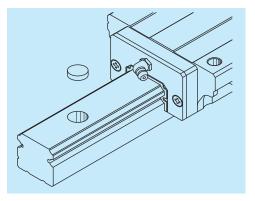


Fig. 7.4

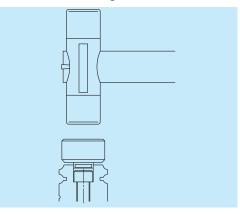


Fig. 7.5

A68

(4) Inner seal

- The end seal installed on both ends of a slide cannot stop all contaminants, though the missed amount is negligible. An inner seal protects the rolling contact surface from such contaminants which entered inside the slide (Fig. 7.6).
- The inner seal is installed inside the slide.
 Therefore, the appearance in size and the shape are the same as the standard slide. (The inner seal is already installed before shipping.)
- It is strongly recommended to use bellows and double seals along with the inner seal to maintain the precision of the linear guide.
- Refer to Table 7.1 for availability of inner seal.

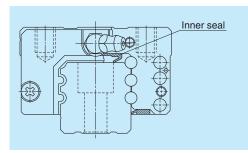


Fig. 7.6 Inner seal when installed

[1] Installation of bellows: NH, NS, DH, and DS Models

- * Fixing to the ball slide (Fig. 7.7)
- Remove two machine screws (M₂) which secure the end seals to the end of the slide (Fig. 7.7).
 For NS15 and DS15, hold the end cap by hand.
 Otherwise, the end cap is detached from the ball slide, and the balls inside may spill out.
- Then insert a spacer to the hole for securing the end seal. Fasten the mounting plate at the end of the bellows to the slide with a slightly longer machine screw (provided with the bellows).

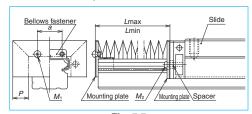


Fig. 7.7

(5) Bellows

- Bellows cover the entire linear guide. They are widely used for protection in environments where foreign matter is prevalent.
- NSK provides specialized bellows for the NH, NS, LW, DH, DS, RA, and LA models. We offer a middle bellows and end bellows for all these models. Bellows for the NH and DH model are further divided into high/low types based on the slide type.
- The high type is used with AN and BN slide shapes, while the low type is used with EM, GM, AL, and BL slide shapes. The top of the high type bellows is slightly lower than the top surface of the slide.
- When a high type bellows is installed to the slide with the height code L (such as AL), the top of the bellows becomes higher than the slide. However, it is advantageous for stroke because the pitch of the bellows becomes larger than the low type.
- Special bellows are required when installing the linear guide vertically, or hanging it from a ceiling. Please consult NSK in such a case.
- When a bellows is used, please be advised that we cannot put a grease fitting on the end of slide to which the bellows is attached. If you require a grease fitting, it will be put on the side of end cap or slide body. Consult NSK for details.
- Refer to the dust resistance section of a model's technical description for details on bellows dimensions.

* Fixing to the rail

- To install bellows for NH, NS, DH, and DS Models lightly knock a fastener exclusively for bellows to the end of the rail (Fig. 7.7). Then secure the mounting plate to the end of the bellows through the tap hole of the fastener.
- As described above, bellows can be easily fixed to the end of the rail without adding a tap hole on the end of the rail.
- Bellows fastener is available only for horizontal mounting positions. For other mounting positions, sliding plate is required (see Fig. 7.10 on page A70.)

For fixing to the rail, make tap holes on the rail end surface. Fix the bellows mounting plate on the rail end surface through these tap holes by using a machine screw. NSK processes a tap hole on the rail end face when ordered with a linear guide.

[2] LW and LA Models

- * Fixing to the ball slide (Fig. 7.8 and Fig. 7.9)
- Remove two machine screws which secure the end seal. (For LW17 and LW21, hold the end cap by hand while removing the machine screw. Otherwise, the end cap is detached from the slide, and the balls inside may spill over and fall.)
- · Insert a spacer to the securing hole of the end

seal, fasten the mounting plate on the end of the bellows using a slightly longer machine screw (provided with the bellows).

* Fixing to the rail

Make two tap holes to the rail end surface.
 Fix the bellows mounting plate with machine screws to the rail end surface through these tap holes.
 NSK processes the tap holes to the rail end surface when ordered with a linear guide.

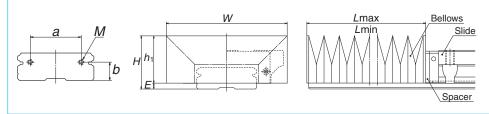


Fig. 7.8

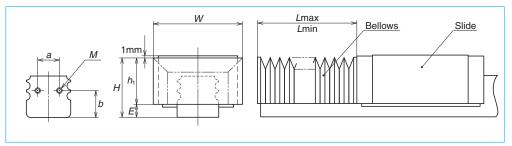


Fig. 7.9

[3] RA Model

• Please refer to page A260.

Calculating length of bellows

- The formula is as follows excluding the RA model.
- A bellows forms one block (BL) with six folds as shown in Fig. 7.10. The stroke is determined by multiplying by an integer of this BL.
- Length when stretched to the maximum :

Lmax = 7 × P × Number of BL

• Length when contracted to the minimum:

Lmin = 17 × Number of BL

A70

• Stroke : St = Lmax - Lmin

- The dimension of P and the number of BL are shown in the bellows dimension tables of each model.
- For the RA model, refer to page A260.

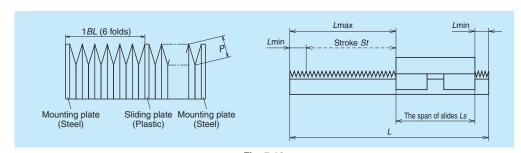


Fig. 7.10

A-3-8 Rust Prevention (Stainless Steel and Surface Treatment)

1. Stainless steel

NSK linear guides are available in stainless steel.

OStainless steel standard models

PU Model PE Model

LE Model Miniature LH Model LL Model

OAvailable in stainless steel

NH Model

NS Model

LU Model

Select from the above when using in the environments which invite rust.

2. Surface treatment

(1) Recommended surface treatment

We recommend "low temperature chrome plating" and "fluoride low temperature chrome plating" for rust prevention because of the result of the humidity chamber test for antirust characteristics and their cost-effectiveness.

However, never apply any organic solvent to those treatments for degreasing because it has an adverse effect on antirust characteristics.

Refer to the next page for the results of a humidity chamber test.

Please consult NSK for other surface treatments.

Clow temperature chrome plating (Electrolytic rust prevention black treatment)

 Used to prevent corrosion, light reflection, and for cosmetic purposes.

OFluoride low temperature chrome plating

- Fluoroplastic coating is provided following the low temperature chrome plating.
- Resistance to corrosion is higher than electrolytic rust prevention film treatments.

(2) Rust prevention of fluoride low temperature chrome plating

NSK linear guides are used in various applications and environments, from industrial machinery to semiconductor/FPD manufacturing and aerospace equipment. Preventing rust from developing in these applications is crucial, particularly for machines around water such as part/device washers and for semiconductor/FPD manufacturing equipment involved in chemical wet processing. NSK applies a fluororesin coating to an electrolytic black plating (fluoride low-temperature chrome plating) on these linear guides for optimal rust resistance.

What is "Fluoride low temperature chrome plating?"

This type of black chrome plating forms a black film (1 to 2 μ m in thickness) on the metal surface. Fluoroplastic coating is added to the film to increase corrosion resistance.

- Accuracy control is easily manageable due to low temperature treatment and to the absence of hydrogen embrittlement.
- Product accuracy is less affected due to the thin film which has high-corrosion resistance.
- This method is superior to other surface treatments in durability on the rolling surface.
- Inexpensive compared with products with other surface treatments and stainless steel products.

However, do not use an organic solvent because it adversely affects the antirust property of the plating.

A-3-9 Special Environments

1. Heat-resistant specifications

- Standard linear guides use plastic for rolling element recirculation components. The maximum temperature in use for standard linear guides is 80°C.
- Use a heat-resistant linear guide when operating temperatures exceed 80°C.

Table 9.1 Comparison of materials: Standard and heat-resistant specifications

Component	Standard specification	Heat-resistant specification
Rail	Special high carbon steel (equivalent to SUS440C/JIS)	Special high carbon steel (equivalent to SUS440C/JIS)
Slide	Special high carbon steel (equivalent to SUS440C/JIS)	Special high carbon steel (equivalent to SUS440C/JIS)
Rolling elements	SUJ2, SUS440C	SUJ2, SUS440C
Retainer	Polyacetals	SUS304
Retaining wire	SUS304	SUS304
End cap	Polyacetals	SUS316L
Return guide	Polyacetals	SUS316L
End seal	Acrylonitril-butadiene rubber, SPC/JIS and stainless steel	Fluoro rubber, SPC/JIS and stainless steel
Bottom seal	Acrylonitril-butadiene rubber, SPC/JIS and stainless steel	Fluoro rubber, SPC/JIS and stainless steel

Heat resistant linear guides

NH Model	NS Model
LW Model	DH Model
DS Model	LU Model
LE Model	

See page A76 for availability.

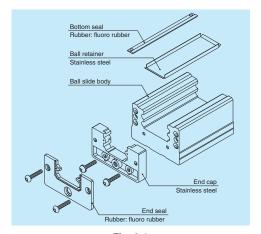
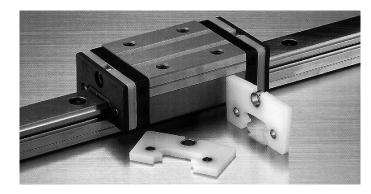


Fig. 9.1

2. Vacuum and cleanroom specifications


- Based on its abundant experience and technology, NSK manufactures linear guides that can be used in a vacuum or in cleanroom environment. Please consult NSK for more details.
- Linear guide specifications vary for environmental conditions.
- For example, "all stainless steel plus special grease", or "solid film lubricant" is suitable for vacuum environments.
- NSK has low-dust generating grease "LG2" and "LGU" which are ideal for cleanroom environments.

Refer to page D15 for details.

A71 A72

NSK linear guides for sanitary environments (food processing machinery/medical equipment)

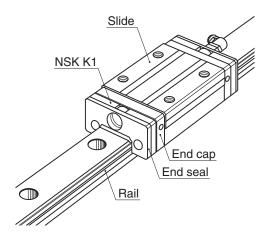
Featuring NSK K1 for food processing machinery/medical equipment and specialized grease.

What is NSK K1[™] for food processing machinery/medical equipment?

NSK K1 for food processing machinery/medical equipment is safe and FDA-compliant. With a porous resin structure full of lubricating oil, NSK K1 units are installed inside a end seal where they greatly enhance lubricating capabilities. After success in general industry, we utilized special materials to allow use in food processing and medical equipment.

(1) Features

- 1) NSK linear guides for sanitary environments use NSF H1 food-grade grease.
- *H1: Lubricants permitted for use where there is possibility of incidental food contact
- <Features of grease for food processing machines>
- This grease is certified to the H1 food-grade standard (previously USDA H1) by NSF international.
- *USDA: USDA (The United States Department of Agriculture)
- · Superb water resistance and antirust capabilities
- Superb wear resistance
- · Applicable with centralized oiling systems
- 2) Appropriate volume of grease


A supply of the appropriate volume of grease reduces grease drain and scattering and maintains a clean environment.

(2) Available models

Table 9.2 shows available models.

Table 9.2

NH Model	NH15, NH20, NH25, NH30, and NH35
NS Model	NS15, NS20, NS25, NS30, and NS35
LW Model	LW17, LW21, LW27, and LW35
DH Model	DH15, DH20, DH25, DH30, and DH35
DS Model	DS15, DS20, DS25, DS30, and DS35
PU Model	PU09, PU12, and PU15
LU Model	LU09, LU12, and LU15
PE Model	PE09, PE12, and PE15
LE Model	LE09, LE12, and LE15
Miniature LH Model	LH12

Handling Precautions

To maintain the high functionality of NSK K1 units for a long period, observe the following precautions:

1. Operating temperature range: Maximum operating temperature: 50°C

(Momentary maximum temperature: 80°C)

2. Chemicals to avoid: Do not allow NSK K1 units to make contact with

organic solvents that remove oil, such as hexane and oil thinners. Do not leave NSK K1 units in white kerosene or

rust preventive oils that contain white kerosene.

Note: Water- and oil-based cutting fluid and grease (mineral oil or ester-based) will not cause damage.

A76

4. Specifications for special environments

Table 9.3 Linear guide specifications

Environment	Condition	NSK linear guide specifications			Technical Explanation	
Liiviioiiiieiit	Condition	Rail, slide	Steel balls/rollers	Ball recirculation component	Lubrication/surface treatment	Page No.
		Standard material	Standard material	Standard material	LG2 Grease, LGU Grease	D8
	Atmosphere,	Otaniaara matoriar	Staridara material	Otanaara matema	NSK K1 lubrication unit	D10
	normal temperature				LG2 Grease, LGU Grease	D8
Cleanroom	normar temperature				NSK K1 lubrication unit	D10
		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
	Atmosphere-Vacuum, normal temperature Atmosphere-Vacuum up to 200°C				Fluoride grease	
	Atmosphere–Vacuum, normal temperature				Fluoride grease	
	Atmosphere–Vacuum up to 200°C					
Vacuum	Atmosphere–Vacuum up to 300°C	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Molybdenum disulfide	
	High vacuum up to 500°C				Special silver film	D7
		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel		
Vapor,	Vapor, steam	0	0	Standard material		D5
	Acid, alkali	Standard material	Standard material		Fluoride low temperature chrome plating	D5
						D5
Corrosion	Acid, alkali, clean	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
resistance					LG2 Grease, LGU Grease	D8
	Strong acid,				Fluoride low temperature chrome plating	D5
	strong alkali				Fluoride grease	
	Organic solvent				Fluoride grease	
	Atmosphere	Standard material	Standard material		FT 400K 0	
10.1	up to 150°C				ET-100K Grease	
High .	Atmosphere Up to 200°C	Maria de la compania		Austenitic stainless steel	Fluoride grease	
temperature	Atmosphere Up to 200°C,	Martensitic stainless steel	Martensitic stainless steel		EL	
	Corrosion resistant				Fluoride grease	
Low temperature	-273°C and higher	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Solid lubricant	
Radiation	A	Standard material	Standard material	Standard material	Radiation resistant grease	
resistance	Atmosphere	Martensitic stainless steel	Martensitic stainless steel	artensitic stainless steel Austenitic stainless stee		
	Fine particles,	Standard material	Standard material	Standard material		D10
Foreign	wooden chips		Martensitic stainless steel	Austenitic stainless steel	NOV. I/4 I I	D10
matters	Water,	Martensitic stainless steel	Standard material	Standard material	NSK K1 lubrication unit	D10
	under water		Martensitic stainless steel	Austenitic stainless steel		D10

5. Responsiveness of NSK linear guides for special environments

de	Model No.				h linear g	juide car	
Model	wiodei ivo.	Cleanroom	Vacuum	Corrosive	High- temperature	Hygienic	Dust- contaminate
	NH15	0		0		0	
	NH20	0	0	0	0	0	
	NH25	0	0	0	0	0	
	NH30	Ó	Ó	Ó	Ö	Ó	
NH	NH35	0		0	0	0	
	NH45	Õ		Õ	Õ		
	NH55	Õ		Õ			
	NH65	Õ		Ŏ			
	VH15			Ŏ			0
	VH20			Ŏ			Ŏ
	VH25			Ŏ			ŏ
٧ш	VH30			ŏ			ŏ
VII	VH35			ŏ			ŏ
	VH35 VH45	+		0			0
	VH45 VH55	_		0			0
_		-		-			-
	NS15	0	0	0	0	0	
	NS20	0	0	0	0	0	
NS	NS25	0	0	0	0	0	
	NS30	0	0	0	O*1)	0	
	NS35	0		0		0	
	LW17	0		0	O*1)	0	
	LW21	0		0	O*1)	0	
LW	LW27	0		0	0	0	
	LW35	0		0		0	
	LW50	0		0			
	DH15	0		0		0	
	DH20	0		0		0	
	DH25	0		0		0	
	DH30	Ó		Ó		Ó	
DH	DH35	0		0		0	
	DH45	Õ		Õ			
	DH55	Ŏ		Ŏ			
	DH65	Ŏ		Õ			
-	DV15			ŏ			
	DV10	+		ŏ			ŏ
	DV25	+		0			<u> </u>
טע	DV25	+		0			<u> </u>
٧٧	DV30	+	-	0			0
		+					
	DV45	-		0			0
_	DV55	1		0			0
	DS15	0		0		0	_
ļ	DS20	0		0		0	
DS	DS25	0		0		0	
	DS30	0		0		0	
	DS35	0		0		0	
	PU09	0		0		0	
PU	PU12	0		0		0	
1	PU15			0		0	

Б		Special environment which linear guide can tolerate					
Model	Model No.	Cleanroom		Corrosive	High- temperature	Hygienic	Dust- contaminated
	LU05	0		0			
	LU07	0		0			
	LU09_L	0	0	0	0	0	
LU	LU09_R	0		0		0	
	LU12_L	0	0	0	0	0	
	LU12_R	0		0		0	
	LU15	0	0	0	O*1)	0	
	PE09	0		0		0	
PE	PE12	0		0		0	
	PE15	0		0		0	
	LE05	0		0			
	LE07	0	0	0	O*1)		
	LE09_L	0	0	0	O*1)	0	
	LE09_R	0		0		0	
LE	LE12_L	Ó	0	Ó	0	Ó	
	LE12 R	Ó		Ó		Ó	
	LE15 L	Ô	0	Ô	0	0	
	LE15AR	Õ		Ô		Ô	
ᆂ	LH08	Õ		Ô			
Winiature LH	LH10	Ô		Ô			
Vinia	LH12	Õ	0	Õ	O*1)	0	
	RA15	Õ		Õ	0 .,		
	RA20	Õ		Õ			
	RA25	Ö		Õ			O*2)
	RA30	Õ		Õ			O*2)
RA	RA35	Õ		Õ			O*2)
	RA45	Ŏ		Ŏ			O*2)
	RA55	Õ		Õ			O*2)
	RA65	Õ		Õ			O*2)
	RB30	Õ		Õ			
	RB35	Ŏ		Ŏ			
RB		Ŏ		Ŏ			
	RB55	Ŏ		Õ			
	RB65	Ŏ		Õ			
_	LA25	Ŏ		Õ			
	LA30	Ŏ		Ŏ			
	LA35	Ö		Ö			
LA	LA45	Ŏ		Ö			
	LA55	Ö		Ö			
	LA65	Ö		Ö			
-	HA25	Ŏ		Ŏ			
	HA30	0		Ö			
нΔ	HA35	0		ŏ			
. 1/1	HA45	0		ŏ			
	HA55	0		0			
-	HS15	0		Ŏ			
	HS20	0		<u> </u>			1
нς	HS25	0	-	0			1
113	HS30	0	-	0			1
	HS35	0	-	<u> </u>			1
_	11000	\cup		\cup			

6. Precautions for handling

Please observe the following precautions to maintain NSK Linear Guide performance.

- · Products are washed to remove oil and wrapped in a way to protect them from moisture. Use the product as soon as possible after opening the package.
- · After opening, store the products in a clean, air-tight container such as a desiccater with desiccating agent (e.g. silica gel). Do not apply rust preventive oil or an antirust paper that vaporizes rust preventive
- Wear plastic gloves and handle products in a clean place.

Note: Please refer to the catalog "CAT. No. E1258 SPACEA" for details on special environmental uses.

^{*1)} Applicable except for dust-resistant parts.

^{*2)} Available with dust-resistant V1 seal.

A-3-10 Arrangement and Mounting of Linear Guides

1. Arrangement

- For NSK linear guides, the datum surfaces of the rail and slide are either marked with a "datum surface groove mark" or "arrow."
- If two or more linear guides are used together, one linear guide is designated as the reference side guide, and the others as adjusting side guides. The reference side linear guide has its reference number, serial number, and "KL" mark on the opposite side of the datum surface (Fig. 10.1).
- When the datum surfaces of the reference side rail and slides are pressed to their respective mounting datum surfaces, the variation of distance (mounting width W2 or W3) between the datum surfaces of the rails and that of the slides must be minimized as set by the accuracy standard. (Figs. 10.2 and 10.3)
- Indications of the datum surfaces for different models are shown in Table 10.1.

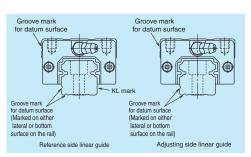


Fig. 10.1 Datum surface

Example arrangements

 The arrangmeent of the linear guide must consider the table mounting position (horizontal, vertical, inclined, or upside-down), the stroke, and the size of the machine base to which the table is mounted.

Table 10.2 shows the properties of common arragements including their features and precautions.

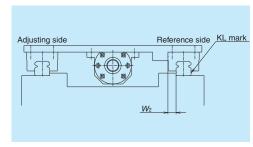


Fig. 10.2 Most common setting of the reference side rail

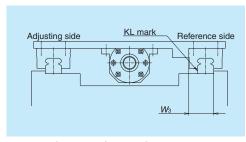


Fig. 10.3 Setting of the reference side rail in certain occasions

Table 10.1 Marks on the rail datum surfaces in each model

Model No. Material	Standard	LU05, 07, 09 PU09, 12, 15 LE07, 09, 12	LU12, 15, NH15, VH15, NS15 DH15, DS15, DV15	LE05, 15 LE09, 12 (with a ball retainer) PE model LH08, 10, 12 LW17, 21 RA15
Special high carbon steel	B	547	B	
Stainless steel	B	B	B	B

Table 10.2 Arrangement example					
Arrangement	Features/Precautions				
Mounting datum surface Table Machine base Adjusting side Datum surface We (Fixed side)	Easy for a highly-accurate installation (recommended arrangement)				
Side Side Side Side Side Side Side Side	Easy highly-accurate installation The lubricant oil may not be supplied to slides. When oil lubricant is used, special care is required to design the oil supply routing.				
Spacer for height adjustment Ws Ws Adjusting side Reference side	Slightly difficult for a highly-accurate installation The life of the linear guides is affected by mounting accuracy. When oil lubricant is used, special care is required to design the oil supply routing.				
Spacer for height adjustment Adjusting side	Difficult for a highly-accurate installation When oil lubricant is used, special care is required to design the oil supply routing.				
Mounting datum of ball slide Table Datum side (Fixed side) W2 Machine base Adjusting side	Rather easy for a highly-accurate installation When oil lubricant is used, special care is required to design the oil supply routing.				
Datum side (Fixed side) Mounting datum of rail Adjusting side Machine base	Easy highly-accurate installation if the linear guides are installed to the machine base first, and then hung upside down along with the machine base. The linear part of the linear guides are installed to the linear guides.				

Mounting datum of ball slide

A77

• The slide may detach from the rail and fall down if the linear guide is damaged and rolling elements in the slide fall out. It is necessary to take preventive

measures against falling of the ball slide.

2. Mounting accuracy

(1) Accuracy of the mounting base of machine

- The mounting accuracy of linear guide usually copies the accuracy of the machine base.
- However, when two or more slides are assembled to each rail, the table stroke becomes shorter than the mounting surface. This, along with the fact that the mounting error is evenly spread, contributes to a higher table accuracy than the mounting surface accuracy, reducing the error to about 1/3 in average (Fig. 10.4).

(2) Installation error

• Mounting error affects mainly three factors: life, friction and accuracy (**Table 10.3**).

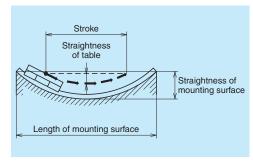


Fig. 10.4

Table 10.3 Influence of mounting error

Factor	Influence				
Life	Rail	 Large mounting error generates a force which twists the slide and reduces its life. It also distorts the contact point of the ball and the groove, and changes contact angle, thus lowering the table rigidity. 			
Friction	00 00 00 00 00 00 00 00 00 00 00 00 00	NH and NS Models are affected very little by mounting error thanks to their small friction. (self aligning capability) However, because of off-set Gothic arch grooves, their friction suddenly soars once the mounting error exceeds a certain level. Mounting error severely affects friction of LA Models with heavy preload.			
Accuracy		 When the rigidity of four slides is equal, the theoretical straightness becomes 1/2 of the installation error "e₁". However, this value becomes slightly larger due to the deformation of the rail and the machine base. 			

(3) Permissible values of mounting error

 Among the three factors of life, friction, and accuracy, which are affected by the mounting error, NSK focuses on the life factor to determine the permissible mounting accuracy. The specifications are based on the following conditions.

For ball linear guides

- The permissible load per ball slide due to mounting error is 10% of the basic dynamic load rating C_{50} .
- The rated life is 5 000 km.
- The rigidity of the machine base is infinite.

For roller linear guide

- The permissible load per roller slide due to mounting error is 10% of the basic dynamic load rating C_{100} .
- The rated life is 10 000 km.
- The rigidity of the machine base is infinite.
- C_{50} ; Basic dynamic load rating for 50 km rated fatigue life
- C_{100} ; Basic dynamic load rating for 100 km rated fatigue life
- Figs. 10.5 and 10.6 represent the mounting errors of e_1 and e_2 . Their permissible values are shown in description "5. Installation" of each model.



Fig. 10.5

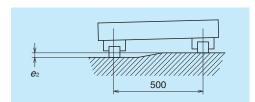
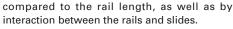



Fig. 10.6

A79 A80

(4) Running accuracy and the influence of even-off effect

• When mounting on a machine base, the linear guide is affected by the flatness of the mounting surface. However, in the case of two-rail/four-slide specification, which is most widely used, the straightness as a table unit is generally less than the straightness as a single component. This is due to the even-off effect generated by the shorter table stroke,

• Fig. 10.9 shows an actually measured straightness of the table which uses NSK linear guides. In this case, the final straightness of the table is about 1/5 of the straightness of the mounting surface.

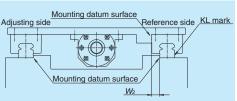


Fig. 10.7

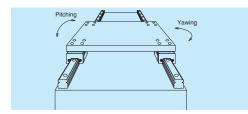


Fig. 10.8

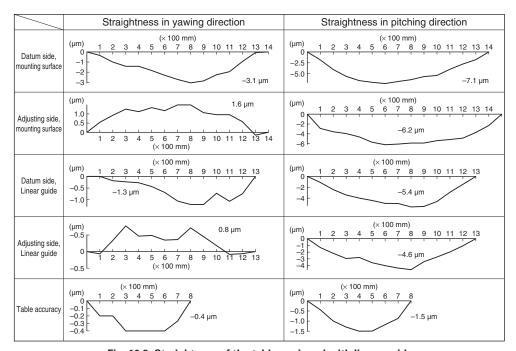


Fig. 10.9 Straightness of the table equipped with linear guide

3. Installation

(1) Shoulder height of the mounting surface of the machine base and corner radius r

- Figs. 10.10 and 10.11, show shoulder height of the mounting surface of the machine base and the size of corner radius. These figures are relevant when the linear guide is pressed to the shoulder of the machine base or table (the raised section from where the mounting surface begins), and horizontally secured to it. Recommended sizes are shown in "Shoulder height and corner radius r" for each model.
- The shoulder should be thick (wide) enough, so it is not deformed by the pressing force.

(2) Tightening torque of the bolt

- Table 10.4 shows tightening torque of the bolt when the rail is secured to the fixture of race way grinding machine.
- Apply same torque in this table when securing the rail to the machine base. Equal accuracy at the time of grinding can be obtained.

Table 10.4 Bolt tightening torque (Bolt material: High carbon chromium steel)

Unit: N·m

Bolt size	Tightening torque	Bolt size	Tightening torque
M2	0.27	M8	22
M2.3	0.38	M10	43
M2.5	0.58	M12	76
M3	1.06	M14	122
M4	2.5	M16	196
M5	5.1	M18	265
M6	8.6	M22	520

(3) Installation procedures

- There are two installation ways depending on the accuracy requirement.
 - a. Installation with high accuracy
 - b. Accuracy is not high, but easy to install
- For both methods, wipe off the rust preventive oil applied to the linear guide. Remove burrs and small bumps on the machine base and table mounting surface with an oilstone (Fig. 10.12).

Apply machine oil or similar oil with low viscosity to the mounting surface to increase the rust preventive effect.

 Linear guides are precision products. Handle them with care.

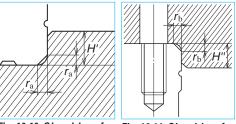


Fig. 10.10 Shoulder for Fig. 10.11 Shoulder for the rail datum the slide datum surface surface

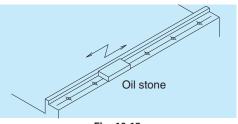


Fig. 10.12

A81 A82

1) Highly accurate installation

A) Rail installation procedures

a) When the machine base has a shoulder for the reference side rail.

[1] Confirm that the rail is reference side rail, and the datum surface of the rail comes to face to face with the shoulder of the machine base. Keep the slides on the rail, and carefully place the rail on the machine base on its mounting surface. Loosely tighten the bolts. At this time, press the rail from sideways to make the rail tightly contact to the shoulder of the machine base. When using a shoulder plate, refer to **Table 10.4** for the bolt tightening torque (**Fig. 10.13**).

Refer to "4. Various methods to press linear guide sideways."

[2] For final tightening of the bolts to secure the rail, tighten the bolt on either end of the rail, then proceed to other end.

If the datum surface is on the left side as shown in Fig. 10.14, tighten the bolt at the farthest end first, then proceed to the near end.

This way, creates a bolt rotating force that presses the rail against the shoulder. (Therefore, the rail is pressed sufficiently tight against the shoulder by merely pressing the rail by hand. However, if there is a possibility applying a lateral impact load, it is necessary to use a shoulder plate to prevent the rail from slipping.)

- [3] If the mounting surface of the machine base where the adjusting side rail is installed also has a shoulder, repeat the steps [1] [2].
- [4] If there is no shoulder on the mounting surface of the machine base for the adjusting side rail: Secure a measuring table to the slides of the reference side rail (Fig. 10.15). Use this to adjust the parallelism of the adjusting side rail. Check parallelism of the adjusting side rail with a dial indicator from one end of the rail, tightening the bolts one

The measuring table is more stable if secured to two slides, but one slides is sufficient.

Parallelism between two rails can also be checked by the same method in **Fig. 10.15** when there is a shoulder on the surface where the adjusting side rail is installed.

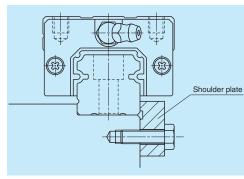


Fig. 10.13 Pressing the rail from sideways

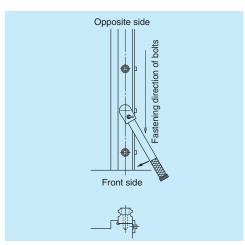


Fig. 10.14 Rail installation

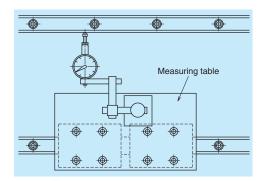


Fig. 10.15 Measuring parallelism

b) When the machine base does not have a shoulder on the side where the reference side rail is installed

- [1] Carefully place the reference side rail on its mounting surface of the machine base. Loosely tighten the bolts. Do not tighten the bolts all the way, but stop tightening when the bolt enters halfway into the bolt hole. This makes the proceeding steps easier.
- [2] Place the straight edge almost parallel to the reference side rail which is temporarily secured by the bolts. (At both ends of the rail and straight edge, the distance between them shall be almost same.)
- [3] Once the position of the straight edge is determined, use it as the reference. With a dial indicator, check parallelism with the rail, and adjust the rail if necessary. Then tighten the bolts.

Ensure that the straight edge does not move while the bolts are being tightened.

This procedure should be carried out starting from one end of the rail to the other end (**Fig. 10.16**).

- [4] Finally tighten all bolts with specified torque.
- [5] There are two ways for installation of adjusting side rail:
 - 1. Based on the straight edge which is used for reference side rail installation
 - 2. Based on the reference side rail which is installed prior to the adjusting side rail. In both cases, use a dial indicator to measure

parallelism.

Other procedures are the same as [1] - [4]

Other procedures are the same as [1] - [4] above, and the [4] for the case where there is a shoulder on the machine base.

B) Procedures for slide installation

a) When the table has a shoulder

- [1] Arrange the slides so that locations match to their mounting section of the table. Carefully place the table on the slides. Loosely tighten all bolts.
- [2] While pressing the table from sideways, further tighten the bolts which secure the slides on the reference side, so the table shoulder and the slide's mounting datum surface are sufficiently tightly pressed.

If a shoulder plate is provided, first tighten the bolts of the plate, then further tighten the bolts to the slides (**Fig. 10.17**).

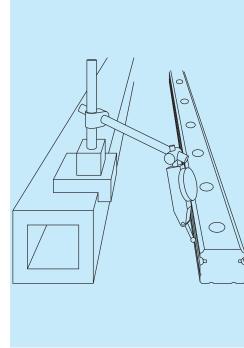


Fig. 10.16

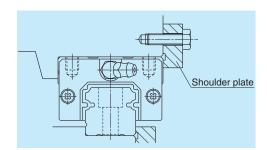


Fig. 10.17 Pressing slide from sideways

- [3] Then, further tighten the bolts for slides on the adjusting side rail.
- Move the table by hand to confirm that there is no abnormality such as excessive friction force during stroking. (This confirms that the correct installation steps were taken.)
- [4] Finally, tighten all bolts with standard torque.

b) When table does not have a shoulder

- [1] Arrange the slides so that locations match to their mounting section of the table. Carefully place the table on the slides. Loosely tighten bolts to secure the slides.
- [2] Since the table does not have a shoulder. immediately tighten the bolts further to secure slides.
- [3] Move the table by hand to confirm that there is no abnormality. Finally, tighten all bolts with the specified torque.

2) Easy installation

- [1] Carefully place the reference side rail on the machine base. Then tighten the bolts to the specified torque.
- [2] Loosely tighten the bolts on the adjusting side rail.
- [3] Tighten the slides on the reference side rail and one slide on the adjustment side rail with the specified torque. Leave the rest of the slide on the adjusting side rail loosely tightened (Fig. 10.18).
- [4] While moving the table with each pitch of the bolt for rail: With the specified torque, tighten the rail mounting bolt which is located immediately adjacent to the slide on the adjusting side rail that had been firmly tightened.
- Take this procedure from one end to the other.
- [5] Return the table to the original position once. Then, tighten the rest of the slides on the adjusting side to the specified torque. By the same procedure as in [4], tighten the rest of the rail mounting bolts to the specified torque. Move the table to check any abnormality such as large friction force.

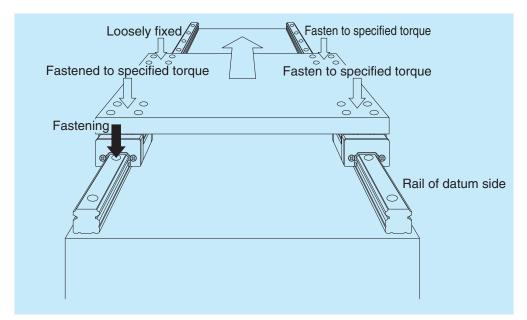


Fig. 10.18 Easy installation

(4) Various methods to press linear guide sideways

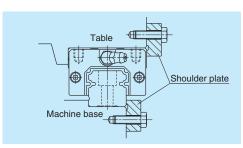
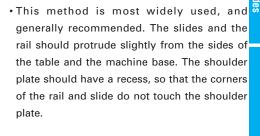



Fig. 10.19 Recommended method

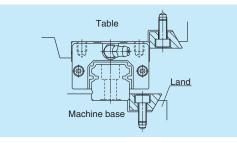
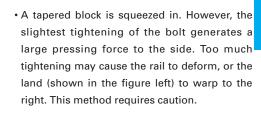



Fig. 10.20 Installation that requires caution

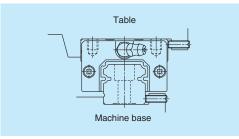


Fig. 10.21

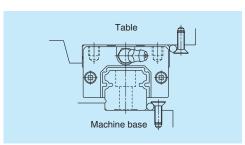


Fig. 10.22

• The bolt that presses rail must be thin due to limited space.

· Press a needle roller with a taper section of the head of a slotted pan head screw. Watch out for the position of the screw.

4. Interchangeable linear guides

- Interchangeable (also called "randommatching") linear guide slides come delivered on a provisional rail (installation tool) (Fig. 10.23).
- NSK standard grease is packed into the slide, allowing immediate use.

Assembly procedures for an interchangeable linear guide

Follow steps as described below.

- (1) Wipe off the rust preventive oil from the rail and slide.
- (2) Please match groove mark for the datum surface of slide and rail to set desired assembling state W₂ or W₃.
- (3) Align the provisional rail to the rail bottom and side surfaces. Press the provisional rail lightly against the rail, and move the slide onto the rail (Fig. 10.23).

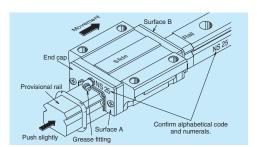


Fig. 10.23 Installing slide onto rail

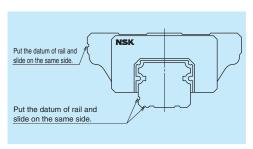


Fig. 10.24

5. Butting rail specification

- Rails may be butted to achieve a length longer than the maximum manufactured length.
- The rails with butting specification are marked with letters (A, B, C ...) and an arrow on the opposite side of the mounting datum surface.
 Use the letters and arrows for assembly order and direction of the rail (Fig. 10.25).

The interchangeable rails for butting specification are only marked with arrows.

- The pitch of the rail mounting hole on the butting section should be as F in Fig. 10.26.
 When two rails are used in parallel, the butted sections should not align. This is to avoid change in the running accuracy of the table at the butted sections.
- We recommend shifting the butting sections more than the length of a slide. If higher running accuracy is required, consider installing the slides into the table so that they do not simultaneously pass the butting sections.

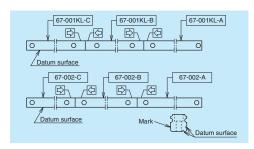


Fig. 10.25

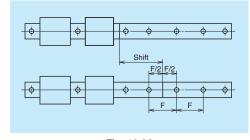


Fig. 10.26

6. Handling preloaded assembly

- When handling a preloaded assembly (not interchangeable type), do not remove slides from the rail as a general rule.
- If it is unavoidable to remove slides from the rail, make certain to use a provisional rail (a jig used to insert a slide to the rail) as shown in Fig. 10.27.
- Provisional rails are available for each model and size.
- Pay due attention to the assembly mark when returning the slide back to the rail. Follow the precautions described below.

Mark for assembling ball slide and rail

- Rails of preloaded assembly (not interchangeable type) are marked with a reference number and a serial number opposite the datum surface.
- Slides to be combined are also marked with the same serial number (the reference number is not marked).
- Furthermore, slides are marked with an arrow.
 Slides should be positioned with their arrows facing each other.
- If slides had to be removed from the rail, confirm their serial numbers and the directions of arrows for re-assembly (Fig. 10.28).
- When two or more rails are used in a single set, serial numbers are in sequence if their reference numbers are the same. The linear guide with smallest serial number has the "KL" mark (Fig. 10.29).
- When two or more rails of different reference numbers are used in a single set, the rails and slides have the same serial number. In this case, when slides are removed from the rail, it is unclear which rail each slide was previously installed on. When removing ball slides from the rail for an unavoidable reason (Fig. 10.30), sufficient caution is required.

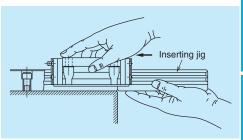


Fig. 10.27

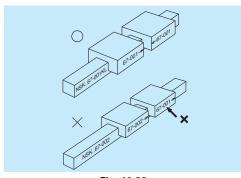


Fig. 10.28

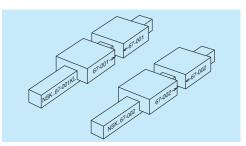


Fig. 10.29 When two rails have the same reference number

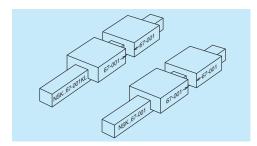
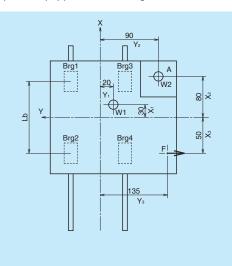



Fig. 10.30 When two rails have different reference numbers

A-3-11 Drills to Select Linear Guide

1. Single axis material handling system

This section explains the selection of linear guide, life calculation, and deformation at load acting point for a single axis material handling system equipped with linear guides.

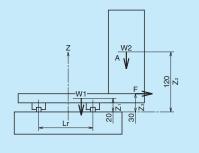


Fig. 11.1 Single axis material handling system

The work load is applied only to one way of stroke. Assume that the load is acting in full stroke as the condition of acting load is unknown.

Specification of the single axis material handling system

Table weight	W1: 150 (N)
Weight of the work	W2:200(N)
Acting load	F : 200 (N)

Ball slide span $L_{\rm b}$: 100 (mm) L.: 90 (mm) Rail span

Load point coordinates from the table center (mm)

Load	X axis	Y axis	Z axis
W1	30	-20	20
W2	80	-90	120
F	-50	-135	30

Stroke: 1 000 mm (1 cycle: 2 000 mm)

Environment : 10 - 30 (°C) Travel speed : 12 (m/min) Time to reach travel speed: 0.25 (sec) : 16 (hr/dav) Operating hour

(1) Selection of linear guide model

Select a type of linear guide from "A-2-3 Linear Guide Models" Since this material handling system has two rails and four ball slides, NH, NS, and PU Models are suitable. Here, we'll temporarily select PU15 because of the dimensions of the mounting space.

(2) Calculating life

Calculate life of the selected PU15AL based on "A-3-2 Rating Life and Basic Load Rating."

Linear guide PU15AL

Basic dynamic load rating C_{100} : 4 400 (N) Basic static load rating C₀: 6 600 (N)

Load conditions of the linear guide

Table weight W1: 150 (N) Weight of the work W2: 200 (N) F : 200 (N) Applied load Rail span $L_r : 90 \text{ (mm)}$ Ball slide span $L_{\rm b}$: 100 (mm)

From the time to reach travel speed and the travel speed, the table acceleration is 0.8 m/sec2. Therefore, it is not necessary to take into account inertial force brought about by the table mass.

Calculation of the load applied to ball slide

Calculate two occasions:

- 1. There is the work mounted on the table.
- 2. No work mounted on the table.

From Pattern 4 on page A37 in Table 2.2

When a work is mounted on the table **Vertical loads**

$$M1 = \sum_{j=1}^{n} (F_{yj} \cdot Z_{yj}) + \sum_{k=1}^{n} (F_{zk} \cdot Y_{zk})$$

$$= F \cdot Z_3 + W1 \cdot Y_1 + W2 \cdot Y_2$$

$$= -200 \times 30 + 150 \times (-20) + 200 \times (-90)$$

$$= -27 \cdot 000 \cdot (N \cdot mm)$$

$$M2 = \sum_{i=1}^{n} \{ F_{xi} \cdot (Z_{xi} - Z_b) \} + \sum_{k=1}^{n} (F_{zk} \cdot X_{zk})$$

= $W1 \cdot X_1 + W2 \cdot X_2$
= $150 \times 30 + 200 \times 80$
= $20 \ 500 \ (N \ mm)$

$$F_{r1} = \frac{\sum_{k=1}^{n} F_{zk}}{4} + \frac{M1}{2 \cdot L} + \frac{M2}{2 \cdot \ell}$$

$$= \frac{W1 + W2}{4} + \frac{M1}{2 \cdot L_r} + \frac{M2}{2 \cdot L_b}$$

$$= \frac{150 + 200}{4} + \frac{-27\ 000}{2 \times 90} + \frac{20\ 500}{2 \times 100}$$

$$= 40\ (N)$$

Similarly

 $F_{r2} = -165(N)$

 $F_{r3} = 340(N)$

 $F_{r4} = 135(N)$

Lateral loads

$$M3 = -\sum_{i=1}^{n} \left\{ F_{xi} \cdot (Y_{xi} - Y_b) \right\} + \sum_{j=1}^{n} \left(F_{yj} \cdot X_{yj} \right)$$
$$= F \cdot X_3$$
$$= -200 \times (-50)$$
$$= 10\ 000\ (N \cdot mm)$$

A89 A90

$$F_{s1} = F_{s3} = \frac{\sum_{j=1}^{n} F_{yj}}{4} + \frac{M3}{2 \cdot 1}$$
$$= \frac{F}{4} + \frac{M3}{2L_b}$$
$$= \frac{-200}{4} + \frac{10\ 000}{2 \times 100}$$
$$= 0 \text{ (N)}$$

Similarly

$$F_{s2} = F_{s4} = -100(N)$$

No work mounted on the table Vertical load

$$M1 = \sum_{j=1}^{n} (F_{yj} \cdot Z_{yj}) + \sum_{k=1}^{n} (F_{zk} \cdot Y_{zk})$$
$$= F \cdot Z_3 + W1 \cdot Y_1$$
$$= -200 \times 30 + 150 \times (-20)$$
$$= -9 \ 000 \ (N \cdot mm)$$

$$M2 = \sum_{i=1}^{n} \{ F_{xi} (Z_{xi} - Z_{b}) \} + \sum_{k=1}^{n} (F_{zk} \cdot X_{zk})$$

$$= W1 \cdot X_{1}$$

$$= 150 \times 30$$

$$= 4500 \text{ (N·mm)}$$

$$F_{r1} = \frac{\sum_{k=1}^{n} F_{xk}}{4} + \frac{M1}{2 \cdot L} + \frac{M2}{2 \cdot 1}$$

$$= \frac{W1}{4} + \frac{M1}{2 \cdot L_r} + \frac{M2}{2 \cdot L_b}$$

$$= \frac{150}{4} + \frac{-9000}{2 \times 90} + \frac{4500}{2 \times 100}$$

$$= 10 (N)$$

Similarly

$$F_{r2} = -35 \text{ (N)}$$

$$F_{r3} = 110 \text{ (N)}$$

$$F_{r4} = 65 (N)$$

Lateral loads

$$M3 = -\sum_{i=1}^{n} \left\{ F_{xi} \cdot (Y_{xi} - Y_b) \right\} + \sum_{j=1}^{n} \left(F_{yj} \cdot X_{yj} \right)$$
$$= F \cdot X_3$$
$$= -200 \times (-50)$$
$$= 10 \ 000 \ (\text{N·mm})$$

$$F_{s1} = F_{s3} = \frac{\sum_{j=1}^{N} F_{yj}}{4} + \frac{M3}{2 \cdot 1}$$
$$= \frac{F}{4} + \frac{M3}{2 \cdot L_b}$$
$$= \frac{-200}{4} + \frac{10\ 000}{2 \times 100}$$
$$= 0\ (N)$$

Similarly

$$F_{s2} = F_{s4} = -100 \text{ (N)}$$

For calculation, take into consideration the positive or negative signs (+ or -) for load point coordinates.

Calculation of dynamic equivalent load Use "A-3-2.2 3. Calculation of dynamic equivalent load."

It matches Position 4 in "Table 2.3 Loads in the arrangement of linear guides." Ball slide loads that must be considered are vertical and lateral direction loads.

In case of PU15AL,

Vertical direction dynamic equivalent load

 $F_r = F_r$ Lateral direction dynamic equivalent load

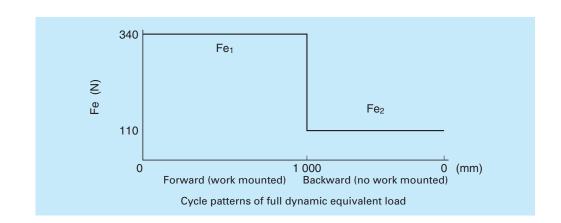
 $F_{so} = F_{s} \cdot \tan \alpha = F_{s}$

Use the formula for full dynamic equivalent load (page A41) to calculate F_a .

Results are shown in the table below.

Unit: N

Work mounted	Slide1	Slide2	Slide3	Slide4
$F_{\rm r} \left(F_{\rm r1} - F_{\rm r4} \right)$	40	– 165	340	135
$F_{\rm se} (F_{\rm s1} - F_{\rm s4})$	0	- 100	0	- 100
F _e	40	215	340	185
No work mounted	Slide1	Slide2	Slide3	Slide4
$F_{\rm r} \left(F_{\rm r1} - F_{\rm r4} \right)$	10	– 35	110	65
$F_{\rm se} (F_{\rm s1} - F_{\rm s4})$	0	- 100	0	- 100
F _e	10	118	110	133


Based on the results of calculations, a ball slide that bears the maximum dynamic equivalent load shall be taken as the representative of the linear guides for further life calculation. For this case, we take Slide3.

Therefore;

Work mounted $F_{e1} = 340$ (N) No work mounted $F_{e2} = 110$ (N)

Calculation of mean effective load

Based on "A-3-2.2 4. Calculation of mean effective load," calculate from the largest full dynamic equivalent loads.

From the cycle pattern, the mean effective load matches the case "(1) When load and running distance vary stepwise." Therefore, use the following formula.

Assuming that L is: $L = L_1 + L_2$.

$$Fm = \sqrt[3]{\frac{1}{L} \left(F_{e1}^3 L_1 + F_{e2}^3 L_2 \right)}$$

$$= \sqrt[3]{\frac{1}{2000} \left(340^3 \times 1000 + 110^3 \times 1000 \right)}$$
= 273 (N)

Determine various coefficients

Determine applicable coefficients from "A-3-2.2

5. Various coefficients."

Load factors

Use conditions are: Travel speed, 12 m/min; Acceleration, 0.8 m/sec² (0.082 G). As the load factor f_w is in the range of 1.0 to 1.5, use common value $f_w = 1.2$.

Hardness coefficient

The hardness of NSK linear guides is above HRC58. Use a hardness coefficient $f_{\mu} = 1$ and take the value of basic dynamic load rating as

Calculate rating life

Use "A-3-2.2 6. Calculation of basic rating life."

The basic dynamic load rating (C_{100}) of linear

guide PU15AL : 4 400 (N) Mean effective load F_m : 273 (N)

Load factor f... : 1.2 Hardness coefficient f_{\parallel} : 1

Rating fatigue life $L = 100 \times$

= approximately 242 280 (km)

Travel speed, 12 m/min; Operating hours, 16 hr/dav.

Convert the above rating fatigue life into hours:

242 280 × 1 000 = approximately 21 030 (days) $12 \times 60 \times 16$

Examine static load

Based on "A-3-2.2 7. Examination of static load," find out on which ball slide the static equivalent load P_0 becomes largest.

The basic static load rating (C_0) of linear guide PU15AL: 6 600 (N)

Ball slide No. 3 bears the largest load.

 P_0 at this time:

$$P_0 = F_c + F_c = 340$$

Therefore, static permissible load coefficient fs is:

$$fs = \frac{C_0}{P_0} = \frac{6600}{340} = 19.4$$

There is no problem at this value.

(3) Selection of accuracy grade and preload

Based on "A-3-4 3. Application examples of accuracy," select accuracy grade PN and preload Z1 for material handling system.

(4) Calculation of deformation

Calculate deformation by the weight of the mounted work W2. From "Rigidity of PU model," the rigidity of linear guide PU15AL with Z1 preload is:

$$K_s = K_r = 45 \text{ (N/}\mu\text{m)} = 45 \text{ 000 (N/}\text{mm)}$$

Deformation by the weight of the mounted work W_2 can be obtained as the difference in deformation when W_2 applies or does not apply.

From Pattern 4 in Table 2.2 (page A37) Work mounted:

$$\delta_{x1} = Y_d \cdot \frac{F_{s2} - F_{s1}}{L_b \cdot K_s} + Z_d \cdot \frac{F_{r1} - F_{r2}}{L_b \cdot K_r}$$

$$= -90 \times \frac{-100 - 0}{100 \times 45000} + 120 \times \frac{40 - (-165)}{100 \times 45000}$$

$$= 0.0075 \text{ (mm)} = 7.5 \text{ (um)}$$

Similarly,
$$\delta_{y1} = -0.0082 \text{ (mm)} = -8.2 \text{ (}\mu\text{m)}$$

 $\delta_{z1} = -0.0123 \text{ (mm)} = 12.3 \text{ (}\mu\text{m)}$

No work mounted:

$$\begin{split} \delta_{x2} &= Y_{d} \cdot \frac{F_{s2} - F_{s1}}{L_{b} \cdot K_{s}} + Z_{d} \cdot \frac{F_{r1} - F_{r2}}{L_{b} \cdot K_{r}} \\ &= -90 \times \frac{-100 - 0}{100 \times 45\ 000} + 120 \times \frac{10 - (-35)}{100 \times 45\ 000} \\ &= 0.0032\ (mm) = 3.2\ (\mu m) \end{split}$$

Similarly,
$$\delta_{v2} = -0.0023$$
 (mm) = -2.3 (μ m)

$$\delta_{22} = 0.0039 \text{ (mm)} = 3.9 \text{ (µm)}$$

Therefore, the difference in deformation by whether

there is a mounted work or not is as follows:

$$\delta_x = \delta_{x1} - \delta_{x2} = 7.5 - 3.2 = 4.3 \, (\mu m)$$

$$\delta_{v} = \delta_{v1} - \delta_{v2} = -8.2 - (-2.3) = -5.9 \; (\mu \text{m})$$

$$\delta_{z} = \delta_{z1} - \delta_{z2} = 12.3 - 3.9 = 8.4 \, (\mu m)$$

2. Machining center

The following is a calculation example for a horizontal machining center. Arrangements for each axis are shown in Fig. 11.2 (front view) and Fig. 11.3 (side view).

Average rapid traverse speed: 15 (m/min)

Starting accelerating speed : 1 (G)

Milling speed

Drilling speed

Cutting load

Milling process

Drilling process

[Max. 30 (m/min)]

Fx = Fy = 1000 (N)

Fz = 3000 (N)

: 2.5 (m/min)

: 0.8 (m/min)

Operating conditions

Dimensions and load conditions are:

X axis column's weight Wx: 7 500 (N)

Y axis spindle head's weight Wy: 2 500 (N)

Wz: 5500(N) Z axis table's weight

X axis rail span XL,: 450 (mm)

X axis ball slide span XL_{b} : 310 (mm)

Y axis rail span YL,: 410 (mm)

Y axis ball slide span $YL_{s}: 308 \text{ (mm)}$

ZL: 660 (mm) Z axis rail span

ZL_b: 420 (mm) Z axis ball slide span

X axis stroke: 400 (mm) Y axis stroke: 350 (mm)

Z axis stroke: 500 (mm)

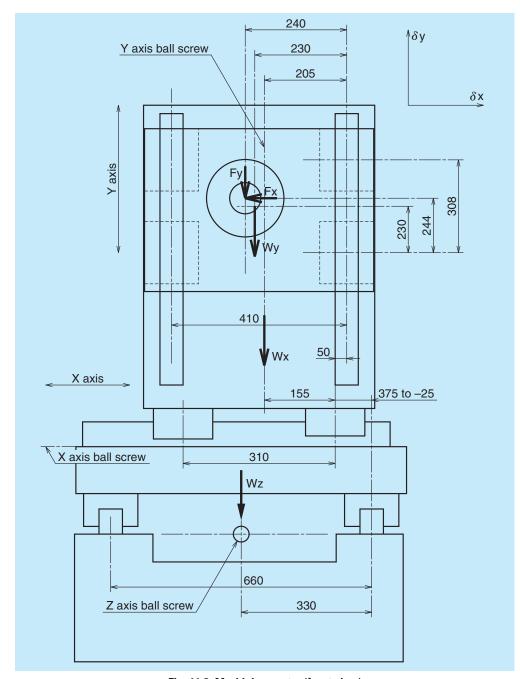


Fig. 11.2 Machining center (front view)

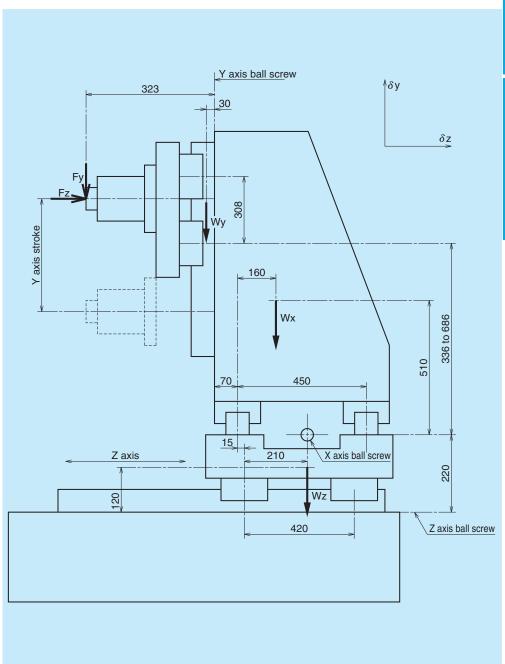


Fig. 11.3 Machining center (side view)

Linea

(1) Selection of linear guide model

Based on these operating conditions, an LA Model linear guide is suitable for this machining center.

Select below temporarily from shaft diameter of ball screw:

X axis LA55

Y axis LA35

Z axis LA65

(2) Selection of accuracy grade and preload

For machining center, select accuracy grade P5 and preload Z3.

(3) Calculation of life expectancy

Examine three cases: no cutting load, milling process, and drilling process.

Inertial force associated with the starting acceleration is not considered in this case. However, it must be calculated for more accurate figures.

Calculation of the loads that apply to the ball slide In case of no cutting load: Fx = Fy = Fz = 0Calculate load on X, Y, Z axes using "Table 2.2" in "A-3-2.2 2. Calculating load to a ball slide."

X axis: Loads to be considered Wx and Wy Y axis: Loads to be considered Wv

Z axis: Loads to be considered Wx, Wy, and Wz

nit:	

Axis	Load direction	Slide1	Slide2	Slide3	Slide4
X axis	Vertical direction Fr	1 156	955	4 045	3 844
X uxis	Lateral direction Fs	0	0	0	0
Y axis	Vertical direction Fr	122	-122	122	-122
I axis	Lateral direction Fs	102	-102	102	-102
Z axis	Vertical direction Fr	765	3 860	3 890	6 985
۵۸۱۶	Lateral direction Fs	0	0	0	0

In case of milling process: Fx = Fy = 1000 (N) Similarly.

X axis: Loads to be considered Wx, Wy, Fx, and Fy Y axis: Loads to be considered Wy, Fx, and Fy Z axis: Loads to be considered Wx, Wy, Wz, Fx,

and *F*y

The table below shows calculations for load coordinates at a stroke end which imposes the most strict conditions.

nit:	

Axis	Load direction	Slide1	Slide2	Slide3	Slide4
X axis	Vertical direction Fr	2 277	-1 039	6 539	3 224
A dais	Lateral direction Fs	997	-997	997	-997
Y axis	Vertical direction Fr	252	-1 040	1 040	-252
1 4715	Lateral direction Fs	54	-554	54	-554
Z axis	Vertical direction Fr	-771	3 796	4 453	9 020
Z 0X15	Lateral direction Fs	486	-986	486	-986

NSK

In case of drilling process: Fz = 3 000 (N)

X axis: Loads to be considered Wx, Wy, and Fz
Y axis: Loads to be considered Wy and Fz
Z axis: Loads to be considered Wx, Wy, Wz, and
Fz

The table below shows calculations for load coordinates at a stroke end which imposes the most strict conditions.

Unit: N

	Axis	Load direction	Slide1	Slide2	Slide3	Slide4
,	X axis	Vertical direction Fr	4 256	4 055	945	744
	A axis	Lateral direction Fs	919	581	919	581
,	Y axis	Vertical direction Fr	305	938	561	1 195
ī a.		Lateral direction Fs	102	-102	102	-102
	Z axis	Vertical direction Fr	4 872	-247	7 997	2 878
•		Lateral direction Fs	839	-839	839	-839

Calculation of dynamic equivalent load

Next, find dynamic equivalent load under each cutting condition. From "Table 2.3" in "A-3-2.2 3. Calculation of dynamic equivalent load," the necessary loads, Fr and Fse are, as the linear guide model will be an LA Model, obtained as follows.

Vertical dynamic equivalent load Fr = Fr

Lateral dynamic equivalent load

Fse = Fs \cdot tan α = Fs

From the above, calculate Fe using formulas for full dynamic equivalent loads shown in page A41. From calculation, the largest full dynamic equivalent loads are as follows.

Avia	Largest full dynamic equivalent load Fe (N)				
Axis	No cutting load	For milling process	For drilling process		
X axis	4 045	7 038	4 716		
Y axis	173	1 317	1 246		
Z axis	6 985	9 513	8 417		

Calculation of full dynamic equivalent load taking account of preload

It is necessary to include the amount of preload for the calculation of rating life when Z3 preload is specified. Consider each preload and calculate full dynamic equivalent load. Calculate Fep using formulas in "A-3-3 6. Load and rating life when the preload is taken into

account".

Preload P (X axis linear guide LA55): 8 100 (N)
Preload P (Y axis linear guide LA35): 3 450 (N)
Preload P (Z axis linear guide LA65): 13 800 (N)
From the above, the full dynamic equivalent

From the above, the full dynamic equivalent loads taking preload into account are smaller than the load at which preload is relieved.

Axis	Largest full dynamic equivalent load Fe (N)				
AXIS	No cutting load	For milling process	For drilling process		
X axis	10 336	12 104	10 724		
Y axis	3 542	4 171	4 131		
Z axis	17 663	19 138	18 494		

Calculation of mean effective load

Calculate the mean effective loads from full dynamic equivalent loads. If duty cycle in the cutting process is not clear, set the mean effective load to 70% of the largest full dynamic equivalent load in all processes.

Therefore,

X axis: 12 104 × 0.7 = 8 473 (N) Y axis: 4 171 × 0.7 = 2 920 (N) Z axis: 19 138 × 0.7 = 13 397 (N)

Determine various coefficients

Determine based on "A-3-2.2 5. Various coefficients."

For this case the factors are:

Load coefficient $f_{\rm w}$: 1.5

Hardness coefficient f_{H} : 1

Calculation of rating life

Based on the calculated loads and various coefficients, calculate the rating life from "A-3-2.2 6. Calculation of rating life."

Basic dynamic load rating C₁₀₀

(X axis linear guide LA55): 111 000 (N)

Basic dynamic load rating C₁₀₀

(Y axis linear guide LA35): 49 000 (N)

Basic dynamic load rating C₁₀₀

(Z axis linear guide LA65): 206 000 (N)

Load coefficient f_w: 1.5 Hardness coefficient f_H : 1

Rating fatigue life $L = 100 \times \frac{f_H \cdot C_{100}}{f_W \cdot F_W}$

From this,

In case of X axis Lx = 66617 (km)

In case of Y axis $L_{Y} = 140012$ (km)

In case of Z axis Lz = 107722 (km)

Calculation of rating life" (page A43).

Examination of static loads based on "A-3-2.2 7" Basic static load rating C_0

(X axis linear guide LA55): 215 000 (N)

Basic static load rating Co

(Y axis linear guide LA35): 98 000 (N)

Basic static load rating Co

(Z axis linear guide LA65): 420 000 (N)

Examine a high-load milling process with large load.

X axis
$$fs = \frac{C_0}{P_0} = \frac{C_0}{(F_r + F_s)} = \frac{215\ 000}{(6\ 539 + 997)} = 28.5$$

Similarly,

Y axis fs = 61.5

Z axis fs = 42.0

Therefore, there is no problem.

(4) Calculation of deformation

Calculate deformation at the processing points. (The stroke position is the stroke end positions on Y axis and X axis.)

Rigidity of X axis linear guide LA55Z3: 1 400 (N/µm) Rigidity of Y axis linear guide LA35Z3: 825 (N/µm)

Rigidity of Z axis linear guide LA65Z3: 1 730 (N/µm)

In case of roller linear guides, refer to "A-3-2.2 6.

Calculate using Pattern 4 in Table 2.2.

Load conditions	Deformation	Deform	Total deformation		
Load conditions	direction	X axis	Y axis	Z axis	(µm)
Table weight alone	δ×	-0.2	-0.1	-3.1	-3.4
	δγ	-4.6	-0.3	-4.2	-9.1
	δz	-4.3	-0.1	-4.9	-9.3
	δx	-9.9	-1.3	-6.7	-17.9
Milling process	δγ	-6.4	-1.7	-5.2	-13.3
	δz	-6.1	-0.4	-7.7	-14.2
	δx	-0.9	-0.3	-4.6	-5.8
Drilling process	δγ	1.4	0.8	2.8	5.0
	δz	5.5	1.2	7.6	14.3

Therefore, deformation at processing points at time of milling is:

$$\delta x = -17.9 - (-3.4) = -14.5 (\mu m)$$

$$\delta$$
 y = -13.3 - (-9.1) = -4.2 (µm)

$$\delta z = -14.2 - (-9.3) = -4.9 (\mu m)$$

Deformation at processing points at time of drilling is:

$$\delta x = -5.8 - (-3.4) = -2.4 (\mu m)$$

 $\delta y = 5.0 - (-9.1) = 14.1 (\mu m)$ $\delta z = 14.3 - (-9.3) = 23.6 (\mu m)$

If a rating life of this long period is not required, select a smaller linear guide model, and calculate the life again.

To reduce deformation at the processing point, select a linear guide model with higher rigidity, and then calculate the life again.

A-3-12 Reference

The articles in "Motion & Control (NSK Technical Journals)" which refer to NSK linear guides are listed in the table below for convenience.

"Motion & Control" is compiled to introduce NSK products and technologies.

For inquiries and orders please contact your local NSK sales office, or representative.

Table 12.1 Motion & Control (NSK Technical Journal): Articles relating to linear guides (2001 -)

Issue No.	Date of Publication	Articles related to linear guides ¹
No.11	October 2001	Development of the NSK S1 Series [™] Ball Screws and Linear Guides
110.11	October 2001	High Load Capacity Mini LH Series of NSK Linear Guides
No.12	April 2002	NSK Linear Guides & Ball Screws Equipped with NSK K1 [™] Lubrication Un
No.12	April 2002	NSK S1 Series [™] NSK Linear Guides and Ball Screws
No.13	October 2002	Translide [™] -New Rolling Element Linear Motion Bearing-
No.14	May 2003	New Generation of NSK Linear Guides Miniature PU Series
No.15	December 2003	Ultra-Precision NSK Linear Guides for Machine Tools-the HA Series
No.16	August 2004	Numerical Analysis Technology & NSK Linear Guides for Machine Tools
No.16	August 2004	NSK RA Series Roller Guide
No.18	August 2005	New Generation of NSK Linear Guides Miniature PU Series/PE Series
No.20	August 2007	V1 Series of Highly Dust-Resistant NSK Linear Guides
		Technological Trends of NSK Linear Guides for Industrial Machines
No.21	December 2009	Highly Accurate HS Series of Ultra-Precision NSK Linear Guides
		Linear Guides for Food Machine and Medical Devices
		Technological Trends of NSK Linear Guides for Industrial Machines
No.22	March 2011	High-Accuracy HS Series of Ultra-Precision NSK Linear Guides
		NSK Linear Guides for Food Processing Equipment and Medical Devices
No.23	June 2013	Technological Trends in Linear Motion Rolling Guides for Machine Tools
No.24	December 2014	Slight-Preload Type RA Series Roller Guides of NSK Linear Guides
No 2F	Sontombor 2015	Precision-Grade, Medium-Preload, Random-Matching NSK Linear Guides
No.25	September 2015	Random-Matching, Miniature PU and PE Series of NSK Linear Guides
No 20	April 2016	NSK Roller Guides Equipped with V1 Seals
No.26	April 2016	Random-Matching, High-Precision-Grade RA Series Roller Guides
No.27	November 2016	NH Series and NS Series NSK Linear Guides: More than Twice the Life or
110.27	INOVerniber 2016	Conventional NSK Linear Guides
No.30	June 2019	The Technical Trend of Machine Tool Components
No. 21	luna 2020	Improved Reliability of Roller Guides for Machine Tools
No.31	June 2020	NSK K1-L Lubrication Unit
No.33	June 2022	NSK Linear Guides [™] Long-life Series: DH/DS Models
No 24	luna 2022	Evaluation of Lubrication Performance in Ball Screws and Linear Guides b
No.34	June 2023	the Electrical Impedance Method

^{1.} Titles reflect the original publication. Note that product names, expressions, etc. may have been changed/corrected since publication.

A-3-13 Guide to Technical Services

(1) CAD drawing data

NSK offers CAD data for linear guides. Please download it from NSK's website.

http://www.nsk.com

- Data in drawings are filed in actual size (some parts are simplified). You can use these data without processing.
- · Three-view drawings are available.
- Dimension lines are omitted to render the data as standard drawings for databases.

CAD data offered

NSK linear guides

NH Model

VH Model

NS Model

LW Model

PU Model

LU Model

PE Model

LE Model

Miniature LH Model

RA Model

RB Model

LA Model

HA Model

HS Model

(2) Telephone consultation with NSK engineers

This catalog contains technical explanations for each section. However, some descriptions and explanations may be insufficient due to page limitations, etc. To amend this shortcoming, NSK offers telephone assistance. NSK engineers are pleased to help you. Our local offices are listed in the last part of this catalog. Call local NSK offices or representatives in your area.

A-3-14 Linear Guides: Handling Precautions

NSK linear guides are high quality and easy to use. NSK places importance on safety in design. For maximum safety, please follow precautions as outlined below.

(1) Lubrication

Confirm lubrication.

- a. If anti-corrosive oil has been applied, thoroughly wipe the rust prevention oil and put lubricant inside slide before using. For seal lubrication products, put lubricant on the rail.
- b. Do not mix greases of different brands.
- c. If your linear guide has rust prevention specifications, put lubricant inside slide before using.

(2) Handling

Do not disassemble.

Do not drop.

Do not impact.

- a. Interchangeable slides are installed on a provisional rail when they leave the factory. Handle the slide with care during installation to the rail.
- b. Do not disassemble the linear guide unless absolutely necessary. Not only does it allow dust to enter, but it lessens precision.
- c. The slide may move by simply leaning the rail. Make sure that the slide does not disengage from the rail.
- d. Standard end caps are made of plastic. Beating it or hitting it against an object may cause damage.

(3) Usage precautions

Avoid contamination.

Follow temperature limits.

Use care when hanging upside-down

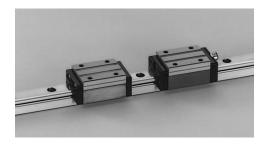
- a. Make every effort not to allow dust or foreign objects to enter.
- Please apply splash guard or bellows to the linear guide to prevent solvents or coolant from adhering when they contain corrosive material.
- c. The temperature where linear guides are used should not exceed 80°C (excluding heat-resistant linear guides). A higher temperature may damage the plastic end cap.
- d. If the user cuts the rail, thoroughly remove burrs and sharp edges on the cut surface.
- e. When hanging upside-down (e.g. the rail is installed upside-down on the ceiling and the slide faces downward), should the end cap be damaged causing the balls or rollers to fall out, the slide may detach from the rail and fall. For such use, take measures including installing safety devices.

(4) Storage

Store properly.

a. When storing the product, store it in the original packaging. Do not open the package or break the inner packaging unnecessarily. It may cause foreign matter to enter or rusting and may cause deterioration of functions.

- b. A place where the indoor environment is hot and humid is not suitable because it significantly reduces the rust prevention effect. Store in a place with low humidity and little temperature change.
- c. Linear guides may bend if the rail is stored in an inappropriate position. Place it on a suitable surface, and store it in a flat position.


A101 A102

A-4 Technical Descriptions and Dimension Tables for NSK Linear Guides

1. NH Model A105
2. VH Model A125
3. NS Model A145
4. LW Model A163

A-4-1 General Purpose Series

A-4-1.1 NH Model

1. Features

(1) Improves rating life dramatically

Based on the LH model characterized by reliability and performance, a significant increase in durability has been attained. A new ball groove geometry is introduced utilizing NSK's state-of-the-art tribological and analytical technologies. Rating life is dramatically increased due to the optimized distribution of contact surface pressures.

Load rating capacity is 1.3 times higher than LH Model and life is doubled 1. These features enable you to design a machine with a longer life and downsize the machine. Thus, your design capability is greatly enhanced.

*1: Representative values for model.

(2) Ball circulation path with excellent high-speed property

By reexamining the design for the ball circulation path, we have attained smooth ball circulation and reduced noise. This makes NH models more suited for high-speed applications compared with LH models.

(3) All mounting dimensions are the same as the LH and SH Models

The dimensions surrounding the mounting (assembled dimensions), such as mounting height, width, mounting hole diameter/pitch, etc. of the NH model are identical to the LH and SH models, allowing for easy replacement without design changes.

(4) High self-aligning capability (rolling direction)

Similar to a DF arrangement of angular contact bearings, NH models offer large self-aligning capability with the internal intersection of the contact lines of the balls and grooves reducing moment rigidity.

This increases the capacity to absorb errors in installation.

(5) High vertical load carrying capacity

The contact angle is set at 50 degrees, thus increasing load carrying capacity as well as rigidity in the vertical direction.

(6) High resistance against impact load

The bottom ball groove forms a Gothic arch and the center of the top and bottom grooves are offset as shown in **Fig. 2**.

Vertical load is generally carried by the top rows at two contact points, but with this design, the bottom rows also carry load when a large impact load is applied vertically as shown in Fig. 3. This assures high resistance to impact load.

(7) High accuracy

As showing in **Fig. 4**, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes for easy and accurate measuring of ball grooves.

(8) Easy to handle, and designed with safety in mind.

Balls are retained in the retainer, therefore they do not fall out when the ball slide is withdrawn from the rail.

(9) Abundant variations and sizes

The NH model comes in several sizes and ball

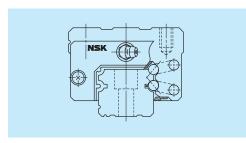


Fig. 1 NH Model

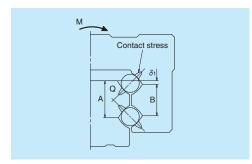


Fig. 2 Enlarged illustration of the offset Gothic arch groove

slide shapes, allowing for use in a variety of applications.

(10) Fast delivery

A lineup of interchangeable rails and ball

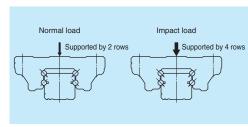


Fig. 3 When load is applied

slides supports and facilitates fast delivery. Interchangeable precision grade and medium preload types are also available. (Special highcarbon steel products)

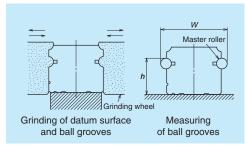


Fig. 4 Rail grinding and measuring

2. Ball slide shape

Ball slide shape code	Shape/installation method	High-load	ower row, Ball slide length) Super-high-load
AN BN		Standard AN L ₁	BN L ₁
AL BL		AL	BL
EM GM		EM L ₁	GM L1

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1

Unit: um

±35

30

Normal grade Preloaded assembly (not interchangeable) Interchangeable	Onic. μπι										
Rail length (mm) Over or less or less over over or less over over		F	reloaded ass	e)	Intercha	ngeable					
50 - 80 2 2 3 4 5 3 5 80 - 125 2 2 3 4 5 3 5 125 - 200 2 2 3.5 5 6 3.5 6 200 - 250 2 2.5 4.5 6 7.5 4.5 7.5 250 - 315 2 2.5 5 6.5 8.5 5 8.5 315 - 400 2 3 5.5 7 9.5 5.5 9.5 400 - 500 2 3 6 7.5 11 6 11 500 - 630 2 3.5 6.5 8.5 12 6.5 12 630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15 1 000	Rail length (mm)	Ultra									
80 - 125 2 2 3 4 5 3 5 125 - 200 2 2 3.5 5 6 3.5 6 200 - 250 2 2.5 4.5 6 7.5 4.5 7.5 250 - 315 2 2.5 5 6.5 8.5 5 8.5 315 - 400 2 3 5.5 7 9.5 5.5 9.5 400 - 500 2 3 6 7.5 11 6 11 500 - 630 2 3.5 6.5 8.5 12 6.5 12 630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15 1 000 - 1 250 3 5 8.5 12 16 8.5 16 1 250 - 1 600 3.5 5.5 9.5 13 17 9.5 17 1 600 - 2 000 4 6.5 11 14 19 11 19 2 000 - 2 500 4.5 7.5 12 16 21 12 21 2 000 - 3 150 5.5 8.5 <td< td=""><td>- 50</td><td>2</td><td>2</td><td>2</td><td>4</td><td>5</td><td>2</td><td>5</td></td<>	- 50	2	2	2	4	5	2	5			
125 - 200 2 2 3.5 5 6 3.5 6 200 - 250 2 2.5 4.5 6 7.5 4.5 7.5 250 - 315 2 2.5 5 6.5 8.5 5 8.5 315 - 400 2 3 5.5 7 9.5 5.5 9.5 400 - 500 2 3 6 7.5 11 6 11 500 - 630 2 3.5 6.5 8.5 12 6.5 12 630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15 1 000 - 1 250 3 5 8.5 12 16 8.5 16 1 250 - 1 600 3.5 5.5 9.5 13 17 9.5 17 1 600 - 2 000 4 6.5 11 14 19 11 19 2 000 - 2 500 4.5 7.5 12 16 21 12 21 2 500 - 3 150 5.5 8.5 13 18 23 13 23	50 – 80	2	2	3	4	5	3	5			
200 - 250 2 2.5 4.5 6 7.5 4.5 7.5 250 - 315 2 2.5 5 6.5 8.5 5 8.5 315 - 400 2 3 5.5 7 9.5 5.5 9.5 400 - 500 2 3 6 7.5 11 6 11 500 - 630 2 3.5 6.5 8.5 12 6.5 12 630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15 1 000 - 1 250 3 5 8.5 12 16 8.5 16 1 250 - 1 600 3.5 5.5 9.5 13 17 9.5 17 1 600 - 2 000 4 6.5 11 14 19 11 19 2 000 - 2 500 4.5 7.5 12 16 21 12 <td>80 – 125</td> <td>2</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>3</td> <td>5</td>	80 – 125	2	2	3	4	5	3	5			
250 - 315 2 2.5 5 6.5 8.5 5 8.5 315 - 400 2 3 5.5 7 9.5 5.5 9.5 400 - 500 2 3 6 7.5 11 6 11 500 - 630 2 3.5 6.5 8.5 12 6.5 12 630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15 1 000 - 1 250 3 5 8.5 12 16 8.5 16 1 250 - 1 600 3.5 5.5 9.5 13 17 9.5 17 1 600 - 2 000 4 6.5 11 14 19 11 19 2 000 - 2 500 4.5 7.5 12 16 21 12 21 2 500 - 3 150 5.5 8.5 13 18 23 13 23	125 – 200	2	2	3.5	5	6	3.5	6			
315 - 400 2 3 5.5 7 9.5 5.5 9.5 400 - 500 2 3 6 7.5 11 6 11 500 - 630 2 3.5 6.5 8.5 12 6.5 12 630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15 1 000 - 1 250 3 5 8.5 12 16 8.5 16 1 250 - 1 600 3.5 5.5 9.5 13 17 9.5 17 1 600 - 2 000 4 6.5 11 14 19 11 19 2 000 - 2 500 4.5 7.5 12 16 21 12 21 2 500 - 3 150 5.5 8.5 13 18 23 13 23	200 – 250	2	2.5	4.5	6	7.5	4.5	7.5			
400 - 500 2 3 6 7.5 11 6 11 500 - 630 2 3.5 6.5 8.5 12 6.5 12 630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15 1 000 - 1 250 3 5 8.5 12 16 8.5 16 1 250 - 1 600 3.5 5.5 9.5 13 17 9.5 17 1 600 - 2 000 4 6.5 11 14 19 11 19 2 000 - 2 500 4.5 7.5 12 16 21 12 21 2 500 - 3 150 5.5 8.5 13 18 23 13 23	250 – 315	2	2.5	5	6.5	8.5	5	8.5			
500 - 630 2 3.5 6.5 8.5 12 6.5 12 630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15 1 000 - 1 250 3 5 8.5 12 16 8.5 16 1 250 - 1 600 3.5 5.5 9.5 13 17 9.5 17 1 600 - 2 000 4 6.5 11 14 19 11 19 2 000 - 2 500 4.5 7.5 12 16 21 12 21 2 500 - 3 150 5.5 8.5 13 18 23 13 23	315 – 400	2	3	5.5	7	9.5	5.5	9.5			
630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15 1 000 - 1 250 3 5 8.5 12 16 8.5 16 1 250 - 1 600 3.5 5.5 9.5 13 17 9.5 17 1 600 - 2 000 4 6.5 11 14 19 11 19 2 000 - 2 500 4.5 7.5 12 16 21 12 21 2 500 - 3 150 5.5 8.5 13 18 23 13 23	400 - 500	2	3	6	7.5	11	6	11			
800 - 1 000 2.5 4.5 7.5 10 15 7.5 15 1 000 - 1 250 3 5 8.5 12 16 8.5 16 1 250 - 1 600 3.5 5.5 9.5 13 17 9.5 17 1 600 - 2 000 4 6.5 11 14 19 11 19 2 000 - 2 500 4.5 7.5 12 16 21 12 21 2 500 - 3 150 5.5 8.5 13 18 23 13 23	500 - 630	2	3.5	6.5	8.5	12	6.5	12			
1 000 - 1 250 3 5 8.5 12 16 8.5 16 1 250 - 1 600 3.5 5.5 9.5 13 17 9.5 17 1 600 - 2 000 4 6.5 11 14 19 11 19 2 000 - 2 500 4.5 7.5 12 16 21 12 21 2 500 - 3 150 5.5 8.5 13 18 23 13 23	630 - 800	2	4	7	9.5	13	7	13			
1 250 - 1 600 3.5 5.5 9.5 13 17 9.5 17 1 600 - 2 000 4 6.5 11 14 19 11 19 2 000 - 2 500 4.5 7.5 12 16 21 12 21 2 500 - 3 150 5.5 8.5 13 18 23 13 23	800 – 1 000	2.5	4.5	7.5	10	15	7.5	15			
1 600 - 2 000 4 6.5 11 14 19 11 19 2 000 - 2 500 4.5 7.5 12 16 21 12 21 2 500 - 3 150 5.5 8.5 13 18 23 13 23	1 000 – 1 250	3	5	8.5	12	16	8.5	16			
2 000 - 2 500 4.5 7.5 12 16 21 12 21 2 500 - 3 150 5.5 8.5 13 18 23 13 23	1 250 – 1 600	3.5	5.5	9.5	13	17	9.5	17			
2 500 - 3 150 5.5 8.5 13 18 23 13 23	1 600 – 2 000	4	6.5	11	14	19	11	19			
	2 000 – 2 500	4.5	7.5	12	16	21	12	21			
3 150 – 4 000 6 9.5 14 19 25 14 25	2 500 – 3 150	5.5	8.5	13	18	23	13	23			
	3 150 – 4 000	6	9.5	14	19	25	14	25			

(2) Accuracy standard

The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades, while the interchangeable type has High precision PH and Normal PC grade.

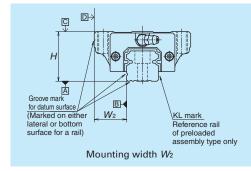
Tolerance of preloaded assembly

Table 2 Unit: μm									
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN				
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±8 3	±10 5	±20 7	±40 15	±80 25				
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±10 3	±15 7	±25 10	±50 20	±100 30				
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Shown	in Table 1, Fig.	5 , and Fig . 6					

· Tolerance of interchangeable type

Table 3										
Accuracy grade	High precision grade PH Normal grade									
Characteristics Model No.	NH15, 20, 25, 30, 35	NH45, 55, 65	NH15, 20, 25, 30, 35	NH45, 55, 65						
Mounting height H	±20	±30	±20	±30						
Variation of mounting height H	15①	20①	15①	20①						
	30②	35②	30②	35②						

Mounting width W_2 or W_3 ±30 ±35 ±30 Variation of mounting width W_2 or W_3 20 20 Running parallelism of surface C to surface A See Table 1, Fig. 5 and Fig. 6 Running parallelism of surface D to surface B


Note: ① Variation on the same rail ② Variation on multiple rails

(3) Combinations of accuracy and preload

Table 4

				Ac	curacy gra	de				
		Ultra precision	Super precision	High precision	Precision grade	Normal grade	High precision	Normal grade		
Wi	thout NSK K1-L lubrication unit	P3	P4	P5	P6	PN	PH	PC	-	
Wi	th NSK K1-L lubrication unit	L3	L4	L5	L6	LN	LH	LC		
With	n NSK K1 for food and medical equipment	F3	F4	F5	F6	FN	FH	FC		
	Fine clearance		0	0	0	0				
	Z0						_	_		
	Slight preload			0	0				Ī	
	Z1						_	_		
	Medium preload			0	0					
Preload	Z3					_	_	_		
re	Interchangeable type with fine clearance							0		
ш.	ZT	_	_	_	_	_	_	0		
	Interchangeable type with slight preload							0		
	ZZ	_	_	_	_	_		0		
	Interchangeable type with medium preload							0		
	ZH	_	_	_	_	_		0		

(4) Assembled accuracy

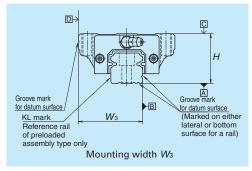
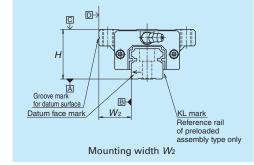



Fig. 5 Special high carbon steel

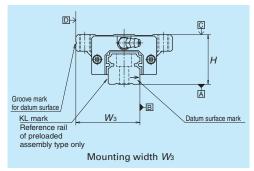


Fig. 6 Stainless steel

_

(5) Preload and rigidity

We offer six levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with interchangeable linear guides with Medium preload ZH, Slight preload ZZ and Fine clearance ZT.

Preload and rigidity of preloaded assembly

Table 5

	Table 5										
		Duolo	ad (NI)		Rigidity	(N/µm)					
	Model No.	Preio	Preload (N)		direction	Lateral direction					
	Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload				
		Z1	Z3	Z1	Z3	Z1	Z3				
	NH15 AN, EM	78	490	137	226	98	186				
	NH20 AN, EM	147	835	186	335	137	245				
_	NH25 AL, AN, EM	196	1 270	206	380	147	284				
High-load	NH30 AL, AN	245	1 570	216	400	157	294				
<u>-</u>	NH30 EM	294	1 770	265	480	186	355				
Ē	NH35 AL, AN, EM	390	2 350	305	560	216	390				
_	NH45 AL, AN, EM	635	3 900	400	745	284	540				
	NH55 AL, AN, EM	980	5 900	490	910	345	645				
	NH65 AN, EM	1 470	8 900	580	1 070	400	755				
	NH15 BN, GM	98	685	196	345	137	284				
þ	NH20 BN, GM	196	1 080	265	480	196	355				
9	NH25 BL, BN, GM	245	1 570	294	560	216	400				
gh	NH30 BL, BN, GM	390	2 260	360	665	265	480				
Super-high-load	NH35 BL, BN, GM	490	2 940	430	795	305	570				
be	NH45 BL, BN, GM	785	4 800	520	960	370	695				
Sn	NH55 BL, BN, GM	1 180	7 050	635	1 170	440	835				
	NH65 BN, GM	1 860	11 300	805	1 480	550	1 040				

Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15µm.

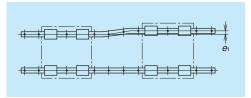
· Clearance and preload of interchangeable type

	Unit: µm		
Model No.	Fine clearance ZT	Slight preload ZZ	Medium preload ZH
NH15	-4 to 15	-4 to 0	-7 to −3
NH20	1 10 10	-5 to 0	-8 to -3
NH25		-5 to 0	−9 to −4
NH30		-7 to 0	−12 to −5
NH35	–5 to 15	–7 to 0	−12 to −5
NH45		–7 to 0	−14 to −7
NH55		-9 to 0	−18 to −9
NH65	NH65	–9 to 0	−19 to −10

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

4. Maximum rail length

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grades.


Table 7 Length limitations of rails

01								וווונ. וווווו	
Model	Size Material	15	20	25	30	35	45	55	65
NILI	Special high carbon steel	2 980	3 960	3 960	4 000	4 000	3 990	3 960	3 900
NH	Stainless steel	1 800	3 500	3 500	3 500				

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

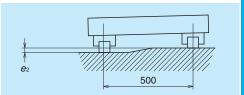
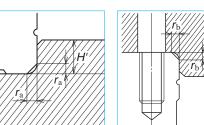



Fig. 7

Fig. 8

	lable 8 Unit: μm									
Value	Preload		Model No.							
value	Freioau	NH15	NH20	NH25	NH30	NH35	NH45	NH55	NH65	
Permissible values for	Z0, ZT	22	30	40	45	55	65	80	110	
parallelism error of two	Z1, ZZ	18	20	25	30	35	45	55	70	
rails e₁	Z3, ZH	13	15	20	25	30	40	45	60	
Permissible values for	Z0, ZT	375µm/500mm								
height error of two rails e2	Z1, ZZ, Z3, ZH				330µm/	500mm				

(2) Shoulder height of the mounting surface and corner radius r

Model No.

NH15
NH20
NH25
NH30
NH35
NH45
NH55
NH65

Fig. 9 Shoulder for the rail datum surface

Fig. 10 Shoulder for the ball slide datum surface

Table 9

0.5

0.5

0.5

0.5

0.5

0.7

0.7

Corner radius (maximum)

0.5

0.5

0.5

0.5

0.5

0.7

0.7

Unit: mm

11

Shoulder height

H'

4

5

6

6

8

10 11

4.5

6. Maximum allowable speed

Table 10 indicates the maximum allowable speed for 10,000 km operation when using an NH model under normal conditions. However, the maximum allowable speed can be affected by accuracy of installation, operating temperature, external load, etc. If the operation is made exceeding the permissible distance and speed, please consult NSK.

Table 10 Maximum allowable speed Unit:								
Size	15	20	25	30	35	45	55	65
NH			300			20	00	150

7. Lubrication components

Refer to pages A58 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 11 and Table 11 show grease fittings and tube fittings.

We provide lubrication accessories with an extended thread body length (L) for the addition of dust-resistant accessories such as NSK K1-L lubrication units, double seals and protectors. We provide suitable lubrication accesories for special dust-resistant requirements upon request.

NSK can also provide extended length threads for ease of replenishment.

Please contact NSK if stainless lubrication accessories are required.

(2) Mounting position of lubrication accessories

The standard position for grease fittings is at the end face of the ball slide, but we can mount them on the side of the end cap as an option. (Fig. 12)

Please consult NSK for the installation of grease or tube fittings to the ball slide body.

Using a piping unit with thread of M6 \times 1, requires a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

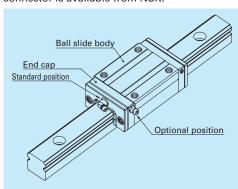


Fig. 12 Mounting position of lubrication accessories

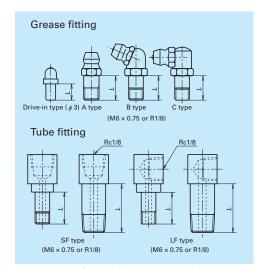


Fig. 11 Grease fitting and tube fitting

No. Discription Section Sect			Table 11	Į	Jnit: mm		
No. Specification Grease Hitting Tube Hitting SF type LF type LF type SF type LF type	Model	Duet-registant					
NH15			Grease fitting				
NH15		specification	/Drive-in type	SF type	LF type		
NH15				-	-		
NH20	NILI1E			-	_		
NH20 Standard 5 With NSK K1-L 12 Double seal 10 Standard 5 5 5 5 Double seal 10 Standard 5 5 5 5 With NSK K1-L 12 12 12 12 NH25 Double seal 10 9 9 Protector 10 9 9 Protector 10 9 9 Standard 5 6 6 6 With NSK K1-L 14 12 13 Double seal 12 10 11 Protector 12 10 11 Standard 5 6 6 6 With NSK K1-L 14 12 13 Double seal 12 10 11 Protector 12 10 11 Standard 5 6 6 6 With NSK K1-L 14 12 13 NH35 NH35 NH35 NH45 NH45 NH45 NH45 NH45 NH45 NH45 NH4	ппп	Double seal		_	_		
NH20			*	-	_		
NH20		Standard	5	_	_		
Double seal 10	NILIOO	With NSK K1-L	12	_	_		
Standard	NH20	Double seal	10	-	_		
NH25		Protector	10	-	_		
NH25		Standard	5	5	5		
Double seal 10 9 9 9	NILIOE	With NSK K1-L	12	12	12		
Standard	NH25	Double seal	10	9	9		
NH30 With NSK K1-L 14 12 13 13 14 12 13 15 10 11 15 15 16 16 17 16 17 17 17 18 19 16 18 19 16 18 19 16 18 19 16 18 19 16 18 19 16 18 19 16 18 19 16 18 19 16 18 19 16 16 17 17 18 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 11 11		Protector	10	9	9		
NH30		Standard	5	6	6		
Double seal 12 10 11	NULOO	With NSK K1-L	14	12	13		
Standard 5 6 6 6	NH30	Double seal	12	10	11		
NH35 With NSK K1-L 14 12 13 13 14 12 13 15 15 15 15 16 16 17 16 17 17 17 18 19 18 19 19 19 19 19		Protector	12	10	11		
NH35 Double seal 12 10 11 Protector 12 10 11 Standard 8 13.5 17 With NSK K1-L 18 20 21.5 Double seal 14 16 17 Protector 14 13.5 17 Standard 8 13.5 17 Standard 8 13.5 17 Double seal 14 16 17 Protector 14 13.5 17 With NSK K1-L 18 20 21.5 Double seal 14 16 17 Protector 14 13.5 17 Standard 8 13.5 17 Standard 8 13.5 17 Standard 8 13.5 17 Standard 8 13.5 17 Double seal 16 18 19 Standard 16 18 19 Standard 16 17 Standard 16 Standard 17 Standard 18 19 Standard 18 Standard 18 19 Standard 18 Standard 1		Standard	5	6	6		
Double seal 12 10 11		With NSK K1-L	14	12	13		
Standard 8 13.5 17 With NSK K1-L 18 20 21.5	NH35	Double seal	12	10	11		
NH45 With NSK K1-L 18 20 21.5 Double seal 14 16 17 Protector 14 13.5 17 Standard 8 13.5 17 With NSK K1-L 18 20 21.5 Double seal 14 16 17 Protector 14 13.5 17 Standard 8 13.5 17 With NSK K1-L 18 20 21.5 Double seal 14 16 17 Protector 14 13.5 17 Standard 8 13.5 17 With NSK K1-L 20 22 25.5 Double seal 16 18 19		Protector	12	10	11		
NH45		Standard	8	13.5	17		
Double seal 14		With NSK K1-L	18	20	21.5		
NH55 Standard 8 13.5 17 With NSK K1-L 18 20 21.5 Double seal 14 16 17 Protector 14 13.5 17 Standard 8 13.5 17 With NSK K1-L 20 22 25.5 Double seal 16 18 19	NH45	Double seal	14	16	17		
With NSK K1-L 18 20 21.5 Double seal 14 16 17 Protector 14 13.5 17 Standard 8 13.5 17 With NSK K1-L 20 22 25.5 Double seal 16 18 19		Protector	14	13.5	17		
Double seal 14 16 17 Protector 14 13.5 17 Standard 8 13.5 17 With NSK K1-L 20 22 25.5 Double seal 16 18 19		Standard	8	13.5	17		
Double seal 14 16 17		With NSK K1-L	18	20	21.5		
Protector 14 13.5 17 Standard 8 13.5 17 With NSK K1-L 20 22 25.5 Double seal 16 18 19	NH55	Double seal	-				
NH65 With NSK K1-L 20 22 25.5 Double seal 16 18 19		Protector	14	13.5	17		
NH65 Double seal 16 18 19			8				
NH65 Double seal 16 18 19		With NSK K1-L	20	22	25.5		
Protector 16 13.5 17	NH65	Double seal		18	19		
110100101 10 10.0 17		Protector	16	13.5	17		

*) A connector is required for this model. Please contact NSK.

8. Dust-resistant components

(1) Standard specification

Under normal applications, the NH model can be used without modification thanks to its dust resistance. These ball slides come standard with an end seal on both ends and bottom seals on the bottom.

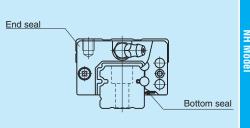


Fig. 13

Table 12 Seal friction per ball slide (maximum value)

Model Size	15	20	25	30	35	45	55	65
NH	8	9	10	10	12	17	22	29

(2) NSK K1-L[™] and NSK K1[™] lubrication units for food processing machinery/ medical equipment

Table 13 shows linear guide dimensions when equipped with NSK K1-L lubrication units.

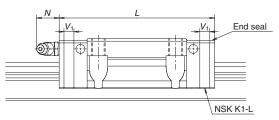


Table 13 Dimensions when equipped with NSK K1-L lubrication units

Unit: mi	

A112

Model No.	Ball slide length	Ball slide shape code	Standard ball slide length	Ball slide length with two NSK K1-L units <i>L</i>	Thickness of single NSK K1-L unit V ₁	Protrusion of grease fitting N
NH15	Standard	AN, EM	55	65.6	F 0	(5)
INHID	Long	BN, GM	74	84.6	5.3	(5)
NH20	Standard	AN, EM	69.8	80.4	5.3	(14)
NH20	Long	BN, GM	91.8	102.4	5.3	(14)
NH25	Standard	AL, AN, EM	79	90.6	5.8	(1.4)
INIZO	Long	BL, BN, GM	107	118.6	5.8	(14)
	C	AL, AN	85.6	97.6		
NH30	Standard	EM	98.6	110.6	6	(14)
	Long	BL, BN, GM	124.6	136.6	1	
NILIOE	Standard	AL, AN, EM	109	122	6.5	(14)
NH35	Long	BL, BN, GM	143	156	0.5	(14)
NH45	Standard	AL, AN, EM	139	154	7.5	(15)
111145	Long	BL, BN, GM	171	186	7.5	(15)
NH55	Standard	AL, AN, EM	163	178	7.5	(15)
ипоо	Long	BL, BN, GM	201	216	7.5	(15)
NUIGE	Standard	AN, EM	193	211	9	(10)
NH65	Long	BN, GM	253	271	1 9	(16)

Notes: 1) When using NSK K1 for food processing machinery/medical equipment, refer to Table 14.

2) Slide length when equipped with NSK K1-L = (standard ball slide length) + (V, thickness of single NSK K1-L unit) × (number of K1-L units).

Table 16 Protector set

Table 14 shows linear guide dimensions when equipped with NSK K1 for food processing machinery/medical equipment.

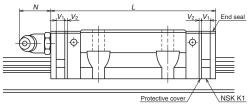


Table 14 Dimensions when equipped with NSK K1 for food processing machinery/medical equipment

ln	i++	m	m

			-				
Model No.	Ball slide length	Ball slide shape code	Standard ball slide length	Ball slide length with two NSK K1 installed L	Thickness of single NSK K1	Protective cover thickness V ₂	Protrusion of grease fitting N
NH15	Standard	AN, EM	55	65.6	4.5	0.8	/E)
NHID	Long	BN, GM	74	84.6	4.5	0.8	(5)
NH20	Standard	AN, EM	69.8	80.4	4.5	0.8	(14)
NHZU	Long	BN, GM	91.8	102.4	4.5	0.0	(14)
NH25	Standard	AL, AN, EM	79.0	90.6	5.0	0.8	(14)
NHZ5	Long	BL, BN, GM	107	118.6	5.0	0.8	(14)
	6	AL, AN	85.6	97.6			
NH30	Standard	EM	98.6	110.6	5.0	1.0	(14)
	Long	BL, BN, GM	124.6	136.6	1		
NH35	Standard	AL, AN, EM	109	122	5.5	1.0	(14)
11/135	Long	BL, BN, GM	143	156	0.5	1.0	(14)

Note: Slide length when equipped with NSK K1 for food processing machinery/medical equipment = (standard ball slide length) + $(V_1$ thickness of single NSK K1 unit) × (number of K1 units) + $(V_2$ thickness of the protective cover) × 2.

(4) Protector

Use a double seal set as shown in **Table 15** when installing an extra seal to completed standard products. (**Fig. 14**)

(3) Double seal

When installing a grease fitting after the installation of double seals, a connector as shown in Fig.14 is required.

Use a protector set as shown in **Table 16** when installing a protector to completed standard products. (**Fig.15**)

When installing a grease fitting after the installation of protectors, a connector as shown in **Fig.15** is required.

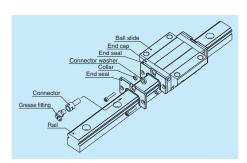


Fig. 14 Double seal

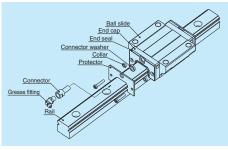


Fig. 15 Protector

Model No.	Referer	Increased thickness V ₃	
WIOGCI IVO.	Without connector	With connector	(mm)
NH15	LH15WS-01	*	2.5
NH20	LH20WS-01	LH20WSC-01	2.5
NH25	LH25WS-01	LH25WSC-01	2.8
NH30	LH30WS-01	LH30WSC-01	3.6
NH35	LH35WS-01	LH35WSC-01	3.6
NH45	LH45WS-01	LH45WSC-01	4.3
NH55	LH55WS-01	LH55WSC-01	4.3
NH65	LH65WS-01	LH65WSC-01	4.9

Table 15 Double-seal set

Model No.	Referer Without connector	Increased thickness V ₄ (mm)	NHW					
NH15	LH15PT-01	*	2.7	Mode				
NH20	LH20PT-01	LH20PTC-01	2.9					
NH25	LH25PT-01	LH25PTC-01	3.2					
NH30	LH30PT-01	LH30PTC-01	4.2					
NH35	LH35PT-01	LH35PTC-01	4.2					
NH45	LH45PT-01	LH45PTC-01	4.9					
NH55	LH55PT-01	LH55PTC-01	4.9					
NH65	LH65PT-01	LH65PTC-01	5.5					

*) For installation of a connector to a drive-in grease fitting, contact NSK.

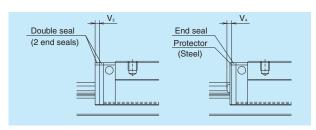


Fig. 16

(5) Caps to plug the rail mounting bolt hole Table 17 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity	
WIOGCI IVO.	secure rail	reference No.	/case	
NH15	M4	M4 LG-CAP/M4		
NH20	M5	LG-CAP/M5	20	
NH25	M6	LG-CAP/M6	20	
NH30, NH35	M8	LG-CAP/M8	20	
NH45	M12	LG-CAP/M12	20	
NH55	M14	LG-CAP/M14	20	
NH65	M16	LG-CAP/M16	20	

(6) Inner seal

Inner seal is only available for models shown in the table below.

Table 18

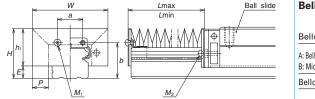
Model	Model No.							
NH	NH20, NH25, NH30, NH35, NH45, NH55, NH65							

A113 A114

(7) Bellows

- · A bellows fastener kit, which includes one bellows fastener, two M₁ set screws, two M₂ set screws, and two collars for M2 set screws as shown in Fig. 7.7 on page A69, is supplied with bellows for the ends.
- · Middle bellows are supplied with four set screws and four collars.
- · Use a bellows fastener kit as shown in Table 19, when installing bellows to completed standard products.
- · When NSK K1/K1-L units, NSK K1 for food and medical equipment, double seals, or protectors are used, the set screws of bellows fastener kits cannot be used.

Please contact NSK for details.


· Bellows fasteners are available only for horizontal mounting positions; other mounting positions require a sliding plate (see Fig. 7.10 on page A70).

To fix the bellows to the rail, make tap holes on the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes with a machine screw. NSK prepares tap holes on the rail end surface when bellows are ordered with a linear guide.

Table 19 Bellows fastner kit reference No.

Model No.	Kit reference No.
NH20	LH20FS-01
NH25	LH25FS-01
NH30	LH30FS-01
NH35	LH35FS-01
NH45	LH45FS-01
NH55	LH55FS-01
NH65	LH65FS-01

Dimension tables for bellows NH Model

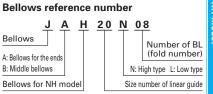


Fig. 17 Dimensions of bellows

89

73

16

JAH65N

									O1111C. 1111111	
Model No.	Н	h ₁	Е	W	Р	а	b	BL minimum length	M₁Tap x depth	M₂Tap x depth
JAH20N	29.5	24.5	5	48	10	13	22	17	M3 × 5	M2.5 × 16
JAH25L	35	28	7	51	10	16	26	17	M3 × 5	M3 × 18
JAH25N	39	32	/	61	15	10	16 26	17	IVI3 × 5	IVI3 × 18
JAH30L	41	32	9	60	12	18	31	17	M4 × 6	M4 × 22
JAH30N	44	35	9	66	15	10 3	31	17	1014 × 0	1014 / 22
JAH35L	47	37.5	9.5	72	15	24	34	17	M4 × 6	M4 × 23
JAH35N	54	44.5	9.5	82	20	24	24 34	17	1V14 X 0	IVI4 X 23
JAH45L	59	45	14	83	15	22	44.5	17	M5 × 8	M5 × 28
JAH45N	69	55	14	103	25	32	32 44.5	17	IVI5 × 8	IVID X 28
JAH55L	69	54	15	101	20	40	40 50.5 17	MEVO	M5 × 30	
JAH55N	79	64	15	121	30	40) 17	17 M5 × 8	IVI5 X 30

131

Table 20 Dimensions of bellows

Table 21 Numbers of folds (BL) and lengths of bellows

48

61

17

 $M6 \times 8$

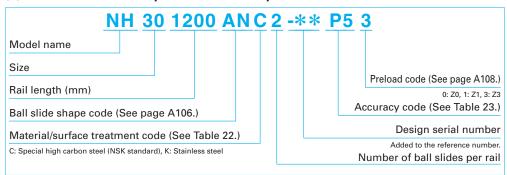
30

Unit: mm

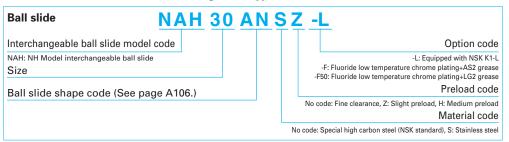
 $M6 \times 35$

Unit: mm

Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
iviodei ivo.	<u>L</u> min	34	68	102	136	170	204	238	272	306	340
JAH20N	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAHZUN	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAH25L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAHZOL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAH25N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
3A112311	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH30L	Stroke	134	268	402	536	670	804	938	1 072	1 206	1 340
JAHOUL	Lmax	168	336	504	672	840	1 008	1 176	1 344	1 512	1 680
JAH30N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
3A113011	<u>L</u> max	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH35L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHOSE	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH35N	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAHSSIN	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAH45L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAI 143L	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH45N	Stroke	316	632	948	1 264	1 580	1 896	2 212	2 528	2 844	3 160
JAH4SIN	Lmax	350	700	1 050	1 400	1 750	2 100	2 450	2 800	3 150	3 500
JAH55L	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAHOSE	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAH55N	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
NICCIAC	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200
JAH65N	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
JAHOSIN	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200


Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on both sides, then by dividing the sum by 2.

9. Reference number


A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for interchangeable type

Rail	N1H 30 120	<u> </u>	-**	PC Z	
Interchangeable ra				Z: Slight	Preload code (See page A108.) T: Fine clearance preload (common rail for slight or medium preload)
Rail length (m	m)				Accuracy code
naii ieiigiii (iii	111)				precision grade interchangeable type Normal grade interchangeable type
Rail shape coo	le: L				Design serial number
L: Standard					Added to the reference number.
Material/surfa	ce treatment code (See Tabl	e 22.)			*Butting rail specification
		L		N:	Non-butting. L: Butting specification
		*	Please consult	with NSK f	or butting rail specification.

When interchangeable rails and slides are assembled, reference number coding is the same as that for preloaded assemblies. However, only preload codes T (fine clearance), Z (slight preload), and H (medium preload) may be used (Refer to Page A108.)

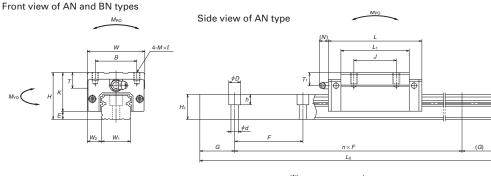
Click!Speedy™ NSK Linear Guide Quick Delivery System uses a new numbering system. For details, please refer to the Click!Speedy general catalog CAT. No. E3191.

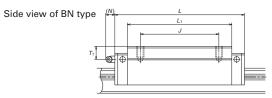
Table 22 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel (NH15 to NH30 only)
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

Note: High-precision grade and medium preload of interchangeable types are not available in stainless steel.

Table 23 Accuracy code


Accuracy	Standard (Without NSK K1-L)	With NSK K1-L	With NSK K1 for food and medical equipment
Ultra precision grade	P3	L3	F3
Super precision grade	P4	L4	F4
High precision grade	P5	L5	F5
Precision grade	P6	L6	F6
Normal grade	PN	LN	FN
High precision grade (interchangeable type)	PH	LH	FH
Normal grade (interchangeable type)	PC	LC	FC


Note: Refer to page A58 for details on NSK K1-L lubrication units and to page A73 for details on NSK K1 lubrication units for food processing machinery/medical equipment.

A117 A118

10. Dimensions NH-AN (High-load / Standard) NH-BN (Super-high-load / Long)

Model name
Size
Rail length (mm)
Ball slide shape code (See page A106.)
Material/surface treatment code (See Table 22.)
C: Special high carbon steel (NSK standard), K: Stainless steel

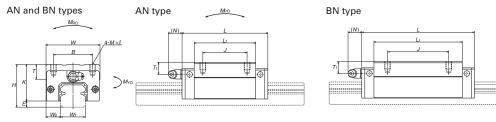
	A:	ssemb	oly					Ball slic	le							
Model No.	Height			Width	Length		Mour	nting hole				Grease	fittin	ıg	Width	Height
Wioder No.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	L_1	К	Т	Hole size	<i>T</i> ₁	N	W_1	H ₁
NH15AN NH15BN	28	4.6	9.5	34	55 74	26	26	M4×0.7×6	39 58	23.4	8	φ 3	8.5	3.3	15	15
NH20AN NH20BN	30	5	12	44	69.8 91.8	32	36 50	M5×0.8×6	50 72	25	12	M6×0.75	5	11	20	18
NH25AN NH25BN	40	7	12.5	48	79 107	35	35 50	M6×1×9	58 86	33	12	M6×0.75	10	11	23	22
NH30AN NH30BN	45	9	16	60	85.6 124.6	40	40 60	M8×1.25×10	59 98	36	14	M6×0.75	10	11	28	26
NH35AN NH35BN	55	9.5	18	70	109 143	50	50 72	M8×1.25×12	80 114	45.5	15	M6×0.75	15	11	34	29
NH45AN NH45BN	70	14	20.5	86	139 171	60	60 80	M10×1.5×17	105 137	56	17	Rc1/8	20	13	45	38
NH55AN NH55BN	80	15	23.5	100	163 201	75	75 95	M12×1.75×18	126 164	65	18	Rc1/8	21	13	53	44
NH65AN NH65BN	90	16	31.5	126	193 253	76	70 120	M16×2×20	147 207	74	23	Rc1/8	19	13	63	53

Notes: 1) The external appearance of stainless steel ball slides differs slightly from that of carbon steel ball slides.

Reference number for ball slide of interchangeable type

Ball slide NAH 30 AN S Z -L

Interchangeable ball slide model code
NAH: NH Model interchangeable ball slide
Size


Ball slide shape code (See page A106.)

Option code

-L- Equipped with NSK YL1

-F. Fluoride low temperature chrome plating-452 grease
-F50: Fluoride low temperature chrome plating-452 grease
No code: Fine clearance, Z: Slight preload, H: Medium preload
Material code

No code: Special high carbon steel (NSK standard), S: Stainless steel

Reference number for rail of interchangeable type

Rail

Interchangeable rail model code

NIH: NH Model interchangeable rail
Size

Rail length (mm)

Rail shape code: L

L: Standard

Material/surface treatment code (See Table 22.)

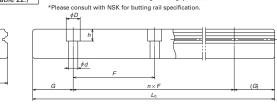
Rill ength (See Table 22.)

Rill ength (See Table 22.)

Preload code (See page A108.)

Z: Slight preload (common rail or face disparate.

Accuracy code


PH: High precision grade. PC: Normal grade

Design serial number

Added to the reference number.

*Butting rail specification

*Please consult with NSK for butting rail specification.

l	Jnit	: r	m

Rail						Ba	asic load	ratings				Wei	ght
Pitch	Mounting	G	Max. length	2)Dyn	amic	Static		Static	moment	(N·m)		Ball	Rail
	bolt hole		L_{0max} .	[50km] [100km]		C_{0}	M_{RO}	M_{PO}		٨	$\Lambda_{\rm YO}$	slide	
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	4.5×7.5×5.3	20	2 980 (1 800)	14 200 18 100	11 300 14 400	20 700 32 000	108 166	94.5 216	575 1 150	79.5 181	480 965	0.18 0.26	1.6
60	6×9.5×8.5	20	3 960 (3 500)	23 700 30 000	18 800 24 000	32 500 50 500	219 340	185 420	1 140 2 230	155 355	955 1 870	0.33 0.48	2.6
60	7×11×9	20	3 960 (3 500)	33 500 45 500	26 800 36 500	46 000 71 000	360 555	320 725	1 840 3 700	267 610	1 540 3 100	0.55 0.82	3.6
80	9×14×12	20	4 000 (3 500)	41 000 61 000	32 500 48 500	51 500 91 500	490 870	350 1 030	2 290 5 600	292 865	1 920 4 700	0.77 1.3	5.2
80	9×14×12	20	4 000	62 500 81 000	49 500 64 500	80 500 117 000	950 1 380	755 1 530	4 500 8 350	630 1 280	3 800 7 000	1.5 2.1	7.2
105	14×20×17	22.5	3 990	107 000 131 000	84 500 104 000	140 000 187 000	2 140 2 860	1 740 3 000	9 750 15 600	1 460 2 520	8 150 13 100	3.0 3.9	12.3
120	16×23×20	30	3 960	158 000 193 000	125 000 153 000	198 000 264 000	3 600 4 850	3 000 5 150	16 300 26 300	2 510 4 350	13 700 22 100	4.7 6.1	16.9
150	18×26×22	35	3 900	239 000 310 000	190 000 246 000	281 000 410 000	6 150 8 950	4 950 10 100	27 900 51 500	4 150 8 450	23 400 43 500	7.7 10.8	24.3

²⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

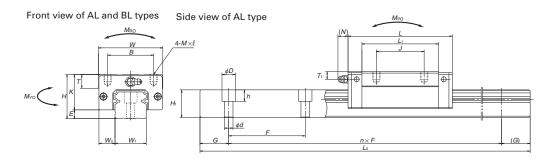
³⁾ High-precision grade and medium preload interchangeable types are available for high-carbon steel products.

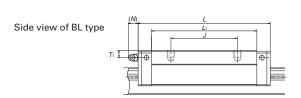
NH-AL (High-load / Standard) NH-BL (Super-high-load / Long)

NH 30 1200 AL C 2 -** PC Z

Model name

Size


Rail length (mm)


Ball slide shape code (See page A106.)

Material/surface treatment code (See Table 22.)

C: Special high carbon steel (NSK standard), K: Stainless steel

A121

		Assembly Ball slide															
Mode	Model No. Height				Width	Length		Mour	nting hole				Grease	fittin	g	Width	Height
		Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> ₁	N	W ₁	H ₁
NH2!		36	7	12.5	48	79 107	35	35 50	M6×1×6	58 86	29	12	M6×0.75	6	11	23	22
NH3		42	9	16	60	85.6 124.6	ZL()	40 60	M8×1.25×8	59 98	33	14	M6×0.75	7	11	28	26
NH3!		48	9.5	18	70	109 143	50	50 72	M8×1.25×8	80 114	38.5	15	M6×0.75	8	11	34	29
NH4!		60	14	20.5	86	139 171	60	60 80	M10×1.5×10	105 137	46	17	Rc1/8	10	13	45	38
NH5!		70	15	23.5	100	163 201	75	75 95	M12×1.75×13	126 164	55	15	Rc1/8	11	13	53	44

Notes: 1) The external appearance of stainless steel ball slides differs slightly from that of carbon steel ball slides.

Reference number for ball slide of interchangeable type

Ball slide

NAH 30 AL S Z -L

Interchangeable ball slide model code

NAH: NH Model interchangeable ball slide

Size

Ball slide shape code (See page A106.)

Option code

1. Equipped with NSK K1-L

-F: Fluoride low temperature chrome pisting-NS2 grease

-F50: Fluoride low temperature chrome pisting-NS2 grease

Preload code

No code: Fine clearance, 2: Slight preload, 1: Medium preload

Material code

No code: Special high carbon steel (NSK stands, 5: Stanless steel)

Reference number for rail of interchangeable type

Rail N1H30 1200 L C N -** PC Z

Interchangeable rail model code

N1H: NH Model interchangeable rail
Size

Rail length (mm)

Rail shape code: L

L: Standard

Material/surface treatment code (See Table 22.)

Preload code (See page A108.)

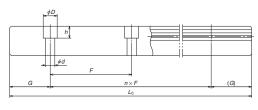
F. Fine clearance.

2: Slight preload (common rail for medium preload)

Accuracy code

PH: High precision grade

Design serial number


Added to the reference number.

*Butting rail specification

N: Non-butting. L: Butting specification

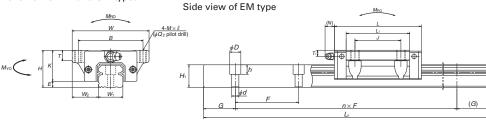
*Please consult with NSK for butting rail specification.

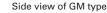
Unit: mm

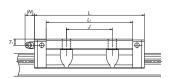
Rail					Basic load ratings										
Pitch	Mounting	G	Max. length	²⁾ Dynamic		Static		Static	momen [.]	t (N·m)		Ball slide	Rail		
	bolt hole		L_{0max} .	[50km]	[100km]	C_{0}	M_{RO}	Λ	M _{PO}		1 _{YO}				
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)		
60	7×11×9	20	3 960	33 500	26 800	46 000	360	320	1 840	267	1 540		3.6		
- 00	7/11/1/0	20	(3500)	45 500	36 500	71 000	555	725	3 700	610	3 100	0.69	0.0		
80	9×14×12	20	4 000	41 000	32 500	51 500	490	350	2 290	292	1 920	0.69	5.2		
- 00	0/11/12	20	(3500)	61 000	48 500	91 500	870	1 030	5 600	865	4 700	1.16	0.2		
80	9×14×12	20	4 000	62 500	49 500	80 500	950	755	4 500	630	3 800	1.2	7.2		
00	3714712	20	4 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	1.7	7.2		
105	14×20×17	22.5	3 990	107 000	84 500	140 000	2 140	1 740	9 750	1 460	8 150	2.2	12.3		
103	14/20/17	22.5	3 330	131 000	104 000	187 000	2 860	3 000	15 600	2 520	13 100	2.9	12.0		
120	16×23×20	30	3 960	158 000	125 000	198 000	3 600	3 000	16 300	2 510	13 700	3.7	16.9		
120	10/23/20	30	3 300	193 000	153 000	264 000	4 850	5 150	26 300	4 350	22 100	4.7	10.9		

²⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.


³⁾ High-precision grade and medium preload interchangeable types are available for high-carbon steel products.


NH-EM (High-load / Standard) NH-GM (Super-high-load / Long)


NH 30 1200 EM C 2 -** PC Z Model name Preload code (See page A108.) 0: Z0. 1: Z1. 3: Z3. T: ZT. Z: ZZ. H: ZH Size Accuracy code (See Table 23.) Rail length (mm) Design serial number Ball slide shape code (See page A106.) Added to the reference number. Material/surface treatment code (See Table 22.) Number of ball slides per rail

C: Special high carbon steel (NSK standard), K: Stainless steel

Front view of EM and GM types

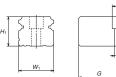
	As	sem	bly					Ball	slide								
Model No.	Height			Width	Length	Mounting hole							Grease	fittin	g	Width	Height
wioder No.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	Q_2	L ₁	К	Т	Hole size	<i>T</i> ₁	N	W_1	H ₁
NH15EM NH15GM	24	4.6	16	47	55 74	38	30	M5×0.8×7	4.4	39 58	19.4	8	φ 3	4.5	3.3	15	15
NH20EM NH20GM	30	5	21.5	63	69.8 91.8	53	40	M6×1×9.5	5.3	50 72	25	10	M6×0.75	5	11	20	18
NH25EM NH25GM	36	7	23.5	70	79 107	57	45	M8×1.25×10 (M8×1.25×11.5)	6.8	58 86	29	11 (12)	M6×0.75	6	11	23	22
NH30EM NH30GM	42	9	31	90	98.6 124.6	72	52	M10×1.5×12 (M10×1.5×14.5)	8.6	72 98	33	11 (15)	M6×0.75	7	11	28	26
NH35EM NH35GM	48	9.5	33	100	109 143	82	62	M10×1.5×13	8.6	80 114	38.5	12	M6×0.75	8	11	34	29
NH45EM NH45GM	60	14	37.5	120	139 171	100	80	M12×1.75×15	10.5	105 137	46	13	Rc1/8	10	13	45	38
NH55EM NH55GM	70	15	43.5	140	163 201	116	95	M14×2×18	12.5	126 164	55	15	Rc1/8	11	13	53	44
NH65EM NH65GM	90	16	53.5	170	193 253	142	110	M16×2×24	14.6	147 207	74	23	Rc1/8	19	13	63	53

Notes: 1) Parenthesized dimensions are for items made of stainless steel.

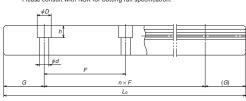
2) The external appearance of stainless steel ball slides differs slightly from that of carbon steel ball slides.

NSK

Reference number for ball slide of interchangeable type


NAH 30 EM S Z -L Ball slide Interchangeable ball slide model code -L: Equipped with NSK K1-L
-F: Fluoride low temperature chrome plating+AS2 grease
-F50: Fluoride low temperature chrome plating+LG2 grease NAH: NH Model interchangeable ball slide Preload code Ball slide shape code (See page A106.) No code: Fine clearance, Z: Slight preload, H: Medium prel Material code No code: Special high carbon steel (NSK standard), S: Stain

EM and GM types EM type GM type 4-M × ℓ


Reference number for rail of interchangeable type

N1H30 1200 L C N -** PC Z Rail Interchangeable rail model code N1H: NH Model interchangeable rail Size Accuracy code Rail length (mm) Design serial number Rail shape code: L Added to the reference number *Butting rail specification

N: Non-butting. L: Butting specification
*Please consult with NSK for butting rail specification.

Material/surface treatment code (See Table 22.)

Unit: mm

Rail				Basic load ratings						We	ight		
Pitch	Mounting	G	Max. length	3)Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
	bolt hole		L_{0max} .	[50km]	[100km]	C_{0}	M _{RO}	<i>N</i>	1 _{PO}	٨	1 _{YO}	slide	
F	$d \times D \times h$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	4.5×7.5×5.3	20	2 980 (1 800)	14 200 18 100	11 300 14 400	20 700 32 000	108 166	94.5 216	575 1 150		480 965	0.17 0.25	1.6
60	6×9.5×8.5	20	3 960	23 700	18 800	32 500	219	185	1 140	155	955	0.45	2.6
	7 44 0	0.0	(3 500)	30 000 33 500	24 000 26 800	50 500 46 000	340 360	420 320	2 230	355 267	1 870 1 540	0.65	
60	7×11×9	20	(3 500)	45 500	36 500	71 000	555	725	3 700		3 100	0.93	3.6
80	9×14×12	20	4 000 (3 500)	47 000 61 000	37 500 48 500	63 000 91 500	600 870	505 1 030	3 150 5 600	425 865	2 650 4 700	1.2 1.6	5.2
80	9×14×12	20	4 000	62 500 81 000	49 500 64 500	80 500 117 000	950 1 380	755 1 530	4 500 8 350	630	3 800	1.7	7.2
105	14×20×17	22.5	3 990	107 000 131 000	84 500 104 000	140 000 187 000	2 140 2 860	1 740 3 000	9 750 15 600	1 460	8 150 13 100	3 3.9	12.3
120	16×23×20	30	3 960	158 000 193 000	125 000 153 000	198 000 264 000	3 600 4 850	3 000 5 150	16 300 26 300	2 510	13 700 22 100	5 6.5	16.9
150	18×26×22	35	3 900	239 000 310 000	190 000 246 000	281 000 410 000	6 150	4 950 10 100	27 900		23 400 43 500	10	24.3

3) Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

C_{so,} the basic dynamic load rating for 50 km rated fatigue life C_{so}; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

4) High-precision grade and medium preload interchangeable types are available for high-carbon steel products.

Dust-Resistant VH Mode

A-4-1.2 VH Model

1. Features

(1) High-performance end seals

High-performance end seals with a multi-lip structure prevent the entry of various kinds of foreign matter.

(2) NSK K1-L™ lubrication unit (standard)

The outstanding lubrication support provided by NSK K1-L units further improves resistance to dust and durability. Additional NSK K1-L units can be mounted for specific usage conditions and environments.

(3) Tapped holes on rail bottom surface (optional)

In addition to standard mounting bolt holes (counterbores on the rail top surface), a specification for tapped holes on the rail bottom surface for enhanced dust resistance is available. (Refer to the dimension tables for details.)

(4) High self-aligning capability (rolling direction)

Similar to a DF arrangement of angular contact bearings, VH models offer large self-aligning capability with the internal intersection of the contact lines of the balls and grooves reducing moment rigidity.

This increases the capacity to absorb errors in installation.

(5) High vertical load carrying capacity

The contact angle is set at 50 degrees, thus increasing load carrying capacity as well as rigidity in the vertical direction.

(6) High resistance against impact load

The bottom ball groove forms a Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2.

Vertical load is generally carried by the top rows at two contact points, but with this design, the bottom rows also carry load when a large impact load is applied vertically as shown in Fig. 3. This assures high

resistance to impact load.

(7) High accuracy

As shown in Fig. 4, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes for easy and accurate measuring of ball grooves.

(8) Interchangeable

Interchangeable rails and ball slides are available.

(9) Improve rating life dramatically

A new ball groove geometry is introduced utilizing NSK's state-of-the-art tribological and

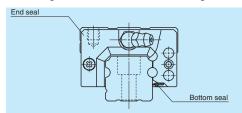


Fig. 1 VH Model

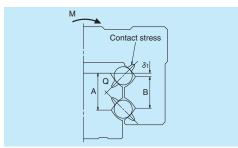


Fig. 2 Enlarged illustration of the offset Gothic arch groove

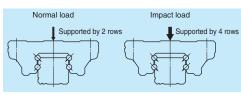


Fig. 3 When load is applied

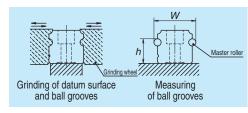


Fig. 4 Rail grinding and measuring

analytical technologies. Rating life is dramatically increased due to the optimized distribution of contact surface pressures.

Load rating capacity is 1.3 times higher than conventional products and life is doubled*1.

*1: Representative values for model.

Comparison with NSK standard products

Level of fine contaminants reduced by 90% or more.

Results of dust resistance tests reveal that the entry of fine contaminants is reduced to less than one-tenth that of existing standard models due to improvements in sealing.

Test sample : VH30AN Speed : 16.7 mm/sec Contaminant : Graphite powder

(average grain size: 0.037 mm) +

Grease

Operating life under contaminated environments is more than 5 times longer

Durability test with rubber fragments

Extreme durability tests under contaminated environments using rubber fragments show that durability of the VH Model is more than five times longer than the existing standard model, as shown in the graph.

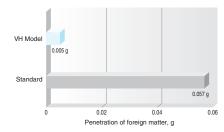
Test sample : VH30AN, preload code Z1 (preload of 245 N) Rail orientation : Horizontal (wall mount)

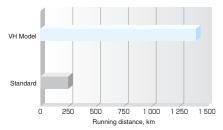
Speed : 500 mm/sec Lubrication : AS2 grease

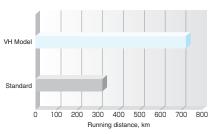
(prepacked AS2 only) : Rubber fragments Contaminant

Durability test with fine wood particles

Extreme durability tests in a contaminated environment with fine wood particles show that durability of the VH Model is more than double that of the standard model, as shown in the graph.


Test sample : VH30AN (preload of 3 200 N)


Rail orientation : Horizontal (wall mount)


Speed : 400 mm/sec Lubrication : AS2 grease

(prepacked AS2 only)

Contaminant : Fine wood particles

Before the passage of ball slide (Heavily contaminated with wood particles)

After the passage of ball slide (All contaminant particles are swept away)

The data shown in the catalog are the results of our tests, and no warranty is given to sealing performance in actual machine usage. Sealing performance is affected by usage environment and lubrication conditions. Dust covers and other measures to keep machinery free of dust are recommended. A126

2. Ball slide shape

Ball slide shape code	Shape/installation method	Type (Upper row, Rating: Lo High-load Standard	ower row, Ball slide length) Super-high-load Long
AN BN		AN L ₁	BN L ₁
AL BL		AL L1	BL
EM GM		EM L ₁	GM L1

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1

	-	nd preload	hall slida					Dust-F			
(1) Running parallelism of ball slide Table 1 Unit: µm											
	Accuracy grade		Preloaded ass	embly (not int	erchangeable)		Interchangeable type	tant			
Rail length (mm)	or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC	Dust-Resistant VH Model			
_	50	2	2	2	4	5	5	<u>e</u>			
50 –	80	2	2	3	4	5	5				
80 –	125	2	2	3	4	5	5				
125 –	200	2	2	3.5	5	6	6				
200 –	250	2	2.5	4.5	6	7.5	7.5				
250 –	315	2	2.5	5	6.5	8.5	8.5				
315 –	400	2	3	5.5	7	9.5	9.5				
400 –	500	2	3	6	7.5	11	11				
500 –	630	2	3.5	6.5	8.5	12	12				
630 –	800	2	4	7	9.5	13	13				
800 –	1 000	2.5	4.5	7.5	10	15	15				
1 000 -	1 250	3	5	8.5	12	16	16				
1 250 –	1 600	3.5	5.5	9.5	13	17	17				
1 600 –	2 000	4	6.5	11	14	19	19				
2 000 -	2 500	4.5	7.5	12	16	21	21				
2 500 –	3 150	5.5	8.5	13	18	23	23				
3 150 –	4 000	6	9.5	14	19	25	25				

(2) Accuracy standard

The preloaded assembly has five accuracy grades: Ultra precision P3, Super precision P4, High precision P5, Precision P6, and Normal PN grades, while the interchangeable type has Normal PC grade only.

• Tolerance of preloaded assembly

Table	2			
-------	---	--	--	--

Unit: µm

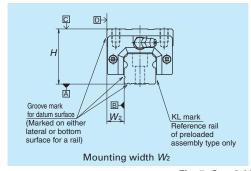
Accuracy grade Characteristics	Ultra precision	Super precision	High precision	Precision grade	Normal grade
	P3	P4	P5	P6	PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±8	±10	±20	±40	±80
	3	5	7	15	25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±10 3	±15 7	±25 10	±50 20	±100 30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Shown in Ta	ble 1, Fig. 5 an	d Fig. 6	

• Tolerance of interchangeable type: Normal grade PC

ible 3	ıbl	e	3		
--------	-----	---	---	--	--

Unit: µm

Model No.	VH15, 20, 25, 30, 35	VH45, 55
Mounting height H	±20	±30
Variation of mounting height H	15① 30②	20① 35②
Mounting width W_2 or W_3	±30	±35
Variation of mounting width W ₂ or W ₃	25	30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1 , F	ig. 5 and Fig. 6


Note: ① Variation on the same rail ② Variation on multiple rails

(3) Combinations of accuracy and preload

Table 4

	Table 4								
		Accuracy grade							
		Ultra precision	Super precision	High Precision	Precision grade	Normal grade	Normal grade		
Wi	th NSK K1-L lubrication unit	L3	L4	L5	L6	LN	LC		
	Fine clearance								
	Z0	0	0	0			_		
	Slight preload)						
_	Z1								
Preload	Medium preload								
Prel	Z3)			_			
_	Interchangeable type with fine clearance								
	ZT	_		_		_			
	Interchangeable type with slight preload								
	ZZ	_	_	_	_				

(4) Assembled accuracy

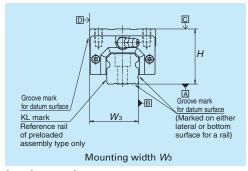
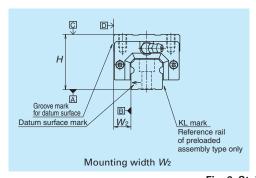



Fig. 5 Special high carbon steel

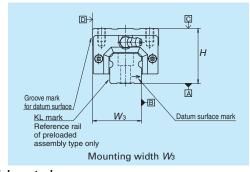


Fig. 6 Stainless steel

(5) Preload and rigidity

We offer five levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, while the interchangeable type offers Fine clearance ZT and Slight preload ZZ.

· Preload and rigidity of preloaded assembly

	Table 5										
		Prolo	ad (NI)	Rigidity (N/μm)							
	Model No.	Preload (N)		Vertical o	direction	Lateral o	direction				
	iviouel No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload				
		Z1	Z3	Z1	Z3	Z1	Z3				
	VH15 AN, EM	78	490	137	226	98	186				
	VH20 AN, EM	147	835	186	335	137	245				
ъ	VH25 AN, AL, EM	196	1 270	206	380	147	284				
-loa	VH30 AN, AL	245	1 570	216	400	157	294				
High-load	VH30 EM	294	1 770	265	480	186	355				
I	VH35 AN, AL, EM	390	2 350	305	560	216	390				
	VH45 AN, AL, EM	635	3 900	400	745	284	540				
	VH55 AN, AL, EM	980	5 900	490	910	345	645				
	VH15 BN, GM	98	685	196	345	137	284				
ad	VH20 BN, GM	196	1 080	265	480	196	355				
h-lo	VH25 BN, BL, GM	245	1 570	294	560	216	400				
Super-high-lo	VH30 BN, BL, GM	390	2 260	360	665	265	480				
oer-	VH35 BN, BL, GM	490	2 940	430	795	305	570				
Sup	VH45 BN, BL, GM	785	4 800	520	960	370	695				
	VH55 RN RI GM	1 180	7.050	635	1 170	440	835				

Note: Clearance for Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

However, Z0 of PN grade is 0 to 15 μm.

· Preload of interchangeable type

	Table 6	Unit: µm
	Table 0	Offic. piri
Model No.	Fine clearance	Slight preload
Wiodel No.	ZT	ZZ
VH15	–4 to 15	-4 to 0
VH20		-5 to 0
VH25		-5 to 0
VH30	_5 to 15	-7 to 0
VH35	-5 (0 15	-7 to 0
VH45		-7 to 0
VH55		-9 to 0

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

4. Maximum rail length

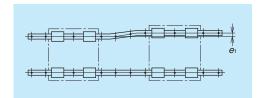

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length limitations of rails									
Model	Size								
Model	Material	15	20	25	30	35	45	55	
VH	Special high carbon steel	2 000	3 960	3 960	4 000	4 000	3 990	3 960	
VII	Stainless steel	1 800	3 500	3 500	3 500				

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

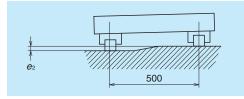


Fig. 7

Fig. 8

μm

Table 8			Unit:

Dralaad				Model No.			
Preioad	VH15	VH20	VH25	VH30	VH35	VH45	VH55
Z0, ZT	22	30	40	45	55	65	80
Z1, ZZ	18	20	25	30	35	45	55
Z3	13	15	20	25	30	40	45
Z0, ZT			375	5 μm/500 n	nm		
Z1, ZZ, Z3			330) μm/500 n	nm		
	Z1, ZZ Z3 Z0, ZT	Z0, ZT 22 Z1, ZZ 18 Z3 13	Z0, ZT	Verioad VH15 VH20 VH25 Z0, ZT 22 30 40 Z1, ZZ 18 20 25 Z3 13 15 20 Z0, ZT 375 375	Z0, ZT	Verioad VH15 VH20 VH25 VH30 VH35 Z0, ZT 22 30 40 45 55 Z1, ZZ 18 20 25 30 35 Z3 13 15 20 25 30 Z0, ZT 375 μm/500 mm	Verioad VH15 VH20 VH25 VH30 VH35 VH45 Z0, ZT 22 30 40 45 55 65 Z1, ZZ 18 20 25 30 35 45 Z3 13 15 20 25 30 40 Z0, ZT 375 µm/500 mm

(2) Shoulder height of the mounting surface and corner radius r

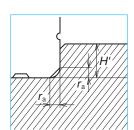


Fig. 9 Shoulder for the

rail datum surface

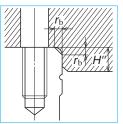


Fig. 10 Shoulder for the ball

			Unit: mm	
Model No.	Corner radiu	s (maximum)	Shoulde	r height
wiodei ivo.	r _a	$r_{\rm b}$	H'	H"
VH15	0.5	0.5	4	4
VH20	0.5	0.5	4.5	5
VH25	0.5	0.5	5	5
VH30	0.5	0.5	6	6
VH35	0.5	0.5	6	6
VH45	0.7	0.7	8	8
VH55	0.7	0.7	10	10

Table 9

(3) Specification for tapped holes on a rail bottom surface

- Special high carbon steel is available for this specification.
- Applicable accuracy grades are precision grade
 (P6) and normal grades (PN and PC) only.
- The minimum rail length for production is 400 mm.
- The tapping pitch is the same as the pitch for regular mounting bolt holes. Please refer to the dimension table.

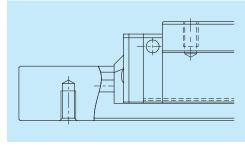


Fig. 11

6. Lubrication components

Refer to pages A58 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 12 and Table 10 show grease fittings and tube fittings.

We provide lubrication accessories with an extended thread body length (*L*) for the addition of dust-resistant accessories such as NSK K1-L lubrication units, double seals and protectors. We provide suitable lubrication accessories for special dust-resistant requirements upon request.

NSK can also provide extended length threads for ease of replenishment.

Please contact NSK if stainless lubrication accessories are required.

(2) Mounting position of lubrication accessories

The standard position for grease fittings is at the end face of the ball slide, but we can mount them on the side of the end cap as an option. (Fig. 13)

Please consult NSK for the installation of grease or tube fittings to the ball slide body.

Using a piping unit with thread of M6 \times 1, requires a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

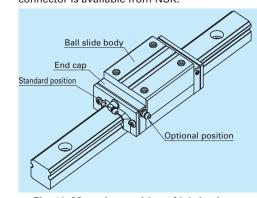


Fig. 13 Mounting position of lubrication accessories

Grease fitting Drive-in type (\(\phi \) 3) A type B type C type (M6 × 0.75 or R1/8) Re1/8 Re1/8 Re1/8 Re1/8 Re1/8 (M6 × 0.75 or R1/8)

Fig. 12 Grease fitting and tube fitting

		Table 10	ι	Jnit: mm
Model No.	Dust-resistant specification	Dimension L		
		Grease fitting	Tube fitting	
		/Drive-in type	SF type	LF type
VH15	Standard*	10	-	-
	Double seal	**	-	_
	Protector	**	_	_
VH20	Standard*	12	-	-
	Double seal	18	-	-
	Protector	18	_	_
VH25	Standard*	12	15	16
	Double seal	18	23	24.5***
	Protector	18	17	18
VH30	Standard*	14	18	17.5
	Double seal	22	25	24.5
	Protector	22	19.5	19
VH35	Standard*	14	15	15
	Double seal	22	25	24.5
	Protector	22	21.5	22
VH45	Standard*	18	22	21.5
	Double seal	22	32	32
	Protector	28	28	30
VH55	Standard*	18	20	20
	Double seal	22	32	32
	Protector	28	28	30

*) NSK K1-L units are mounted as a standard specification for VH models.

**) A connector is required for grease fitting. Please contact NSK

***) Only available for AN and BN type ball slides.

A131 A132

7. Dust-resistant components

(1) Standard specification

Under normal applications, the VH model can be used without modification thanks to its dust resistance. To keep foreign matter from entering inside the ball slide, the VH model has an end seal on both ends and bottom seals at the bottom.

Two NSK K1-L lubrication units, one at each end, are installed as standard.

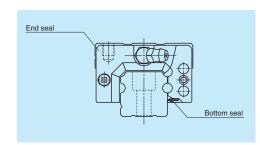


Fig. 14

Table 11 Seal friction per ball slide (maximum value)

Table 11 Seal friction per ball slide (maximum value)											
Size Model	15	20	25	30	35	45	55				
VH	11	13	14	17	23	33	44				

(2) Double seal and protector

For VH Models, double-seals and protectors can be installed only before shipping from the factory. Please consult with NSK when double seals or protectors are required.

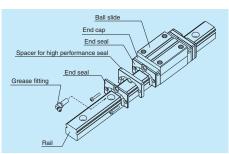


Fig. 15 Double seal

Table 12 shows the ball slide length when a double seal set and a protector are installed.

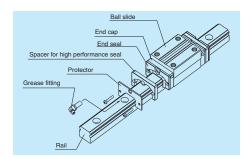
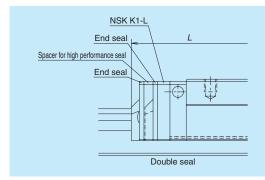



Fig. 16 Protector

Table 12 Dimensions with optional dust-resistant components installed

	mm	

Madal Na	Ball slide	Ball slide	Ball slide length <i>L</i>						
Model No.	length	shape code	Standard	Double seal installation	Protector installation				
VH15	Standard type	AN, EM	70.6	81.6	77				
VПІЭ	Long type	BN, GM	89.6	100.6	96				
VH20	Standard type	AN, EM	87.4	100.4	94.2				
VHZU	Long type	BN, GM	109.4	122.4	116.2				
VH25	Standard type	AN, AL, EM	97	110	104.4				
VHZS	Long type	BN, BL, GM	125	138	132.4				
	Standard type	AN, AL	104.4	120.4	114.8				
VH30		EM	117.4	133.4	127.8				
	Long type	BN, BL, GM	143.4	159.4	153.8				
VH35	Standard type	AN, AL, EM	128.8	144.8	139.2				
VH35	Long type	BN, BL, GM	162.8	178.8	173.2				
VH45	Standard type	AN, AL, EM	161.4	180.4	174.2				
VH45	Long type	BN, BL, GM	193.4	212.4	206.2				
VH55	Standard type	AN, AL, EM	185.4	204.4	198.2				
V (155	Long type	BN, BL, GM	223.4	242.4	236.2				

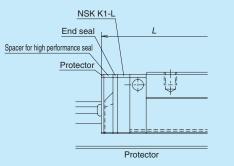


Fig. 17

(3) Caps to plug the rail mounting bolt hole Table 13 Caps to plug rail bolt hole

Bolt to	Сар	Quantity		
secure rail	reference No.	/case		
M4	LG-CAP/M4	20		
M5	LG-CAP/M5	20		
M6	LG-CAP/M6	20		
M8	LG-CAP/M8	20		
M12	LG-CAP/M12	20		
M14	LG-CAP/M14	20		
	M4 M5 M6 M8 M12	secure rail reference No. M4 LG-CAP/M4 M5 LG-CAP/M5 M6 LG-CAP/M6 M8 LG-CAP/M8 M12 LG-CAP/M12		

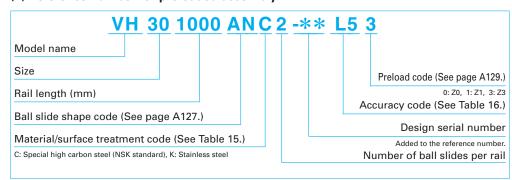
(4) Inner seal

Inner seals are only available for the models shown below.

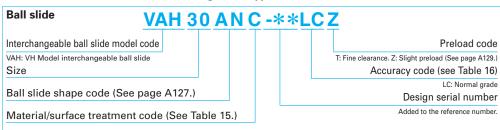
Table 14

Model	Model No.
VH	VH20, VH25, VH30, VH35, VH45, VH55

8. Design Precautions


Because the product is used under severe operating conditions that require high performance end seals, please inform NSK about your service conditions using the technical data sheet on page A144.

9. Reference number


A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

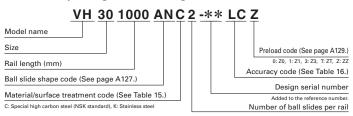
(2) Reference number for interchangeable type

V1H30 1000 L C N -	** PC Z
Interchangeable rail model code	Preload code (See page A129.)
V1H: VH Model interchangeable rail	T: Fine clearance. Z: Slight preload
Size	Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available.
naii leligili (IIIII)	Design serial number
Rail shape code: L	Added to the reference number.
L: Standard	*Butting rail specification
Material/surface treatment code (See Table 15.)	N: Non-butting. L: Butting specification
*Pleas	se consult with NSK for butting rail specification.

When interchangeable rails and slides are assembled, reference number coding is the same as that for preloaded assemblies. However, only preload codes T (fine clearance) and Z (slight preload) may be used (Refer to Page A129.)

Table 15 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard) + counterbores on a rail top surface
K	Stainless steel + counterbores on a rail top surface
D	Special high carbon steel with surface treatment + counterbores on a rail top surface
Н	Stainless steel with surface treatment + counterbores on a rail top surface
V	Special high carbon steel (NSK standard) + tapped holes on a rail bottom surface
W	Special high carbon steel with surface treatment + tapped holes on a rail bottom surface
Z	Other, special


Table 16 Accuracy code

Accuracy	With NSK K1-L				
Ultra precision grade	L3				
Super precision grade	L4				
High precision grade	L5				
Precision grade	L6				
Normal grade	LN				
Normal grade (interchangeable type)	LC				

Note: Refer to page A58 for details on NSK K1-L lubrication units.

A135 A136

10. Dimensions VH-AN (High-load / Standard) VH-BN (Super-high-load / Long)

Front view of AN and BN type

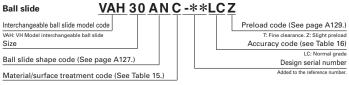
Side view of AN type

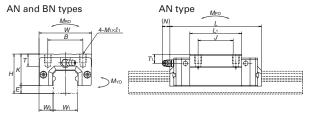
W

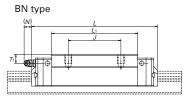
A-M₁×ℓ₁

B

A-M₁×

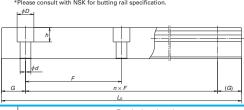

Specification for tapped holes on a rail Side view of BN type bottom face


	A	ssem	bly	Ball slide													
Model No	Height			Width	Length	Mounting hole						Gre	ase t	fitting	Width	Height	
WIOGCITYO																	
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L_1	K	Τ	K ₁	Hole size	T_1	Ν	W_1	H_1
VH15AN VH15BN	1.78	4.6	9.5	34	70.6 (77) 89.6 (96)	26	26	M4×0.7×6	39 58	23.4	8	4.5	φ 3	8.5	1 〈 8.2〉	15	15
VH20AN VH20BN	1,30	5	12	44	87.4 (94.2) 109.4 (116.2)	32	36 50	M5×0.8×6	50 72	25	12	4.5	M6×0.75	5	11.1 (12.3)	20	18
VH25AN VH25BN	1 40	7	12.5	48	97 (104.4) 125 (132.4)	35	35 50	M6×1×9	58 86	33	12	5	M6×0.75	10	9.6 (12.9)	23	22
VH30AN VH30BN	1 45	9	16	60	104.4 (114.8) 143.4 (153.8)	40	40 60	M8×1.25×10	59 98	36	14	5	M6×0.75	10	11.4 (14.2)	28	26
VH35AN VH35BN	l hh	9.5	18	70	128.8 (139.2) 162.8 (173.2)	50	50 72	M8×1.25×12	80 114	45.5	15	5.5	M6×0.75	15	10.9 (13.7)	34	29
VH45AN VH45BN	/0	14	20.5	86	161.4 (174.2) 193.4 (206.2)	60	60 80	M10×1.5×17	105 137	56	17	6.5	Rc1/8	20	12.5 (14.1)	45	38
VH55AN VH55BN	1 20	15	23.5	100	185.4 (198.2) 223.4 (236.2)	75	75 95	M12×1.75×18	126 164	65	18	6.5	Rc1/8	21	12.5 (14.1)	53	44


Notes: 1) Figures inside () apply when equipped with a protector.

- 2) VH models do not have a ball retainer. Note that balls will fall out when the ball slide is removed from the rail.
- 3) The external appearance of stainless steel ball slides differs slightly from that of carbon steel ball slides.

Reference number for ball slide of interchangeable type



Reference number for rail of interchangeable type

Rail V1H 30 100	OLCN-** PCZ
•	Preload code (See page A129
/1H: VH Model interchangeable rail	T: Fine clearance. Z: Slight preloa
Size	Accuracy code: Po
Rail length (mm)	PC: Only normal grade is available Design serial numbe
Rail shape code: L	Added to the reference numbe *Butting rail specification
: Standard	
Material/surface treatment code (See Tab	e 15.) N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

11.5	
Unit:	mm

	Rail		Basic load ratings								We	ight		
Pitch		Tapped hole	G	Max. length	4)Dyn	amic	Static		Static r	nomen	t (N·m)		Ball	Rail
	bolt hole			L_{0max} .	[50km]	[100km]	C _o	M _{RO}	N	1 _{PO}	N	1 _{YO}	slide	
F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	4.5×7.5×5.3	M5×0.8×8	20	2 000	14 200	11 300	20 700	108	94.5	575			0.18	1 1 6
00	1.0/7.0/0.0	1010/0.0/0	20	[1 800]	18 100	14 400	32 000	166	216	1 150	181	965	0.26	1.0
60	6×9.5×8.5	M6×1×10	20	3 960	23 700	18 800	32 500	219	185	1 140	155	955	0.33	2.6
00	0x9.0x6.0	IVIOXIXIO	20	[3 500]	30 000	24 000	50 500	340	420	2 230	355	1 870	0.48	2.0
60	7×11×9	M6×1×12	20	3 960	33 500	26 800	46 000	360	320	1 840	267	1 540	0.55	3.6
00	///////	101021212	20	[3 500]	45 500	36 500	71 000	555	725	3 700	610	3 100	0.82	3.0
80	9×14×12	M8×1.25×15	20	4 000	41 000	32 500	51 500	490	350	2 290	292	1 920	0.77	5.2
-00	9X14X12	IVIOX 1.20X 10	20	[3 500]	61 000	48 500	91 500	870	1 030	5 600	865	4 700	1.3	5.2
80	9×14×12	M8×1.25×17	20	4 000	62 500	49 500	80 500	950	755	4 500	630	3 800	1.5	7.2
00	3/14/12	1010×1.25×17	20	4 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	2.1	1.2
105	1/1/20/17	M12×1.75×24	22.5	3 990	107 000	84 500	140 000	2 140	1 740	9 750	1 460	8 150	3.0	12.3
100	14820817	10112 × 1.75 × 24	22.5	3 330	131 000	104 000	187 000	2 860	3 000	15 600	2 520	13 100	3.9	12.3
120	16×23×20	M14×2×24	30	3 960	158 000	125 000	198 000	3 600	3 000	16 300	2 510	13 700	4.7	16.9
120	10/23/20	IVI 14XZXZ4	30	3 900	193 000	153 000	264 000	4 850	5 150	26 300	4 350	22 100	6.1	10.9

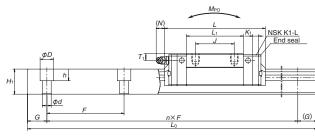
⁴⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

A137

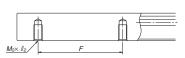
NSK K1-L End seal

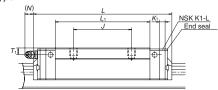
H

 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{loo} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.


VH-AL (High-load / Standard) VH-BL (Super-high-load / Long)

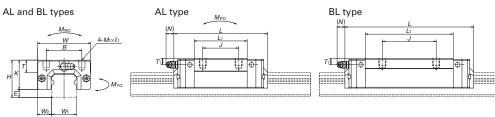
WH 30 1000 AL C 2 -** LC Z Model name Size Rail length (mm) Ball slide shape code (See page A127.) Material/surface treatment code (See Table 15.) C. Special high carbon steel (NSK standard), K Stainless steel Preload code (See page A129.) 0: 20, 1: 21, 3: 23, 1: 21, 2: 22 Accuracy code (See Table 16.) Design serial number Added to the reference number. Number of ball slides per rail


Front view of AL and BL type


Side view of AL type

Specification for tapped holes on a rail bottom face

Side view of BL type


	Α	ssem	bly					Ball	slide)							
Model No	Height			Width	Length		Μοι	unting hole					Gre	ase :	fitting	Width	Height
	Н	Е	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	K ₁	Hole size	<i>T</i> ₁	N	<i>W</i> ₁	H ₁
VH25AL VH25BL	36	7	12.5	-	H25 (132.4)	35	35 50	M6×1×6	58 86	29	12	5	M6×0.75	6	9.6 (12.9)	23	22
VH30AL VH30BL	42	9	16	60	104.4 (114.8) 143.4 (153.8)	40	40 60	M8×1.25×8	59 98	33	14	5	M6×0.75	7	11.4 (14.2)	28	26
VH35AL VH35BL	48	9.5	18	70	128.8 (139.2) 162.8 (173.2)	1 6()	50 72	M8×1.25×8	80 114	38.5	15	5.5	M6×0.75	8	10.9 (13.7)	34	29
VH45AL VH45BL	60	14	20.5		1193 4770b 71	60	60 80	M10×1.5×10	105 137	46		6.5	Rc1/8	10	12.5 (14.1)	45	38
VH55AL VH55BL	70	15	23.5	100	185.4 (198.2) 223.4 (236.2)	75	75 95	M12×1.75×13	126 164	55	15	6.5	Rc1/8	11	12.5 (14.1)	53	44

Notes: 1) Figures inside () apply when equipped with a protector.

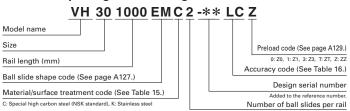
- 2) VH models do not have a ball retainer. Note that balls will fall out when the ball slide is removed from the rail.
- 3) The external appearance of stainless steel ball slides differs slightly from that of carbon steel ball slides.

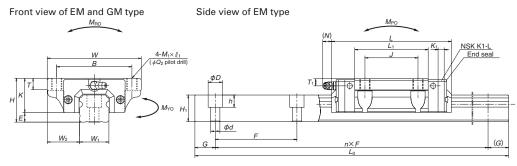
Reference number for ball slide of interchangeable type

Ball slide VAH 30 AL	<u>C-**LCZ</u>
Interchangeable ball slide model code	Preload code (See page A129.)
VAH: VH Model interchangeable ball slide	T: Fine clearance. Z: Slight preload
Size	Accuracy code (see Table 16)
	LC: Normal grade
Ball slide shape code (See page A127.)	Design serial number
Material/surface treatment code (See Table 15.)	Added to the reference number.

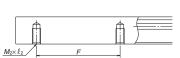
Reference number for rail of interchangeable type

i tererent	e ilulibel loi la	01 1111	erchangeable type	
Rail	V1H30 100	10 L C	N -** PC Z	
Interchangeable ra	ail model code		Preload code (See page	e A129.)
V1H: VH Model inte	rchangeable rail		T: Fine clearance. Z: Sligh	t preload
Size			Accuracy co	de: PC
Rail length (m	m)		PC: Only normal grade is Design serial n	
Rail shape cod	de: L		Added to the reference	number.
L: Standard		—	*Butting rail specif	ication
Material/surfa	ce treatment code (See Tab	le 15.)	N: Non-butting. L: Butting spe	cification
			*Please consult with NSK for butting rail specifica	tion.
			<i>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </i>	
	н })		

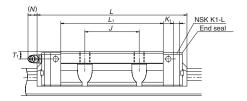

							L ₀						Unit.	. ITHITH	
	Rail					Basic load ratings									
Pitch	Mounting	Tapped hole	G	Max. length	4)Dyn	amic	Static		Static r	nomen	t (N·m)		Ball	Rail	
	bolt hole			L_{0max} .	[50km]	[100km]	C _o	M _{RO}	N	1 _{PO}	N	l _{vo}	slide		
F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)	
60	7×11×9	M6×1×12	20	3 960	33 500	26 800	46 000		320	1 840			0.46	3.6	
00	7 7 1 1 7 0	1410/1/1/12	20	[3 500]	45 500	36 500	71 000	555	725	3 700	610	3 100	0.69	0.0	
80	9×14×12	M8×1.25×15	20	4 000	41 000	32 500	51 500	490	350	2 290	292		0.69	5.2	
00	3/14/12	1010/1.23/13	20	[3 500]	61 000	48 500	91 500	870	1 030	5 600	865	4 700	1.16	J.Z	
80	9×14×12	M8×1.25×17	20	4 000	62 500	49 500	80 500	950	755	4 500	630	3 800	1.2	7.2	
00	3/14/12	1010/1.23/17	20	4 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	1.7	1.2	
105	1/1/20/17	M12×1.75×24	22.5	3 990	107 000	84 500	140 000	2 140	1 740	9 750	1 460	8 150	2.2	12.3	
105	14,20,17	10112 1.75 24	22.0	3 330	131 000	104 000	187 000	2 860	3 000	15 600	2 520	13 100	2.9	12.0	
120	16×23×20	M14×2×24	30	3 960	158 000	125 000	198 000	3 600	3 000	16 300	2 510	13 700	3.7	16.9	
120	10/23/20	IVI 14/2X24	50	3 300	193 000	153 000	264 000	4 850	5 150	26 300	4 350	22 100	4.7	10.9	


⁴⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{too} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

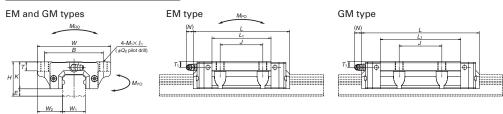

A139 A140

VH-EM (High-load / Standard) VH-GM (Super-high-load / Long)



Specification for tapped holes on a rail bottom face

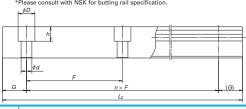
Side view of GM type



	As	ssem	bly					Ва	ll slid	le								
Model No	Height			Width	Length		Mounting hole							Gre	ease	fitting	Width	Height
Woder No	Н	Ε	W_2	W	L	В	J	$M_1 \times \text{pitch} \times \ell_1$	Q_2	L ₁	Κ	Т	K ₁	Hole size	<i>T</i> ₁	N	W_1	H ₁
VH15EM VH15GM	24	4.6	16	47	70.6 (77) 89.6 (96)	38	30	M5×0.8×7	4.4	39 58	19.4	8	4.5	ø 3	4.5	1 〈 8.2〉	15	15
VH20EM VH20GM	30	5	21.5	63	87.4 (94.2 109.4 (116.2		40	M6×1×9.5	5.3	50 72	25	10	4.5	M6×0.75	5	11.1 (12.3)	20	18
VH25EM VH25GM	36	7	23.5	70	97 (104.4 125 (132.4	1 5/	45	M8×1.25×10 [M8×1.25×11.5]	6.8	58 86	29	11 [12]	5	M6×0.75	6	9.6 (12.9)	23	22
VH30EM VH30GM	42	9	31	90	117.4 (127.8 143.4 (153.8	' I ' ' ' '	52	M10×1.5×12 [M10×1.5×14.5]	8.6	72 98	33	11 [15]	5	M6×0.75	7	11.4 (14.2)	28	26
VH35EM VH35GM	48	9.5	33	100	162.8(1/3.2	82	62	M10×1.5×13	8.6	80 114	38.5	12	5.5	M6×0.75	8	10.9 (13.7)	34	29
VH45EM VH45GM	60	14	37.5	120	161.4 (174.2 193.4 (206.2		80	M12×1.75×15		105	46	13	6.5	Rc1/8	10	12.5 (14.1)	45	38
VH55EM VH55GM	70	15	43.5	140	185.4 (198.2 223.4 (236.2	1116	95	M14×2×18	17 5	126 164	55	15	6.5	Rc1/8	11	12.5 (14.1)	53	44

- Notes: 1) Figures inside () apply when equipped with a protector.
 - 2) Figures inside [] apply to stainless steel products.
 - 3) VH models do not have a ball retainer. Note that balls will fall out when the ball slide is removed from the rail.
 - 4) The external appearance of stainless steel ball slides differs slightly from that of carbon steel ball slides.

Reference number for ball slide of interchangeable type


Ball slide	<u>/AH 30 EM (</u>	<u> </u>	
Interchangeable ball slide model co	de		Preload code (See page A129.)
VAH: VH Model interchangeable ball slide	_	-	T: Fine clearance. Z: Slight preload
Size			Accuracy code (see Table 16)
			LC: Normal grade
Ball slide shape code (See page	je A127.)		Design serial number
Material/surface treatment co	de (See Table 15.)		Added to the reference number.

Reference number for rail of interchangeable type

Rail	V1H30 1000 L C	CN -** PC Z
Interchangeable i	rail model code	Preload code (See page A129.)
V1H: VH Model inte	erchangeable rail	T: Fine clearance. Z: Slight preload
Size		Accuracy code: PC
Rail length (m	nm)	PC: Only normal grade is available. Design serial number
Rail shape co	de: L	Added to the reference number.
L: Standard		*Butting rail specification
Material/surfa	ace treatment code (See Table 15.)	N: Non-butting. L: Butting specification
	, , , , , , , , , , , , , , , , , , , ,	*Please consult with NSK for butting rail specification.
		+ ^D

Unit:	mm

	Rail						Basi	c load r	atings				We	ight
Pitch		Tapped hole	G	Max. length	⁵Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
	bolt hole			L_{0max} .	[50km]	[100km]	C_{0}	M_{RO}	N	1 _{PO}	٨	1 _{YO}	slide	
F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	4.5×7.5×5.3	M5×0.8×8	20	2 000	14 200	11 300	20 700	108	94.5	575			0.17	1 16
	110/17/10/10/0	1110/1010/10		[1 800]	18 100	14 400	32 000	166	216	1 150	181		0.25	
60	6×9.5×8.5	M6×1×10	20	3 960	23 700	18 800	32 500	219	185	1 140	155	955	0.45	2.6
00	000.000.0	IVIOXIXIO	20	[3 500]	30 000	24 000	50 500	340	420	2 230	355	1 870	0.65	2.0
60	7×11×9	M6×1×12	20	3 960	33 500	26 800	46 000	360	320	1 840	267	1 540	0.63	3.6
00	///////	IVIOXIXIZ	20	[3 500]	45 500	36 500	71 000	555	725	3 700	610	3 100	0.93	3.0
80	9×14×12	M8×1.25×15	20	4 000	47 000	37 500	63 000	600	505	3 150	425	2 650	1.2	5.2
00	9X14X12	IVIOX 1.25X 15	20	[3 500]	61 000	48 500	91 500	870	1 030	5 600	865	4 700	1.6	5.2
80	9×14×12	M8×1.25×17	20	4 000	62 500	49 500	80 500	950	755	4 500	630	3 800	1.7	7.2
00	9X14X12	IVIOX 1.25X 17	20	4 000	81 000	64 500	117 000	1 380	1 530	8 350	1 280	7 000	2.4	1.2
105	14,20,17	M12×1.75×24	22 5	3 990	107 000	84 500	140 000	2 140	1 740	9 750	1 460	8 150	3.0	12.3
105	14XZUX17	V ZX ./5XZ4	22.5	3 990	131 000	104 000	187 000	2 860	3 000	15 600	2 520	13 100	3.9	12.3
120	16×23×20	M14×2×24	30	3 960	158 000	125 000	198 000	3 600	3 000	16 300	2 510	13 700	5.0	16.9
120	10/23/20	IVI 14XZXZ4	30	3 300	193 000	153 000	264 000	4 850	5 150	26 300	4 350	22 100	6.5	10.9

⁵⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

A141 A142

 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

NSK Data Sheet for Linear Guides in Contaminated Environments

[Example] (Please copy) 1/1

Model: Graphite milling machine Location: Table axis

1. Operating Conditions

Operating Conditions	a) Ball or roller slide motion b) Rail motion		Manuella a Octobrila	a) Vertical (b) Horizo	ontal c) Wall
Stroke in Normal Use	200 [mm] (Please indicate operating pattern)		Mounting Orientation	d) Upside-down e) I	nclined f) Other
Lubricant	(a) Grease (Brand: NSK AS2 grease b) Oil (Brand:)	Lubricating Method	a) Automatic (cm ³ /	b) Manual min)
Operating Duration	2 years	mor	nths		

2. Linear Guide Environment (Accessories & Contamination)

Contaminant	Graphite powder	Contaminant Size	Particle diameter 20 - 60 µm
Contamination State	Falls evenly on the rail surface. (Please reference with photographs)		
Countermeasures (Complete after inspection for existing machines)	a) Telescopic cover b) Bellows e) Other ((Please supply drawings to demonstration)	c) Dust colled	

3. Linear Guide Dimensions

Model	VH25AN	Rail Length	540 mm	No. of Slides/Rail	2	Accuracy Grade	P6
Preload	<i>Z</i> 1	Max. Speed	20 mm/sec	Dust-Resistant Accessories	a) Double seal (b) Mour	nting hole caps c) Pro	tector d) Bellows
Remarks							

4. Durability Test

Durability test -Scheduled Not scheduled (Reason:

Linear Guide Use in Contaminated Environments

- Lagrangian The results for evaluation tests carried out by NSK for dust-resistant seals represent an example under set testing conditions (foreign matter and operating conditions). Seals may be unable to completely prevent contamination under actual conditions and life may be affected by the environment, Jubrication conditions, etc.
- Dust-resistant accessories (covers, lubrication, collectors, etc.) are required in addition to the seals to improve wear life in contaminated environments.
- Linear guide wear life is greatly impacted by foreign matter entering the slide, offset load from misalignment, and lubricating conditions. The customer is responsible for evaluating and checking final durability in the actual machine.

Company Name:	Date:		NSK Ltd. NSK Ltd. Sales Representative Sales Manager
Department:	Name:		
Address:	Tel:	Fax:	Sign Sign

NSK Ltd.

NSK Data Sheet for Linear Guides in Contaminated Environments

del:	Location:	

. O	perating	Conditions
	peraning	Comandons

-						
Operating Conditions	a) Ball or roller slide b) Rail motion	e motion		Managina Orientalian	a) Vertical b) Horiz	ontal c) Wall
Stroke in Normal Use	(Please indicate ope	[mm] perating pattern)		Mounting Orientation	d) Upside-down e)	Inclined f) Other
Lubricant	a) Grease (Brand b) Oil (Brand)	Lubricating Method	a) Automatic (cm ³ /	b) Manual min)
Operating Duration		years	mo	nths		

2. Linear Guide Environment (Accessories & Contamination)

Contaminant			Contaminant Size	Particle diameter -			
Contamination State	(Please reference with pho	otographs)					
Countermeasures	a) Telescopic cover	b) Bellows	c) Dust colle	ctor d) Dust-resistant lubricant			
(Complete after inspection for	e) Other ()				
existing machines)	(Please supply drawings to demonstrate dust countermeasures)						

3. Linear Guide Dimensions

Model	Rail Length	mm	No. of Slides/Rail		Accuracy Grade		
Preload	Max. Speed	mm/sec	Dust-Resistant Accessories	a) Double seal	b) Mounting hole caps c) Prot	tector	d) Bellows

Remarks			

4. Durability Test

Durability test	Scheduled
└ →	Not scheduled (Reason:

Linear Guide Use in Contaminated Environments

The results for evaluation tests carried out by NSK for dust-resistant seals represent an example under set testing conditions
(foreign matter and operating conditions). Seals may be unable to completely prevent contamination under actual conditions and
life may be affected by the environment, lubrication conditions, etc.

- □ Dust-resistant accessories (covers, lubrication, collectors, etc.) are required in addition to the seals to improve wear life in contaminated environments.
- ☐ Linear guide wear life is greatly impacted by foreign matter entering the slide, offset load from misalignment, and lubricating conditions. The customer is responsible for evaluating and checking final durability in the actual machine.

Company Name:	Date:		NSK Ltd. Sales Representative	NSK Ltd. Sales Manager
Department:	Name:			
Address:	Tel:	Fax:	Sign	Sign

A-4-1.3 NS Model

1. Features

(1) Improves rating life dramatically

Based on the LS model characterized by reliability and performance, a significant increase in durability has been attained. A new ball groove geometry is introduced utilizing NSK's state-of-the-art tribological and analytical technologies. Rating life is dramatically increased due to the optimized distribution of contact surface pressures.

Load rating capacity is 1.3 times higher than LS Model and life is doubled*1. These features enable you to design a machine with a longer life and downsize the machine. Thus, your design capability is greatly enhanced.

*1: Representative values of model.

(2) Ball circulation path with excellent highspeed property

By reexamining the design for the ball circulation path, we have attained smooth ball circulation and reduced noise level. This makes NS models more suited for high-speed applications compared with LS models.

(3) All mounting dimensions are the same as the LS and SS Models

The dimensions surrounding the mounting (assembled dimensions) such as mounting height, width, mounting hole diameter/pitch, etc. of the NS model are identical to the LS and SS models, allowing for easy replacement without design changes.

(4) High self-aligning capability (rolling direction)

Similar to a DF arrangement of angular contact bearings, NS models offer large self-aligning capability with the internal intersection of the contact lines of the balls and grooves reducing moment rigidity.

This increases the capacity to absorb errors in installation.

(5) High vertical load carrying capacity

The contact angle is set at 50 degrees, thus increasing load carrying capacity as well as rigidity in the vertical direction.

(6) High resistance against impact load

The bottom ball groove forms a Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2.

Vertical load is generally carried by the top rows at two contact points, but with this design, the bottom rows also carry load when a large impact load is applied vertically as shown in **Fig. 3**. This assures high resistance to impact load.

(7) High accuracy

As shown in **Fig. 4**, fixing the measuring rollers to the ball grooves is simple thanks to the Gothic arch groove. This makes for easy and accurate measuring of ball grooves.

(8) Easy to handle and designed with safety in mind.

Balls are retained in the retainer and do not fall out when the ball slide is withdrawn from the rail.

(9) Abundant variations and sizes

The NS model comes in several sizes and ball slide shapes, allowing for use in a variety of applications. The NS model also features long stainless steel rails as standard (maximum 3 500 mm)

(10) Fast delivery

A lineup of interchangeable rails and ball slides supports and facilitates fast delivery.

High precision grade and medium preload types are also available. (Special high-carbon steel products)

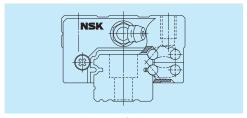


Fig. 1 NS Model

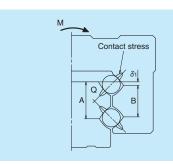


Fig. 2 Enlarged illustration of the offset Gothic arch groove

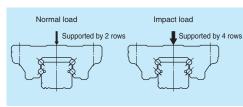


Fig. 3 When load is applied

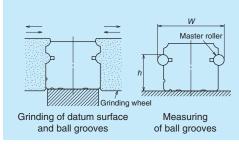


Fig. 4 Rail-grinding and measuring

2. Ball slide shape

Ball slide shape code	Shape/installation method	Type (Upper row, Rating: L Medium-load Standard	ower row, Ball slide length) High-load Long
AL CL		CL L ₁	AL L1
EM JM		JM L ₁	EM L ₁

A145

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1 Unit: µm

Normal grade PN								Oe. p
Over or less Precision P3 Precision P4 Precision P5 Precision P6 Precision P7 Precision P7 Precision P7 Precision P8 Precision P8 Precision P7 Precision P8 Precision P8 Precision P8 Precision P9 Pr		F	Preloaded ass	embly (not int	erchangeable	e)	Interchang	eable type
50 - 80 2 2 3 4 5 3 5 80 - 125 2 2 3 4 5 3 5 125 - 200 2 2 3.5 5 6 3.5 6 200 - 250 2 2.5 4.5 6 7.5 4.5 7.5 250 - 315 2 2.5 5 6.5 8.5 5 8.5 315 - 400 2 3 5.5 7 9.5 5.5 9.5 400 - 500 2 3 6 7.5 11 6 11 500 - 630 2 3.5 6.5 8.5 12 6.5 12 630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15	Rail length (mm)	Ultra						Normal grade PC
80 - 125 2 2 3 4 5 3 5 125 - 200 2 2 3.5 5 6 3.5 6 200 - 250 2 2.5 4.5 6 7.5 4.5 7.5 250 - 315 2 2.5 5 6.5 8.5 5 8.5 315 - 400 2 3 5.5 7 9.5 5.5 9.5 400 - 500 2 3 6 7.5 11 6 11 500 - 630 2 3.5 6.5 8.5 12 6.5 12 630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15	- 50	2	2	2	4	5	2	5
125 - 200 2 2 3.5 5 6 3.5 6 200 - 250 2 2.5 4.5 6 7.5 4.5 7.5 250 - 315 2 2.5 5 6.5 8.5 5 8.5 315 - 400 2 3 5.5 7 9.5 5.5 9.5 400 - 500 2 3 6 7.5 11 6 11 500 - 630 2 3.5 6.5 8.5 12 6.5 12 630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15	50 – 80	2	2	3	4	5	3	5
200 - 250 2 2.5 4.5 6 7.5 4.5 7.5 250 - 315 2 2.5 5 6.5 8.5 5 8.5 315 - 400 2 3 5.5 7 9.5 5.5 9.5 400 - 500 2 3 6 7.5 11 6 11 500 - 630 2 3.5 6.5 8.5 12 6.5 12 630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15	80 – 125	2	2	3	4	5	3	5
250 - 315 2 2.5 5 6.5 8.5 5 8.5 315 - 400 2 3 5.5 7 9.5 5.5 9.5 400 - 500 2 3 6 7.5 11 6 11 500 - 630 2 3.5 6.5 8.5 12 6.5 12 630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15	125 – 200	2	2	3.5	5	6	3.5	6
315 - 400 2 3 5.5 7 9.5 5.5 9.5 400 - 500 2 3 6 7.5 11 6 11 500 - 630 2 3.5 6.5 8.5 12 6.5 12 630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15	200 – 250	2	2.5	4.5	6	7.5	4.5	7.5
400 - 500 2 3 6 7.5 11 6 11 500 - 630 2 3.5 6.5 8.5 12 6.5 12 630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15	250 – 315	2	2.5	5	6.5	8.5	5	8.5
500 - 630 2 3.5 6.5 8.5 12 6.5 12 630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15	315 – 400	2	3	5.5	7	9.5	5.5	9.5
630 - 800 2 4 7 9.5 13 7 13 800 - 1 000 2.5 4.5 7.5 10 15 7.5 15	400 - 500	2	3	6	7.5	11	6	11
800 – 1 000 2.5 4.5 7.5 10 15 7.5 15	500 - 630	2	3.5	6.5	8.5	12	6.5	12
	630 - 800	2	4	7	9.5	13	7	13
1 000 – 1 250 3 5 8.5 12 16 8.5 16	800 – 1 000	2.5	4.5	7.5	10	15	7.5	15
	1 000 – 1 250	3	5	8.5	12	16	8.5	16
1 250 – 1 600 3.5 5.5 9.5 13 17 9.5 17	1 250 – 1 600	3.5	5.5	9.5	13	17	9.5	17
1 600 – 2 000 4 6.5 11 14 19 11 19	1 600 – 2 000	4	6.5	11	14	19	11	19
2 000 - 2 500 4.5 7.5 12 16 21 12 21	2 000 – 2 500	4.5	7.5	12	16	21	12	21
2 500 - 3 150 5.5 8.5 13 18 23 13 23	2 500 – 3 150	5.5	8.5	13	18	23	13	23
3 150 – 4 000 6 9.5 14 19 25 14 25	3 150 – 4 000	6	9.5	14	19	25	14	25

(2) Accuracy standard

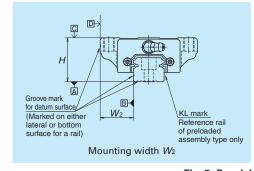
The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades, while the interchangeable type has High-precision PH and Normal PC grade.

· Tolerance of preloaded assembly

Table 2 Unit:							
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN		
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±8 3	±10 5	±20 7	±40 15	±80 25		
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±10 3	±15 7	±25 10	±50 20	±100 30		
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1, Fig. 5 and Fig. 6						

Tolerance of interchangeable type

Tolcianoc of interestangeable type		
	Table 3	Unit: µm
Model No. Characteristics	High precision grade PH	Normal grade PC
Mounting height H	±20	±20
Variation of mounting height H	15①	15①
	30②	30②
Mounting width W_2 or W_3	±30	±30
Variation of mounting width W_2 or W_3	20	25
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1 , F	g. 5 and Fig. 6


Notes: 1 Variation on the same rail 2 Variation on multiple rails

(3) Combinations of accuracy and preload

Table 4

	Table 4								
			Accuracy grade						
		Ultra precision	Super precision	High precision	Precision grade	Normal grade	High precision	Normal grade	
Wit	thout NSK K1-L lubrication unit	P3	P4	P5	P6	PN	PH	PC	
Wit	th NSK K1-L lubrication unit	L3	L4	L5	L6	LN	LH	LC	
With	NSK K1 for food and medical equipment	F3	F4	F5	F6	FN	FH	FC	
	Fine clearance			0	0				
	Z0					0			
	Slight preload								
	Z1					0	_		
	Medium preload				0				
oad	Z3								
Preload	Interchangeable type with fine clearance								
_	ZT	_				_	_		
	Interchangeable type with slight preload								
	ZZ	_							
	Interchangeable type with medium preload								
	ZH	_		_	_	_		0	

(4) Assembled accuracy

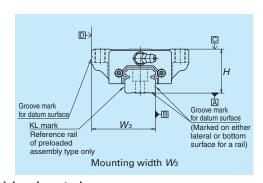
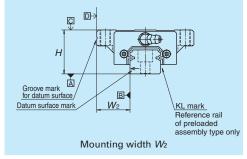
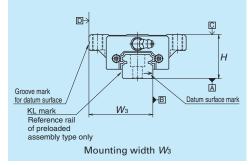




Fig. 5 Special high carbon steel

A148

Fig. 6 Stainless steel

(5) Preload and rigidity

We offer six levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with interchangeable Medium preload ZH, Fine clearance ZT and Slight preload ZZ.

Preload and rigidity of preloaded assembly

Table 5

	lable 5									
		Duala	L /NI\	Rigidity (N/μm)						
	Model No.	Prelo	ad (IN)	Vertical	direction	Lateral	direction			
	Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload			
		Z1	Z3	Z1	Z3	Z1	Z3			
	NS15 AL, EM	69	390	127	226	88	167			
bad	NS20 AL, EM	88	540	147	284	108	206			
High-load	NS25 AL, EM	147	880	206	370	147	275			
Hig	NS30 AL, EM	245	1 370	255	460	186	345			
	NS35 AL, EM	345	1 960	305	550	216	400			
ō	NS15 CL, JM	49	294	78	147	59	108			
-10 a	NS20 CL, JM	69	390	108	186	78	137			
шn	NS25 CL, JM	98	635	127	235	88	177			
Medium-load	NS30 CL, JM	147	980	147	275	108	206			
Σ	NS35 CL, JM	245	1 370	186	335	137	245			

Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15µm.

· Clearance and preload of interchangeable type

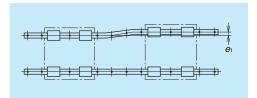
	Unit: µm		
Model No.	Fine clearance	Slight preload	Medium preload
	ZT	ZZ	ZH
NS15	–4 to 15	–4 to 0	−7 to −3
NS20	–4 to 15	-4 to 0	−7 to −3
NS25	–5 to 15	–5 to 0	−9 to −4
NS30	–5 to 15	–5 to 0	−9 to −4
NS35	–5 to 15	-6 to 0	−10 to −4

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

4. Maximum rail length

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length limitations of rails


U	n	it	:	r	Υ

						Unit: mm
Model	Size Material	15	20	25	30	35
NC	Special high carbon steel	2 920	3 960	3 960	4 000	4 000
NS	Stainless steel	1 800	3 500	3 500	3 500	3 500

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

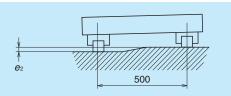
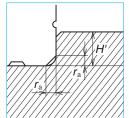
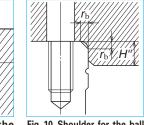


Fig. 7


Fig. 8


Table 8

Unit: um

						Оппс. рип	
Value	Preload			Model No.			
value	rieloau	NS15	NS20	NS25	NS30	NS35	
Permissible values for	Z0, ZT	20	22	30	35	40	
parallelism error of two rails e	Z1, ZZ	15	17	20	25	30	
parallelistii error or two ralis e ₁	Z3, ZH	12	15	15	20	25	
Permissible values for Z0, ZT 375 µm/500 mm							
height error of two rails e_2	Z1, ZZ, Z3, ZH	330 μm/500 mm					

(2) Shoulder height of the mounting surface and corner radius r

Model No. NS15 NS20 NS25 NS30 NS35

Fig. 9 Shoulder for the rail datum surface

Fig. 10 Shoulder for the ball slide datum surface

Table 9 Unit: mm Corner radius (maximum) Shoulder height H' 0.5 0.5 4 0.5 4.5 0.5 0.5 0.5 5 0.5 0.5 6 6 0.5 0.5

6. Maximum allowable speed

Table 10 indicates the maximum allowable speed for 10,000 km operation when using an NS model under normal conditions. However, the maximum allowable speed can be affected by accuracy of installation, operating temperature, external load, etc. If the operation is made exceeding the permissible distance and speed, please consult NSK.

Table 10 Maximum allowable speed Unit: m/min

Size	15	20	25	30	35
NS			300		

7. Lubrication components

Refer to pages A58 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 11 and Table 11 show grease fittings and tube fittings.

We provide lubrication accessories with an extended thread body length (L) for the addition of dust-resistant accessories such as NSK K1-L lubrication units, double seals and protectors. We provide suitable lubrication accesories for special dust-resistant requirements upon request.

NSK can also provide extended length threads for ease of replenishment.

Please contact NSK if stainless lubrication accessories are required.

(2) Mounting position of lubrication accessories

The standard position for grease fittings is at the end face of the ball slide, but we can mount them on the side of the end cap as an option. (Fig. 13)

Please consult NSK for the installation of grease or tube fittings to the ball slide body.

Using a piping unit with thread of $M6 \times 1$, requires a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

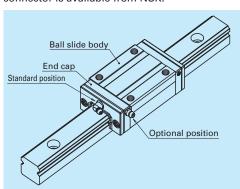


Fig. 12 Mounting position of lubrication accessories

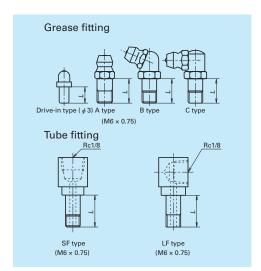


Fig. 11 Grease fitting and tube fitting

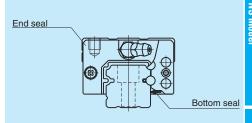
		ι	Jnit: mm	
Model	Dust-resistant		ension <i>L</i>	
No.		Grease fitting	Tube	fitting
INO.	specification	/Drive-in type	SF type	LF type
	Standard	5	-	-
NS15	With NSK K1-L	10	-	_
11212	Double seal	*	_	_
	Protector	*	-	_
	Standard	5	-	_
NS20	With NSK K1-L	10	-	_
11320	Double seal	8	-	_
	Protector	8	_	_
	Standard	5	6	6
NS25	With NSK K1-L	12	11	11
14323	Double seal	10	9	9
	Protector	10	9	9
	Standard	5	6	6
NS30	With NSK K1-L	14	12	13
14330	Double seal	12	10	11
	Protector	12	10	11
	Standard	5	6	6
NS35	With NSK K1-L	14	12	13
INOSS	Double seal	12	10	11
	Protector	12	10	11

*) A connector is required for this model. Please contact NSK.

8. Dust-resistant components

(1) Standard specification

Under normal applications, the NS model can be used without modification thanks to its dust resistance. As standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.



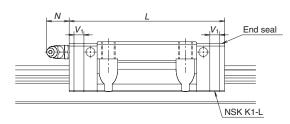

Fig. 13

Table 12 Seal friction per ball slide (maximum value)

					Unit: N
Model Size	15	20	25	30	35
NS	8	9	9	9	10

(2) NSK K1-L[™] and NSK K1[™] lubrication units for food processing machinery/ medical equipment

Table 13 shows linear guide dimensions when equipped with NSK K1-L lubrication units.

Table 13 Dimensions when equipped with NSK K1-L lubrication units Unit: mm

Model No.	Ball slide length	Ball slide shape code	Standard ball slide length	Ball slide length with two NSK K1-L units <i>L</i>	Thickness of single NSK K1-L unit V ₁	Protrusion of grease fitting N		
NS15	Standard	AL, EM	56.8	66.4	4.8	(5)		
11313	Short	CL, JM	40.4	50	4.0	(5)		
NS20	Standard	AL, EM	65.2	75.8	5.3	(14)		
11320	Short	CL, JM	47.2	57.8	5.5	(14)		
NS25	Standard	AL, EM	82	92.2	5.3	(14)		
11325	Short	CL, JM	59.6	70.2	5.5	(14)		
NS30	Standard	AL, EM	96.4	108.4	6	(14)		
11330	Short	CL, JM	67.4	79.4	0	(14)		
NS35	Standard	AL, EM	108	121	6.5	(14)		
INSSO	Short	CL, JM	77	90	0.5	(14)		

Notes: 1) When using NSK K1 for food processing machinery/medical equipment, refer to Table 14.

²⁾ Slide length when equipped with NSK K1-L = (standard ball slide length) + (V₁ thickness of single NSK K1-L unit) × (number of K1-L units).

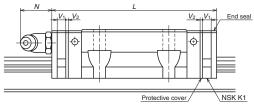


Table 14 Dimensions when equipped with NSK K1 for food processing machinery/medical equipment

	m	

Model No.	Ball slide length	ball slide slidpe		Standard ball Ball slide length with two NSK K1 installed L		Protective cover thickness V ₂	Protrusion of grease fitting N	
NS15	Standard	AL, EM	56.8	66.4	4.0	0.8	(5)	
1/15/15	Short	CL, JM	40.4	50	4.0	0.8	(5)	
NS20	Standard	AL, EM	65.2	75.8	4.5	0.8	(14)	
11520	Short	CL, JM	47.2	57.8	4.5	0.8		
NS25	Standard	AL, EM	81.6	92.2	4.5	0.8	(14)	
11325	Short	CL, JM	59.6	70.2	4.5	0.0	(14)	
NS30	Standard	AL, EM	96.4	108.4	5.0	1.0	(14)	
14530	Short	CL, JM	67.4	79.4	5.0	1.0	(14)	
NS35	Standard	AL, EM	108	121	5.5	1.0	(14)	
11333	Short	CL, JM	77	90	5.5	1.0	(14)	

Note: Slide length when equipped with NSK K1 for food processing machinery/medical equipment = (standard ball slide length) + $(V, \text{thickness of single NSK K1 unit}) \times (\text{number of K1 unit}) + (V, \text{thickness of the protective cover}) \times 2$.

(3) Double seal

Use a double seal set as shown in **Table 14** when installing an extra seal to completed standard products. (**Fig. 14**)

When installing a grease fitting after the installation of double seals, a connector as shown in Fig.14 is required.

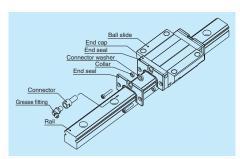


Fig. 14 Double seal

(4) Protector

Use a protector set as shown in **Table 15** when installing a protector to completed standard products. (**Fig.15**)

When installing a grease fitting after the installation of protectors, a connector as shown in **Fig.15** is required.

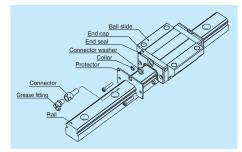


Fig. 15 Protector

Table 15 Double-seal set

Model No.	Refere	Increased thickness \	
Model No.	Without connector	With connector	(mm)
NS15	LS15WS-01	*	2.8
NS20	LS20WS-01	LS20WSC-01	2.5
NS25	LS25WS-01	LS25WSC-01	2.8
NS30	LS30WS-01	LS30WSC-01	3.6
NS35	LS35WS-01	LS35WSC-01	3.6

Table 16 Protector set

Model No.	Referer	nce No. With connector	Increased thickness V ₄ (mm)
NS15	LS15PT-01	*	3
NS20	LS20PT-01	LS20PTC-01	2.7
NS25	LS25PT-01	LS25PTC-01	3.2
NS30	LS30PT-01	LS30PTC-01	4.2
NS35	LS35PT-01	LS35PTC-01	4.2

*) For installation of a connector to a drive-in grease fitting, contact NSK.

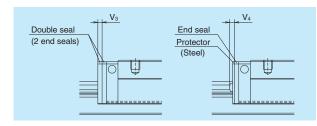


Fig. 16

(5) Caps to plug the rail mounting bolt hole

Table 17 Caps to plug rail bolt hole

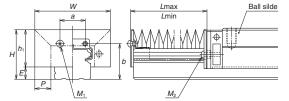
Model No.	Bolt to	Сар	Quantity
Wodel IVO.	secure rail	reference No.	/case
NS15	M3	LG-CAP/M3	20
NS15	M4	LG-CAP/M4	20
NS20	M5	LG-CAP/M5	20
NS25, NS30	M6	LG-CAP/M6	20
NS35	M8	LG-CAP/M8	20

A153

(6) Bellows

- · A bellows fastener kit, which includes one bellows faster, two M₁ set screws, two M₂ set screws, and two collars for M2 set screws as shown in Fig. 7.7 on page A69, is supplied with bellows for the ends.
- · Middle bellows are supplied with four set screws and four collars.
- · Use a bellows fastener kit as shown in Table 19, when installing bellows to completed standard products.
- · When NSK K1/K1-L units, double seals, or protectors are used, the set screws of bellows fastener kits cannot be used. Please contact NSK for details.
- · Bellows fasteners are available only for horizontal mounting positions; other mounting

positions require a sliding plate (see Fig. 7.10 on page A70).


To fix the bellows to the rail, make tap holes on the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes with a machine screw. NSK prepares tap holes on the rail end surface

when bellows are ordered with a linear guide.

Table 19 Bellows fastner kit reference No.

Model No.	Kit reference No.
NS15	LS15FS-01
NS20	LS20FS-01
NS25	LS25FS-01
NS30	LS30FS-01
NS35	LS35FS-01

Dimension tables for bellows NS Model

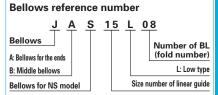


Fig. 17 Dimensions of bellows

Table 20 Dimensions of bellows

Unit: mm

Model No.	Н	h ₁	Ε	W	Р	а	b	BL minimum length	<i>M</i> ₁Tap x depth	M₂Tap x depth
JAS15L	23.5	18.9	4.6	43	10	8	16.5	17 M3×5 N		M3 × 14
JAS20L	27	21	6	48	10	13	19.7	17	M3 × 5	M2.5 × 14
JAS25L	32	25	7	51	10	15	23.2	17	M3 × 5	M3 × 18
JAS30L	41	32	9	66	15	16	29	17	M4 × 6	M4 × 19
JAS35L	47	36.5	10.5	72	15	22	33.5	17	M4 × 6	M4 × 22

Table 21 Numbers of folds (BL) and lengths of bellows

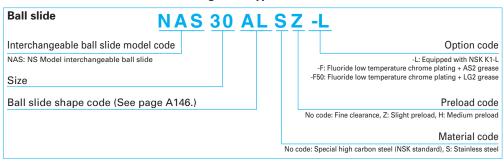
Unit: mm

Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
Wiodel No.	<u>L</u> min	34	68	102	136	170	204	238	272	306	340
JAS15L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JASTSL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAS20L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JASZUL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAS25L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JASZSL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
14 0201	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAS30L	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAS35L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JASSE	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on both sides, then by dividing the sum by 2.

A155

9. Reference number


A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for interchangeable type

N1S 30 1200 I	LCN-** PCZ
Interchangeable rail model code N1S: NS Model interchangeable rail Size	Preload code (See page A148.) T: Fine clearance. Z: Slight preload (common rail for slight or medium preload) Accuracy code
Rail length (mm)	PH: High precision grade interchangeable type PC: Normal grade interchangeable type Design serial number
Rail shape code	Added to the reference number.
L: NS15 with mounting holes for M3, NS20 to NS35 standard T: NS15 with mounting holes for M4	*Butting rail specification
Material/surface treatment code (See Table 21.) N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

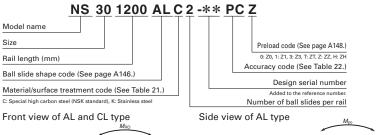
When interchangeable rails and slides are assembled, reference number coding is the same as that for preloaded assemblies. However, only preload codes T (fine clearance), Z (slight preload), and H (medium preload) may be used (Refer to Page A148.)

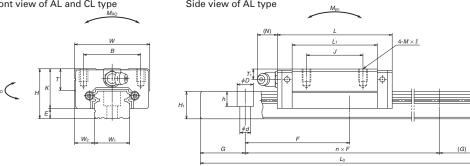
Click!Speedy™ NSK Linear Guide Quick Delivery System uses a new numbering system. For details, please refer to the Click!Speedy general catalog CAT. No. E3191.

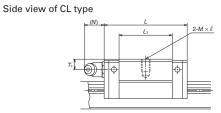
Table 22 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

Note: High-precision grade and medium preload of interchangeable types are not available in stainless steel.

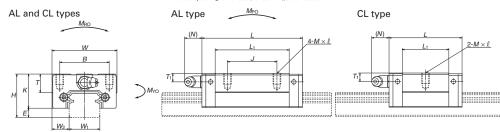

Table 23 Accuracy code


Accuracy	Standard (Without NSK K1-L)	With NSK K1-L	With NSK K1 for food and medical equipment
Ultra precision grade	P3	L3	F3
Super precision grade	P4	L4	F4
High precision grade	P5	L5	F5
Precision grade	P6	L6	F6
Normal grade	PN	LN	FN
High precision grade (interchangeable type)	PH	LH	FH
Normal grade (interchangeable type)	PC	LC	FC

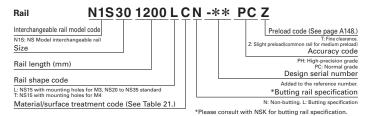

Note: Refer to page A58 for details on NSK K1-L lubrication units and to page A73 for details on NSK K1 lubrication units for food processing machinery/medical equipment.

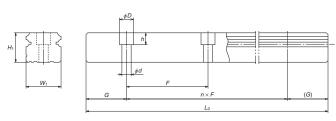
A157 A158

10. Dimensions NS-CL (Medium-load / Short) **NS-AL** (High-load / Standard)



	А	ssemb	ly		Ball slide											
Model No.	Height			Width	Length	gth Mounting hole				Grease fitting			g	Width	Height	
Model No.																
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	T	Hole size	T_1	Ν	W_1	H_1
NS15CL NS15AL	24	4.6	9.5	34	40.4 56.8	26	— 26	M4×0.7×6	23.6 40	19.4	10	\$ 3	6	3	15	12.5
NS20CL NS20AL	28	6	11	42	47.2 65.2	32	— 32	M5×0.8×7	30 48	22	12	M6×0.75	5.5	11	20	15.5
NS25CL NS25AL	33	7	12.5	48	59.6 81.6	35	— 35	M6×1×9	38 60	26	12	M6×0.75	7	11	23	18
NS30CL NS30AL	42	9	16	60	67.4 96.4	40	— 40	M8×1.25×12	42 71	33	13	M6×0.75	8	11	28	23
NS35CL NS35AL	48	10.5	18	70	77 108	50	— 50	M8×1.25×12	49 80	37.5	14	M6×0.75	8.5	11	34	27.5


Notes: 1) The external appearance of stainless steel ball slides differs slightly from that of carbon steel ball slides.


Reference number for ball slide of interchangeable type

NAS 30 AL S Z-L Ball slide Interchangeable ball slide model code
NAS: NS Model interchangeable ball slide Option code -F: Fluoride low temperature chrome plating + AS2 grease -F50: Fluoride low temperature chrome plating + LG2 grease Ball slide shape code (See page A146.) Preload code Material code No code: Special high carbon steel (NSK standard), S; Stainless stee

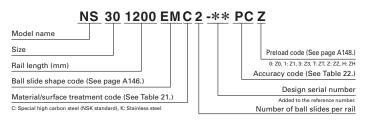
Reference number for rail of interchangeable type

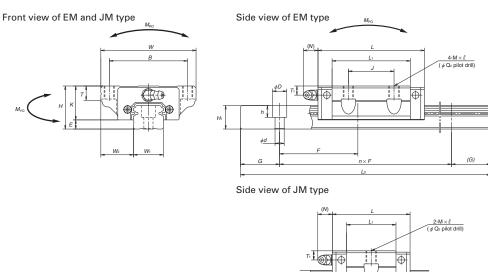
Unit: mm

Rail						Basi	c load ra	tings				We	ight
Pitch	Mounting	G	Max. length	2)Dyn	²⁾ Dynamic Static Static		Static	momen	t (N·m)		Ball	Rail	
	bolt hole		L _{Omax} .	[50km]	[100km]	C 0	MRO	М	M _{PO}		M _{Y0}		
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	*4.5×7.5×5.3 3.5×6×4.5	20	2 920 (1 800)	7 250 11 200	5 750 8 850	9 100 16 900	45.5 84.5	24.5 77	196 470	20.5 64.5	165 395	0.14 0.20	1.4
60	6×9.5×8.5	20	3 960 (3 500)	10 600 15 600	8 400 12 400	13 400 23 500	91.5 160	46.5 133	330 755	39 111	279 630	0.19 0.28	2.3
60	7×11×9	20	3 960 (3 500)	17 700 26 100	14 000 20 700	20 800 36 500	164 286	91 258	655 1 470	76 217	550 1 230	0.34 0.51	3.1
80	7×11×9	20	4 000 (3 500)	24 700 38 000	19 600 30 000	29 600 55 000	282 520	139 435	1 080 2 650	116 365	905	0.58 0.85	4.8
80	9×14×12	20	4 000 (3 500)	34 500 52 500	27 300 42 000	40 000 74 500	465 865	220 695	1 670 4 000	185 580	1 400 3 350	0.86 1.3	7.0

²⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

C_{so}; the basic dynamic load rating for 50 km rated fatigue life C_{no} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.


³⁾ High-precision grade and medium preload interchangeable types are available for special high carbon steel products.


^{*} Standard mounting hole of NS15 rail is for M4 bolts (Hole size: 4.5 × 7.5 × 5.3).

If you require mounting hole for M3 bolts (Hole size: $3.5 \times 6 \times 4.5$), please specify when ordering.

DOIM CM

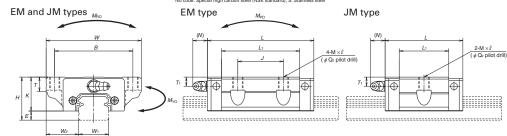
NS-JM (Medium-load / Short) NS-EM (High-load / Standard)

	A:	ssemb	oly		Ball slide												
Model No.	Height			Width	Length			Mounting hole					Grease	fittin	g	Width	Height
1410401140.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	Q_2	L ₁	K	T	Hole size	T ₁	N	W ₁	H ₁
NS15JM NS15EM	24	4.6	18.5	52	40.4 56.8	41	— 26	M5×0.8×7	4.4	23.6 40	19.4	8	ø 3	6	3	15	12.5
NS20JM NS20EM	28	6	19.5	59	47.2 65.2	49	— 32	M6×1×9 (M6×1×9.5)	5.3	30 48	22	10	M6×0.75	5.5	11	20	15.5
NS25JM NS25EM		7	25	73	59.6 81.6	60	— 35	M8×1.25×10 (M8×1.25×11.5)	6.8	38 60	26	11 (12)	M6×0.75	7	11	23	18
NS30JM NS30EM	42	9	31	90	67.4 96.4	72	— 40	N 110 1 E 10	8.6	112	33	11 (15)	M6×0.75	8	11	28	23
NS35JM NS35EM		10.5	33	100	77 108	82	— 50	M10×1.5×13 (M10×1.5×14.5)	8.6	49 80	37.5	12 (15)	M6×0.75	8.5	11	34	27.5

Notes: 1) The external appearance of stainless steel ball slides differs slightly from that of carbon steel ball slides.

Reference number for ball slide of interchangeable type

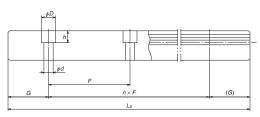
Ball slide NAS 30 EM S Z -L


Interchangeable ball slide model code
NAS: NS Model interchangeable ball slide of the slide Size

Ball slide shape code (See page A146.)

Option code

4: Equipped with NSK N14: Fluoride low temperature chrome plating + 162 grease
-55c Fluoride low temperature chrome plating + 162 grease
-Free clearance, Z: Slight preload, H: Medium preload
No code: Fine clearance, Z: Slight preload, H: Medium preload


No code: Special high carbon steel (NSK standards). S. Stalinless steel

Reference number for rail of interchangeable type

N1S301200LCN-** PCZ Rail Interchangeable rail model code Preload code (See page A148.) N1S: NS Model interchangeable rai T: Fine clearance Z: Slight preload(common rail for medium preload Accuracy code PH: High-precision grade PC: Normal grade Rail length (mm) Design serial number Rail shape code Added to the reference number. L: NS15 with mounting holes for M3, NS20 to NS35 standard T: NS15 with mounting holes for M4 *Butting rail specification Material/surface treatment code (See Table 21.) N: Non-butting. L: Butting specification *Please consult with NSK for butting rail specification

H₁

Unit: mm

Rail						Basic load ratings					We	ight	
Pitch	Mounting	G	Max. length	3)Dyn	³ Dynamic Static Static moment (N·m)					Ball	Rail		
	bolt hole		L _{Omax} .	[50km]	[100km]	C 0	M _{RO}	М	MPO		M _{YO}		
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	*4.5×7.5×5.3 3.5×6×4.5	20	2 920 (1 800)	7 250 11 200	5 750 8 850	9 100 16 900	45.5 84.5	24.5 77	196 470	20.5 64.5	165 395	0.17 0.26	1.4
60	6×9.5×8.5	20	3 960 (3 500)	10 600 15 600	8 400 12 400	13 400 23 500	91.5 160	46.5 133	330 755	39 111	279 630	0.24 0.35	2.3
60	7×11×9	20	3 960 (3 500)	17 700 26 100	14 000 20 700	20 800 36 500	164 286	91 258	655 1 470	76 217	550 1 230	0.44 0.66	3.1
80	7×11×9	20	4 000 (3 500)	24 700 38 000	19 600 30 000	29 600 55 000	282 520	139 435	1 080 2 650	116 365	905 2 220	0.76 1.2	4.8
80	9×14×12	20	4 000 (3 500)	34 500 52 500	27 300 42 000	40 000 74 500	465 865	220 695	1 670 4 000	185 580	1 400 3 350	1.2 1.7	7

³⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

²⁾ Parenthesized dimensions are for items made of stainless steel

 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{too} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

⁴⁾ High-precision grade and medium preload interchangeable types are available for special high carbon steel products.

^{*} Standard mounting hole of NS15 rail is for M4 bolts (Hole size: 4.5 × 7.5 × 5.3).

s Standard mounting hole of NS15 rall is for M4 bolts (Hole size: $4.5 \times 7.5 \times 5.3$).

If you require mounting hole for M3 bolts (Hole size: $3.5 \times 6 \times 4.5$), please specify when ordering.

21

23

25

A-4-1.4 LW Model

1. Features

(1) Ideal for use of single rail

Thanks to the wide rail, rigidity and load carrying capacity are high against moment load in the rolling direction. This makes the LW Model ideal for a single rail, compact linear guideway system.

(2) High vertical load carrying capacity

The contact angle is set at 50 degrees, thus increasing load carrying capacity as well as rigidity in the vertical direction.

(3) High resistance against impact load

Same as NH and NS models the offset Gothic arch grooves support a large load, such as an impact, by four rows.

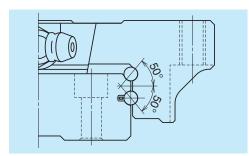


Fig. 1 Balls in contact

(4) High accuracy

Fixing master rollers to ball grooves is easy thanks to the Gothic arch groove. This makes for easy and accurate measuring of ball

(5) Easy to handle, and designed with safety in mind.

Balls are retained in the retainer and do not fall out when a ball slide is withdrawn from the rail.

(6) Fast delivery

A lineup of interchangeable rails and ball slides supports and facilitates fast delivery.

2. Ball slide shape

Ball slide shape code	Shape / installation method	Туре
EL		EL

3. Accuracy and preload

(1) Running parallelism of ball slide

(-,							
		Table 1		Unit: µm	LW M		
Accuracy grade				Interchangeable type	Model		
Rail length (mm) over or less	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC			
- 50	2	4	5	5			
50 – 80	3	4	5	5			
80 – 125	3	4	5	5			
125 – 200	3.5	5	6	6			
200 – 250	4.5	6	7.5	7.5			
250 – 315	5	6.5	8.5	8.5			
315 – 400	5.5	7	9.5	9.5			
400 - 500	6	7.5	11	11			
500 - 630	6.5	8.5	12	12			
630 - 800	7	9.5	13	13			
800 – 1 000	7.5	10	15	15			
1 000 – 1 250	8.5	12	16	16			
1 250 – 1 600	9.5	13	17	17			
1 600 – 2 000	11	14	19	19			

(2) Accuracy standard

2 000 - 2 500

2 500 - 3 150

3 150 - 4 000

The preloaded assembly has three accuracy grades; High precision P5, Precision P6, and Normal PN grades, while the interchangeable type has Normal PC grade only.

16

18

19

21

23

25

· Tolerance of preloaded assembly type

Та	Table 2						
Accuracy grade Characteristics	High precision P5	Precision grade P6	Normal grade PN				
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±20 7	±40 15	±80 25				
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±25 10	±50 20	±100 30				
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2						

Tolerance of interchangeable type: Normal grade PC

12

13

14

Т	able 3 Unit: μm
Model No. Characteristics	LW17, 21, 27, 35, 50
Mounting height H	±20
Variation of mounting height H	15①
	30②
Mounting width W_2 or W_3	±30
Variation of mounting width W_2 or W_3	25
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1 and Fig. 2

Note: 1 Variation on the same rail

2 Variation on multiple rails

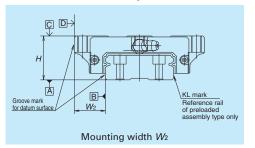

(3) Combination of accuracy and preload

Table 4

	Table 4								
	_		Accurac	cy grade					
		High precision	Precision grade	Normal grade	Normal grade				
Wi	thout NSK K1 lubrication unit	P5	P6	PN	PC				
Wi	th NSK K1 lubrication unit	K5	K6	KN	KC				
With NSK K1 for food and medical equipment		F5	F6	FN	FC				
	Fine clearance Z0	0	0	0	_				
_	Slight preload Z1	0	0	0	_				
Preload	Medium preload Z3	0	0	_	_				
ш.	Interchangeable type with fine clearance ZT	_	_	_	0				
	Interchangeable type with slight preload ZZ	_	_	_	0				

Note: Z3 medium preload is only applicable to models of LW35 and LW50.

(4) Assembled accuracy

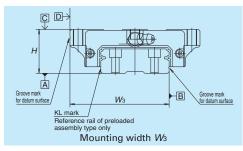


Fig. 2

(5) Preload and rigidity

We offer five levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with Interchangeable type Fine clearance ZT and Slight preload ZZ. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

Table 5

Tubic 0									
	Duala	L (NI)	Rigidity (N/μm)						
Model No.	Preload (N)		Vertical	direction	Lateral direction				
Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload			
	Z1	Z3	Z1	Z3	Z1	Z3			
LW17 EL	0 – 245	-	156	-	112	-			
LW21 EL	0 – 294	-	181	-	130	_			
LW27 EL	0 – 390	-	226	-	167	_			
LW35 EL	0 – 490	785	295	440	213	315			
LW50 EL	0 – 590	1 470	345	600	246	425			

Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15µm.

· Clearance and preload of interchangeable type

	Table 6	Unit: µm			
Madal Na	Fine clearance	Slight preload			
Model No.	ZT	ZZ			
LW17	−3 to 15	–3.5 to 0			
LW21	–3 to 15	–3.5 to 0			
LW27	–4 to 15	-4 to 0			
LW35	–5 to 15	–5 to 0			
LW50	–5 to 15	–7 to 0			

Note: Minus sign denotes elastic deformation of balls representing.

5. Installation

(1) Permissible values of mounting error

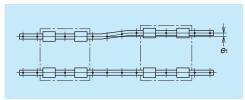


Fig. 3

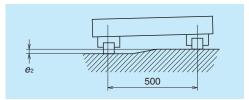
4. Maximum rail length

· Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length limitations of rails

-	g				Unit	: mn
Model	Size					
Wiodei	Material	17	21	27	35	50
LW	Special high carbon steel	1 000	1 600	2 000	2 000	2 000

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.



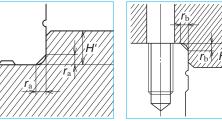

Fig. 4

Table 8

- 1	Init:	um

						Offit. piri		
Value	Preload			Model No.				
value	i ieloau	LW17	LW21	LW27	LW35	LW50		
Permissible values for	Z0, ZT	20	20	25	38	50		
parallelism error of two rails e_1	Z1, ZZ	9	9	13	34			
Permissible values for	Z0, ZT	100 μm/500 mm						
height error of two rails e_2	Z1, ZZ	45 μm/500 mm						

(2) Shoulder height of the mounting surface and corner radius r

rail datum surface

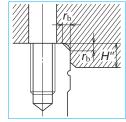


Fig. 5 Shoulder for the Fig. 6 Shoulder for the ball slide datum surface

			Table 9		Unit: mm
Model No.		Corner radius	s (maximum)	Shoulde	r height
		$r_{\rm a}$	$r_{\rm b}$	H'	H"
	LW17	0.3	0.3	2.2	4
	LW21	0.3	0.3	2.5	5
	LW27	0.5	0.5	3.5	5
	LW35	0.5	0.8	3.5	5
	LW50	0.8	0.8	4	6

Refer to pages A58 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 7 and Table 10 show grease fittings and tube fittings.

We provide Iubrication accessories with an extended thread body length (*L*) for the addition of dust-resistant accessories such as NSK K1 Iubrication units, double seals and protectors.

We provide suitable lubrication accesories for special dust-resistant requirements upon request.

NSK can also provide extended length threads for ease of replenishment.

Please contact NSK if stainless lubrication accessories are required.

Table 10 Unit: mm							
Model	Dust-resistant		ension <i>L</i>				
No.	specification	Grease fitting	Tube fitting				
INO.	specification	/Drive-in type	SF type	LF type			
	Standard	5	_	_			
LW17	With NSK K1	10	_				
LVV I /	Double seal	*	_	_			
	Protector	*	_	_			
	Standard	5	_	_			
LW21	With NSK K1	12	_	_			
LVVZI	Double seal	10	_	-			
	Protector	10	_	_			
	Standard	5	5	5			
LW27	With NSK K1	12	12	12			
LVV2/	Double seal	10	9	9			
	Protector	10	9	9			
	Standard	5	6	6			
LW35	With NSK K1	14	14	13			
LVV35	Double seal	10	10	9			
	Protector	10	10	9			
	Standard	8	13.5	17			
LW50	With NSK K1	18	18	19			
LVV5U	Double seal	14	16	17			
*	Protector	14	13.5	17			

^{*)} A connector is required for the grease fitting. Please contact NSK.

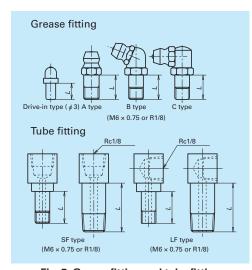


Fig. 7 Grease fitting and tube fitting

(2) Mounting position of lubrication accessories

The standard position for grease fittings is at the end face of the ball slide, but we can mount them on the side of the end cap for LW27, 35, and 50 as an option. (Fig. 8)

Please consult NSK for the installation of grease or tube fittings to the ball slide body.

Using a piping unit with thread of M6 \times 1, requires a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

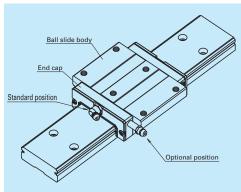


Fig. 8 Mounting position of lubrication accessories

A167 A168

7. Dust-resistant components

(1) Standard Specification

Under normal applications, the LW model can be used without modification thanks to its dust resistance. As standard equipment, the model has an end seal on both ends and bottom seals at the bottom.

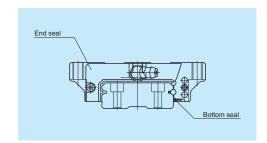


Fig. 9

Table 11 Seal friction per ball slide (maximum value) $_{Unit:\ N}$

					O I I I I
Model Size	17	21	27	35	50
LW	6	8	12	16	20

(2) NSK K1[™] lubrication unit

Table 12 shows the dimensions of linear guides equipped with NSK K1 lubrication units.

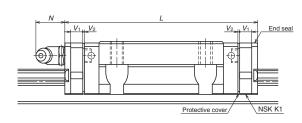


Table 12 Dimensions when equipped with NSK K1 lubrication units

nit:	

Model No.	Ball slide length	Ball slide shape code	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N
LW17	Standard	EL	51.4	61.6	4.5	0.6	(5)
LW21	Standard	EL	58.8	71.4	5.5	0.8	(13)
LW27	Standard	EL	74	86.6	5.5	0.8	(13)
LW35	Standard	EL	108	123	6.5	1.0	(13)
LW50	Standard	EL	140.6	155.6	6.5	1.0	(14)

Notes: 1) NSK K1 for food processing machinery/medical equipment are available for models LW17 to LW35.

2) Slide length when equipped with NSK K1 = (standard ball slide length) + (V_1 thickness of single K1 unit) × (number of K1 units) + (V_2 thickness of the protective cover) × 2.

(3) Double seal

Use a double seal set as shown in **Table 13** when installing an extra seal to completed standard products. (**Fig. 10**)

When installing a grease fitting after the installation of double seals, a connector as shown in Fig.10 is required.

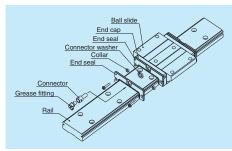


Fig. 10 Double seal

Table 13 Double-seal set

Model No.	Referer Without connector	Increased thickness V ₃ (mm)	
LW17	LW17WS-01	*	2.6
LW21	LW21WS-01	LW21WSC-01	2.8
LW27	LW27WS-01	LW27WSC-01	2.5
LW35	LW35WS-01	LW35WSC-01	3
LW50	LW50WS-01	LW50WSC-01	3.6

^{*)} For installation of a connector to a drive-in grease fitting, contact NSK.

(4) Protector

Use a protector set as shown in **Table 14** when installing a protector to completed standard products. (**Fig.11**)

When installing a grease fitting after the installation of protectors, a connector as shown in **Fig.11** is required.

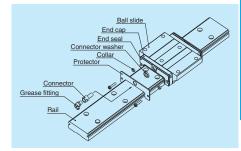


Fig. 11 Protector seal

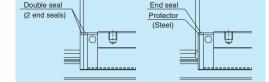
Table 14 Protector set

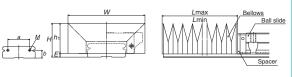
Model No.	Referer	Increased thickness V ₄	
wiodei ivo.	Without connector	With connector	(mm)
LW17	LW17PT-01	*	3.2
LW21	LW21PT-01	LW21PTC-01	3.2
LW27	LW27PT-01	LW27PTC-01	2.9
LW35	LW35PT-01	LW35PTC-01	3.6
LW50	LW50PT-01	LW50PTC-01	4.2

^{*)} For installation of a connector to a drive-in grease fitting, contact NSK.

(5) Caps to plug the rail mounting bolt hole Table 15 Caps to plug rail bolt hole

Model No.	Bolt to	Cap	Quantity
	secure rail	reference No.	/case
LW17, LW21, LW27	M4	LG-CAP/M4	20
LW35	M6	LG-CAP/M6	20
LW50	M8	LG-CAP/M8	20




Fig. 12

A169

(6) Bellows

· Make tap holes to the rail end face to fix the bellows mounting plate. NSK processes tap holes to the rail end face when ordered with a linear guide.

Dimension tables for bellows LW model

Bellows reference number

J A W 21 L 08

Bellows

A: Bellows for the ends
B: Middle bellows

Bellows for LW model

Bellows for LW model

Fig. 13

Table 16 Dimensions of bellows

- 1	-	:4.	m	

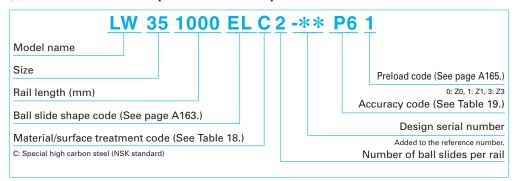
Model No.	Н	h ₁	Ε	W	Р	а	b	BL minimum length	Tap (<i>M</i>) x depth	
JAW17N	25.5	23	2.5	68	15	22	6	17	M3 × 6	
JAW21N	29	26	3	75	17	26	7	17	M3 × 6	
JAW27N	37	33	4	85	20	28	10	17	M3 × 6	
JAW35L	34	30	4	100	14	48	12	17	M4 × 8	
JAW35N	41	37	4	115	20	40	12	17	IVI4 X O	
JAW50L	46.5	42	4.5	135	20	70	14	17	M4×8	
JAW50N	56.5	52	4.5	160	30	70	14	17	IVI4 ∧ 0	

Table 17 Numbers of folds (BL) and length of bellows

Unit: mm

Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
Model No.	Lmin	34	68	102	136	170	204	238	272	306	340
JAW17N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAVVI/IV	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAW21N	Stroke	204	408	612	816	1 020	1 224	1 428	1 632	1 836	2 040
JAVVZIIV	Lmax	238	476	714	952	1 190	1 428	1 666	1 904	2 142	2 380
JAW27N	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAVVZ/IN	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAW35L	Stroke	162	324	486	648	810	972	1 134	1 296	1 458	1 620
JAVVSSL	Lmax	196	392	588	784	980	1 176	1 372	1 568	1 764	1 960
JAW35N	Stroke	218	436	654	872	1 090	1 308	1 526	1 744	1 962	2 180
JAVVJJIV	Lmax	252	504	756	1 008	1 260	1 512	1 764	2 016	2 268	2 520
JAW50L	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAVVOUL	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
IV/V/EUVI	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
JAW50N	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on both sides, then by dividing the sum by 2.


A171 A172

8. Reference number

A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for interchangeable type

Rail	<u> 1W35 1000 L C</u>	<u>N -** PC Z</u>
Interchangeable rail model c	ode	Preload code (See page A165.)
L1W: LW Model interchangeable Size	e rail	T: Fine clearance. Z: Slight preload Accuracy code: PC
Rail length (mm)		PC: Only normal grade is available. Design serial number
Rail shape code: L		Added to the reference number.
L: Standard		*Butting rail specification
Material/surface treatn	nent code (See Table 18.)	N: Non-butting. L: Butting specification
		*Please consult with NSK for butting rail specification.

When interchangeable rails and slides are assembled, reference number coding is the same as that for preloaded assemblies. However, only preload codes T (fine clearance) and Z (slight preload) may be used (Refer to Page A165.)

Click!Speedy™ NSK Linear Guide Quick Delivery System uses a new numbering system. For details, please refer to the Click!Speedy general catalog CAT. No. E3191.

Table 18 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Table 19 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (interchangeable type)	PC	KC	FC

Note: Refer to pages A58 and A73 for details on NSK K1 lubrication units.

A173 A174

(9) Dimensions LW-EL

LW 35 1000 EL C2 -** PC Z

Model name

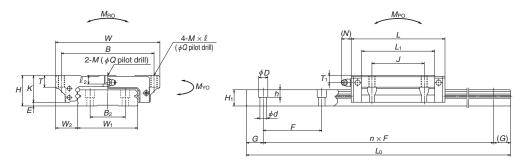
Size

Preload code (See page A165.)

0: 20, 1: 21, 3: 23, 1: 27, 2: 22

Accuracy code (See Table 19.)

Design serial number


Added to the reference number.

Number of ball slides per rail

Number of ball slides per rail

Front view

	Assembly Ball slide																	
Model No.	Height			Width	Length		Mounting hole							Grease	fittin	g	Width	Height
Model No.																		
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L2	Q	L_1	K	T	Hole size	T_1	Ν	W_1	H_1
LW17EL	17	2.5	13.5	60	51.4	53	26	M4×0.7×6	3.2	3.3	35	14.5	6	φ3	4	3	33	8.7
LW21EL	21	3	15.5	68	58.8	60	29	M5×0.8×8	3.7	4.4	41	18	8	M6×0.75	4.5	11	37	10.5
LW27EL	27	4	19	80	74	70	40	M6×1×10	6	5.3	56	23	10	M6×0.75	6	11	42	15
LW35EL	35	4	25.5	120	108	107	60	M8×1.25×14	9	6.8	84	31	14	M6×0.75	8	11	69	19
LW50EL	50	4.5	36	162	140.6	144	80	M10×1.5×18	14	8.6	108	45.5	18	Rc1/8	14	14	90	24

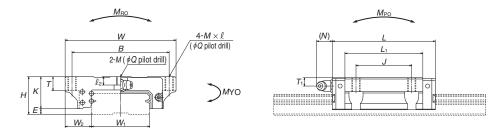
Reference number for ball slide of interchangeable type

LAW 35 EL Z -K

Interchangeable ball slide model code

LAW: LW Model interchangeable ball slide

Ball slide shape code (See page A163.)

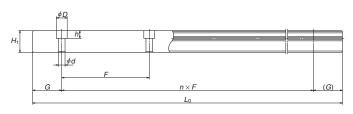

Option code

-K: Equipped with NSK K1

-F: Fluoride low temperature chrome plating + AS2 grease
-F50: Fluoride low temperature chrome plating + L02 grease

Preload code

No code: Fine clearance, Z: Slight preload



Reference number for rail of interchangeable type

Rail	L1W35 1000 L	<u>C N -×</u>	** <u>PC</u> <u>Z</u>
Interchangeable ra	ail model code		Preload code (See page A165.)
L1W: LW Model inte	rchangeable rail		T: Fine clearance. Z: Slight preload
Size			Accuracy code: PC
Rail length (m	m)		PC: Only normal grade is available. Design serial number
Rail shape cod	le: L		Added to the reference number.
L: Standard	,		*Butting rail specification
Material/surfac	ce treatment code (See Table 18.)		N: Non-butting. L: Butting specification

*Please consult with NSK for butting rail specification.

Unit: mm

F	Rail						Basic	load ra	tings				Weight	
	Pitch	Mounting	G	Max. length	1) Dy	1) Dynamic S			Static	momen	t (N·m)		Ball	Rail
		bolt hole		L_{0max} .	[50km]	[100km]	C 0	M_{RO}	М	PO	M _{YO}		slide	
B_2	F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
18	40	4.5×7.5×5.3	15	1 000	5 600	4 450	11 300	135	44	288	37	242	0.2	2.1
22	50	4.5×7.5×5.3	15	1 600	6 450	5 150	13 900	185	65.5	400	55	335	0.3	2.9
24	60	4.5×7.5×5.3	20	2 000	12 800	10 200	26 900	400	171	970	143	815	0.5	4.7
40	80	7×11×9	20	2 000	33 000	26 400	66 500	1 690	645	3 550	545	2 990	1.5	9.6
60	80	9×14×12	20	2 000	61 500	48 500	117 000	3 900	1 530	8 200	1 280	6 900	4.0	15.8

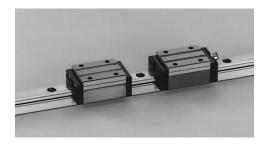
Note: Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

 C_{so} , the basic dynamic load rating for 50 km rated fatigue life C_{too} , the basic dynamic load rating for 100 km rated fatigue life

A175

A179

1. DH Model


2. DV Model A199

3. DS Model A217

A-4-2 Long-Life Series

A177 A178

A-4-2.1 DH Model

1. Features

(1) Double the life of standard linear guides

DH model is based on our proven, highly reliable standard NH model that feature an optimized groove shape. Applying our special TF heat treatment achieves even longer life. What is TF (Tough) Technology?

NSK's TF technology is an exclusive heat treatment developed and cultivated over years of experience with rolling bearings and materials. TF technology helps suppress surface flaking on the raceway.

Load ratings are 1.25 times higher and service life is doubled compared to conventional NH model^{*1}. DH linear guide offers greatly improved life at the same size and equal or longer life to the next smallest conventional model, allowing for equipment downsizing.

*1: Representative values for model.

(2) Ball circulation path with excellent high-speed property

By reexamining the design for the ball circulation path, we have attained smooth ball circulation and reduced noise. DH models are suited for high-speed applications same as NH models.

(3) All mounting dimensions are the same as the NH Model

The dimensions surrounding the mounting (assembled dimensions), such as mounting height, width, mounting hole diameter/pitch, etc. of the DH model are identical to the NH model, allowing for easy replacement without design changes.

(4) High self-aligning capability (rolling direction)

Similar to a DF arrangement of angular contact bearings, DH models offer large self-aligning capability with the internal intersection of the contact lines of the balls and grooves reducing moment rigidity. This increases the capacity to absorb errors in installation.

(5) High vertical load carrying capacity

The contact angle is set at 50 degrees, thus increasing load carrying capacity as well as rigidity in the vertical direction.

(6) High resistance against impact load

The bottom ball groove forms a Gothic arch and the center of the top and bottom grooves are offset as shown in **Fig. 2**.

Vertical load is generally carried by the top rows at two contact points, but with this design, the bottom rows also carry load when a large impact load is applied vertically as shown in Fig. 3. This assures high resistance to impact load.

(7) High accuracy

As showing in **Fig. 4**, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes for easy and accurate measuring of ball grooves.

(8) Easy to handle, and designed with safety in mind.

Balls are retained in the retainer, therefore they do not fall out when the ball slide is withdrawn from the rail.

(9) Abundant variations and sizes

The DH model comes in several sizes and ball

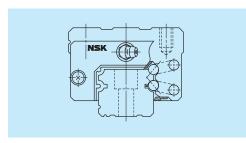


Fig. 1 DH Model

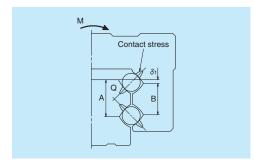


Fig. 2 Enlarged illustration of the offset Gothic arch groove

slide shapes, allowing for use in a variety of applications.

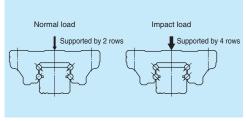


Fig. 3 When load is applied

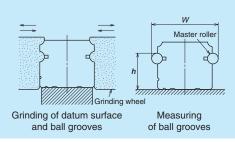


Fig. 4 Rail grinding and measuring

2. Ball slide shape

Ball slide		Type (Upper row, Rating: L	ower row, Ball slide length)
shape code	Shape/installation method	High-load Standard	Super-high-load Long
AN BN		AN L ₁	BN L ₁
AL BL		AL	BL L ₁
EM GM		EM	GM L ₁

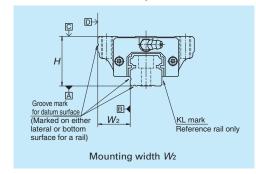
3. Accuracy and preload

(1) Running parallelism of ball slide

			Table	1		Unit: µm					
	Accuracy grade		Preloaded assembly								
Rail lengt (mm)		Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN					
-	- 50	2	2	2	4	5					
50 -	- 80	2	2	3	4	5					
80 -	- 125	2	2	3	4	5					
125 -	- 200	2	2	3.5	5	6					
200 -	- 250	2	2.5	4.5	6	7.5					
250 -	- 315	2	2.5	5	6.5	8.5					
315 -	- 400	2	3	5.5	7	9.5					
400 -	- 500	2	3	6	7.5	11					
500 -	- 630	2	3.5	6.5	8.5	12					
630 -	- 800	2	4	7	9.5	13					
800 -	- 1 000	2.5	4.5	7.5	10	15					
1 000 -	- 1 250	3	5	8.5	12	16					
1 250 -	- 1 600	3.5	5.5	9.5	13	17					
1 600 -	- 2 000	4	6.5	11	14	19					
2 000 -	- 2 500	4.5	7.5	12	16	21					
2 500 -	- 3 150	5.5	8.5	13	18	23					
3 150 -	- 4 000	6	9.5	14	19	25					

(2) Accuracy standard

The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades


	Та	ıble 2			Unit: µm			
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN			
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±8 3	±10 5	±20 7	±40 15	±80 25			
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±10 3	±15 7	±25 10	±50 20	±100 30			
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1, Fig. 5							

(3) Combinations of accuracy and preload

Table 3

		Accuracy grade								
		Ultra precision	Super precision	High precision	Precision grade	Normal grade				
Wit	thout NSK K1-L lubrication unit	P3	P4	P5	P6	PN				
Wit	th NSK K1-L lubrication unit	L3	L4	L5	L6	LN				
With	NSK K1 for food and medical equipment	F3	F4	F5	F6	FN				
	Fine clearance									
	Z0					0				
Preload	Slight preload									
rel	Z1									
_	Medium preload									
	Z3					_				

(4) Assembled accuracy

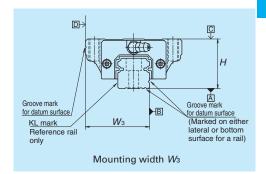


Fig. 5

A181 A182

(5) Preload and rigidity

We offer three levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0.

· Preload and rigidity of preloaded assembly

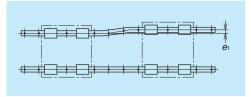
Table 4

	Table 4												
		Durale	L (NI)		Rigidity	(N/µm)							
	Model No.	Preio	ad (N)	Vertical of	direction	Lateral	direction						
	woder No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload						
		Z1	Z3	Z1	Z3	Z1	Z3						
	DH15 AN, EM	78	490	137	226	98	186						
	DH20 AN, EM	147	835	186	335	137	245						
	DH25 AL, AN, EM	196	1 270	206	380	147	284						
oad	DH30 AL, AN	245	1 570	216	400	157	294						
High-Ioad	DH30 EM	294	1 770	265	480	186	355						
<u>-</u>	DH35 AL, AN, EM	390	2 350	305	560	216	390						
_	DH45 AL, AN, EM	635	3 900	400	745	284	540						
	DH55 AL, AN, EM	980	5 900	490	910	345	645						
	DH65 AN, EM	1 470	8 900	580	1 070	400	755						
	DH15 BN, GM	98	685	196	345	137	284						
р	DH20 BN, GM	196	1 080	265	480	196	355						
9	DH25 BL, BN, GM	245	1 570	294	560	216	400						
gh	DH30 BL, BN, GM	390	2 260	360	665	265	480						
r. H.	DH35 BL, BN, GM	490	2 940	430	795	305	570						
Super-high-load	DH45 BL, BN, GM	785	4 800	520	960	370	695						
Sn	DH55 BL, BN, GM	1 180	7 050	635	1 170	440	835						
	DH65 BN, GM	1 860	11 300	805	1 480	550	1 040						
	01 (5: 1	70 . 0 . 0	T1 6										

Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero.

However, Z0 of PN grade is 0 to 15µm.

4. Maximum rail length


Table 5 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grades. Table E. Langth limitations of rails

		ι	Unit: mm						
Model	Size Material	15	20	25	30	35	45	55	65
DH	Special high carbon steel	2 980	3 960	3 960	4 000	4 000	3 990	3 960	3 900

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

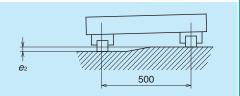


Fig. 6

Fig. 7

		Tab	le 6					U	nit: µm
Value	Preload				Mode	el No.			
value	Freioau	DH15	DH20	DH25	DH30	DH35	DH45	DH55	DH65
Permissible values for	Z0	22	30	40	45	55	65	80	110
parallelism error of two	Z1	18	20	25	30	35	45	55	70
rails e₁	Z3	13	15	20	25	30	40	45	60
Permissible values for	Z0				375µm/	500mm			
height error of two rails e_2	Z1, Z3				330µm/	500mm			

(2) Shoulder height of the mounting surface and corner radius r

Fig. 8 Shoulder for the rail datum surface

Fig. 9 Shoulder for the ball slide datum surface

Table 7

Unit: mm

Corner radius (maximum) Shoulder height Model No. H' DH15 0.5 0.5 4 DH20 0.5 0.5 4.5 DH25 0.5 0.5 5 DH30 0.5 0.5 6 DH35 0.5 0.5 6 DH45 0.7 0.7 8 DH55 0.7 0.7 10 11 DH65 11

6. Maximum allowable speed

Size

Model

DH

Table 8 indicates the maximum allowable speed for 10,000 km operation when using an DH model under normal conditions. However, the maximum allowable speed can be affected by accuracy of installation, operating temperature, external load, etc. If the operation is made exceeding the permissible distance and speed, please consult NSK.

Table 8 Maximum allowable speed Unit: m/mi								
15	20	25	30	35	45	55	65	
		300			20	nn	150	

7. Lubrication components

Refer to pages A58 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 10 and Table 9 show grease fittings and tube fittings.

We provide lubrication accessories with an extended thread body length (*L*) for the addition of dust-resistant accessories such as NSK K1-L lubrication units, double seals and protectors. We provide suitable lubrication accessories for special dust-resistant requirements upon request.

NSK can also provide extended length threads for ease of replenishment.

Please contact NSK if stainless lubrication accessories are required.

(2) Mounting position of lubrication accessories

The standard position for grease fittings is at the end face of the ball slide, but we can mount them on the side of the end cap as an option. (Fig. 11)

Please consult NSK for the installation of grease or tube fittings to the ball slide body.

Using a piping unit with thread of M6 \times 1, requires a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

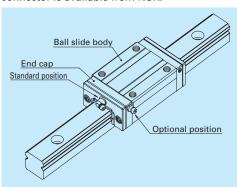


Fig. 11 Mounting position of lubrication accessories

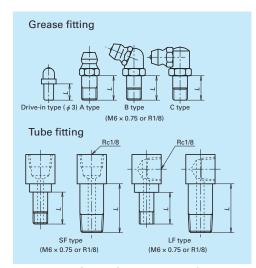


Fig. 10 Grease fitting and tube fitting

		Table 9	Į	Jnit: mm		
Model	Dust-resistant		ension <i>L</i>			
No.	specification	Grease fitting	Tube			
INO.	specification	/Drive-in type	SF type	LF type		
	Standard	5	-	_		
DH15	With NSK K1-L	10	_	_		
פוחט	Double seal	*	_	_		
	Protector	*	_	_		
	Standard	5	_	_		
DUIGO	With NSK K1-L	12	-	-		
DH20	Double seal	10	-	_		
	Protector	10	-	_		
	Standard	5	5	5		
D	With NSK K1-L	12	12	12		
DH25	Double seal	10	9	9		
	Protector	10	9	9		
	Standard	5	6	6		
D. 100	With NSK K1-L	14	12	13		
DH30	Double seal	12	10	11		
	Protector	12	10	11		
	Standard	5	6	6		
D. 10=	With NSK K1-L	14	12	13		
DH35	Double seal	12	10	11		
	Protector	12	10	11		
	Standard	8	13.5	17		
D	With NSK K1-L	18	20	21.5		
DH45	Double seal	14	16	17		
	Protector	14	13.5	17		
	Standard	8	13.5	17		
	With NSK K1-L	18	20	21.5		
DH55	Double seal	14	16	17		
	Protector	14	13.5	17		
	Standard	8	13.5	17		
B	With NSK K1-L	20	22	25.5		
DH65	Double seal	16	18	19		
	Protector	16	13.5	17		

*) A connector is required for this model. Please contact NSK.

8. Dust-resistant components

(1) Standard specification

Under normal applications, the DH model can be used without modification thanks to its dust resistance. These ball slides come standard with an end seal on both ends and bottom seals on the bottom.

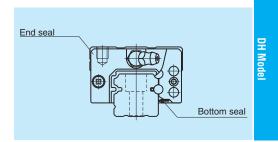


Fig. 12

Table 10 Seal friction per ball slide (maximum value)

	o o o a i i		poi baii	onao (i		···· vaia	٠,	Unit: N
Model	15	20	25	30	35	45	55	65
DH	8	9	10	10	12	17	22	29

(2) NSK K1-L[™] and NSK K1[™] lubrication units for food processing machinery/ medical equipment

Table 11 shows linear guide dimensions when equipped with NSK K1-L lubrication units.

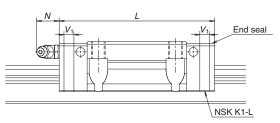


Table 11 Dimensions when equipped with NSK K1-L lubrication units

u	Init:	mm

Model No.	Ball slide length	Ball slide shape code	Standard ball slide length	Ball slide length with two NSK K1-L units <i>L</i>	Thickness of single NSK K1-L unit V ₁	Protrusion of grease fitting N	
DUITE	Standard	AN, EM	55	65.6	F 0	(5)	
DH15	Long	BN, GM	74	84.6	5.3	(5)	
DH20	Standard	AN, EM	69.8	80.4	5.3	(14)	
טח20	Long	BN, GM	91.8	102.4	5.3	(14)	
DH25	Standard	AL, AN, EM	79	90.6	5.8	(1.4)	
DHZ5	Long	BL, BN, GM	107	118.6	5.8	(14)	
	0	AL, AN	85.6	97.6		(14)	
DH30	Standard	EM	98.6	110.6	6		
	Long	BL, BN, GM	124.6	136.6			
DUIDE	Standard	AL, AN, EM	109	122	6.5	(14)	
DH35	Long	BL, BN, GM	143	156	0.5	(14)	
DH45	Standard	AL, AN, EM	139	154	7.5	(15)	
DH45	Long	BL, BN, GM	171	186	7.5	(15)	
 DH55	Standard	AL, AN, EM	163	178	7.5	/15\	
מחט	Long	BL, BN, GM	201	216	7.5	(15)	
DUCE	Standard	AN, EM	193	211	9	(16)	
DH65 Long		BN, GM	253	271	1 9	(16)	

Notes: 1) When using NSK K1 for food processing machinery/medical equipment, refer to Table 12.

2) Slide length when equipped with NSK K1-L = (standard ball slide length) + (V₁ thickness of single NSK K1-L unit) × (number of K1-L units).

A185 A186

Table 12 shows linear guide dimensions when equipped with NSK K1 for food processing machinery/medical equipment.

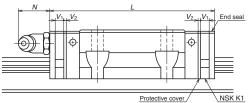


Table 12 Dimensions when equipped with NSK K1 for food processing machinery/medical equipment

Unit: mm

machinery/medical equipment							Omit. mm	
Model No.	Ball slide length	Ball slide shape code	Standard ball slide length	Ball slide length with two NSK K1 installed L	Thickness of single NSK K1	Protective cover thickness V ₂	Protrusion of grease fitting N	
DH15	Standard	AN, EM	55	65.6	4.5	0.8	(5)	
סוחט	Long	BN, GM	74	84.6	4.5	0.8	(5)	
DH20	Standard	AN, EM	69.8	80.4	4.5	4.5	0.8	(14)
DHZU	Long	BN, GM	91.8	102.4	4.5	0.0	(14)	
DH25	Standard	AL, AN, EM	79.0	90.6	5.0	0.8	(14)	
DHZS	Long	BL, BN, GM	107	118.6	5.0	0.0	(14)	
	Charadanal	AL, AN	85.6	97.6				
DH30	Standard	EM	98.6	110.6	5.0	1.0	(14)	
	Long	BL, BN, GM	124.6	136.6]			
DH35	Standard	AL, AN, EM	109	122	5.5	1.0	(14)	
סטחט	Long	BL, BN, GM	143	156	0.5	1.0	(14)	

Note: Slide length when equipped with NSK K1 for food processing machinery/medical equipment = (standard ball slide length) + (V_1 thickness of single NSK K1 unit) × (number of K1 units) + (V_2 thickness of the protective cover) × 2.

(3) Double seal

Use a double seal set as shown in **Table 13** when installing an extra seal to completed standard products. (**Fig. 13**)

When installing a grease fitting after the installation of double seals, a connector as shown in Fig.13 is required.

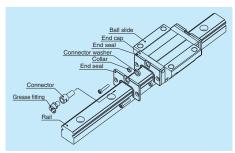


Fig. 13 Double seal

(4) Protector

Use a protector set as shown in **Table 14** when installing a protector to completed standard products. (**Fig.14**)

When installing a grease fitting after the installation of protectors, a connector as shown in Fig.14 is required.

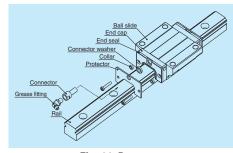


Fig. 14 Protector

Table 13 Double seal set

Model No.	Referer	Increased thickness V ₃	
WIOGET IVO.	Without connector	With connector	(mm)
DH15	LH15WS-01	*	2.5
DH20	LH20WS-01	LH20WSC-01	2.5
DH25	LH25WS-01	LH25WSC-01	2.8
DH30	LH30WS-01	LH30WSC-01	3.6
DH35	LH35WS-01	LH35WSC-01	3.6
DH45	LH45WS-01	LH45WSC-01	4.3
DH55	LH55WS-01	LH55WSC-01	4.3
DH65	LH65WS-01	LH65WSC-01	4.9

Table 14 Protector set

Reference No. Increased thickness V ₄ (mm)					
Without connector With connector (mm) DH15 LH15PT-01 * 2.7 DH20 LH20PT-01 LH20PTC-01 2.9 DH25 LH25PT-01 LH25PTC-01 3.2 DH30 LH30PT-01 LH30PTC-01 4.2 DH35 LH35PT-01 LH35PTC-01 4.2 DH45 LH45PT-01 LH45PTC-01 4.9 DH55 LH55PT-01 LH55PTC-01 4.9	Model No.	Refere		5	
DH20 LH20PT-01 LH20PTC-01 2.9 DH25 LH25PT-01 LH25PTC-01 3.2 DH30 LH30PT-01 LH30PTC-01 4.2 DH35 LH35PT-01 LH35PTC-01 4.2 DH45 LH45PT-01 LH45PTC-01 4.9 DH55 LH55PT-01 LH55PTC-01 4.9		Without connector	With connector		
DH25 LH25PT-01 LH25PTC-01 3.2 DH30 LH30PT-01 LH30PTC-01 4.2 DH35 LH35PT-01 LH35PTC-01 4.2 DH45 LH45PT-01 LH45PTC-01 4.9 DH55 LH55PT-01 LH55PTC-01 4.9	DH15	LH15PT-01	*	2.7	ano
DH30 LH30PT-01 LH30PTC-01 4.2 DH35 LH35PT-01 LH35PTC-01 4.2 DH45 LH45PT-01 LH45PTC-01 4.9 DH55 LH55PT-01 LH55PTC-01 4.9	DH20	LH20PT-01	LH20PTC-01	2.9	
DH35 LH35PT-01 LH35PTC-01 4.2 DH45 LH45PT-01 LH45PTC-01 4.9 DH55 LH55PT-01 LH55PTC-01 4.9	DH25	LH25PT-01	LH25PTC-01	3.2	
DH45 LH45PT-01 LH45PTC-01 4.9 DH55 LH55PT-01 LH55PTC-01 4.9	DH30	LH30PT-01	LH30PTC-01	4.2	
DH55 LH55PT-01 LH55PTC-01 4.9	DH35	LH35PT-01	LH35PTC-01	4.2	
	DH45	LH45PT-01	LH45PTC-01	4.9	
DH65 LH65PT-01 LH65PTC-01 5.5	DH55	LH55PT-01	LH55PTC-01	4.9	
	DH65	LH65PT-01	LH65PTC-01	5.5	

*) For installation of a connector to a drive-in grease fitting, contact NSK.

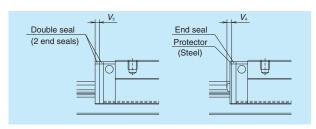


Fig. 15

(5) Caps to plug the rail mounting bolt hole Table 15 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
WIOGCI IVO.	secure rail	reference No.	/case
DH15	M4	LG-CAP/M4	20
DH20	M5	LG-CAP/M5	20
DH25	M6	LG-CAP/M6	20
DH30, DH35	M8	LG-CAP/M8	20
DH45	M12	LG-CAP/M12	20
DH55	M14	LG-CAP/M14	20
DH65	M16	LG-CAP/M16	20

(6) Inner seal

Inner seal is only available for models shown in the table below.

Table 16

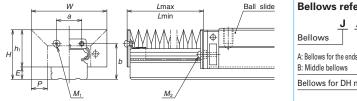
Model	Model No.
DH	DH20, DH25, DH30, DH35, DH45, DH55, DH65

A187 A188

(7) Bellows

- A bellows fastener kit, which includes one bellows fastener, two M_1 set screws, two M_2 set screws, and two collars for M_2 set screws as shown in Fig. 7.7 on page A69, is supplied with bellows for the ends.
- Middle bellows are supplied with four set screws and four collars.
- Use a bellows fastener kit as shown in Table
 17, when installing bellows to completed standard products.
- When NSK K1-L units, NSK K1 for food and medical equipment, double seals, or protectors are used, the set screws of bellows fastener kits cannot be used.

Please contact NSK for details.


 Bellows fasteners are available only for horizontal mounting positions; other mounting positions require a sliding plate (see Fig. 7.10 on page A70).

To fix the bellows to the rail, make tap holes on the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes with a machine screw. NSK prepares tap holes on the rail end surface when bellows are ordered with a linear guide.

Table 17 Bellows fastner kit reference No.

Model No.	Kit reference No.
DH20	LH20FS-01
DH25	LH25FS-01
DH30	LH30FS-01
DH35	LH35FS-01
DH45	LH45FS-01
DH55	LH55FS-01
DH65	LH65FS-01

Dimension tables for bellows DH Model

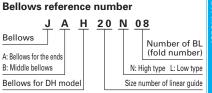


Fig. 16 Dimensions of bellows

Table 18 Dimensions of bellows

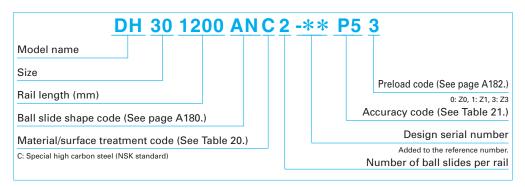
Unit: mm

Model No.	Н	h_1	Ε	W	Р	а	b	BL minimum length	M₁Tap x depth	M₂Tap x depth
JAH20N	29.5	24.5	5	48	10	13	22	17	M3 × 5	M2.5 × 16
JAH25L	35	28	7	51	10	16	26	17	M3 × 5	M3 × 18
JAH25N	39	32	/	61	15	16	26	17	IVI3 X 5	1VI3 X 18
JAH30L	41	32	9	60	12	18	31	17	M4 × 6	M4 × 22
JAH30N	44	35	פ	66	15	10	31	17	1V14 X 0	1V14 X ZZ
JAH35L	47	37.5	9.5	72	15	24	34	17	M4 × 6	M4 × 23
JAH35N	54	44.5	9.5	82	20	24	34	17	1V14 X 0	IVI4 X 23
JAH45L	59	45	14	83	15	32	44.5	17	M5 × 8	M5 × 28
JAH45N	69	55	14	103	25	32	44.5	17	O X CIVI	IVIO X 20
JAH55L	69	54	15	101	20	40	50.5	17	M5 × 8	M5 × 30
JAH55N	79	64	10	121	30	40	50.5	17	δ X CIVI	1VIO X 3U
JAH65N	89	73	16	131	30	48	61	17	M6×8	M6 × 35

Table 19 Numbers of folds (BL) and lengths of bellows

Unit: mm

Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
iviodei ivo.	<u>L</u> min	34	68	102	136	170	204	238	272	306	340
JAH20N	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAHZUN	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAH25L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAHZOL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAH25N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHZJIN	<u>L</u> max	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH30L	Stroke	134	268	402	536	670	804	938	1 072	1 206	1 340
JAHOUL	Lmax	168	336	504	672	840	1 008	1 176	1 344	1 512	1 680
JAH30N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHJUN	<u>L</u> max	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH35L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHSSL	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH35N	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAHSSIN	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAH45L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAI 145L	<u>L</u> max	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH45N	Stroke	316	632	948	1 264	1 580	1 896	2 212	2 528	2 844	3 160
JAH4SIN	Lmax	350	700	1 050	1 400	1 750	2 100	2 450	2 800	3 150	3 500
JAH55L	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAHOOL	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAH55N	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
VICCEINC	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200
JAH65N	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
NICOLIM	<u>L</u> max	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200


Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on both sides, then by dividing the sum by 2.

A189

9. Reference number

A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

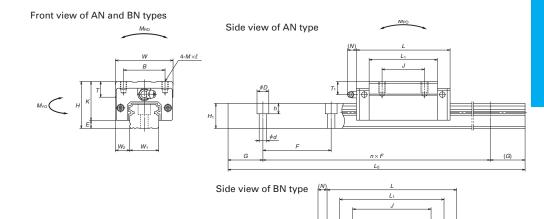
Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Table 21 Accuracy code

Accuracy	Standard (Without NSK K1-L)	With NSK K1-L	With NSK K1 for food and medical equipment
Ultra precision grade	P3	L3	F3
Super precision grade	P4	L4	F4
High precision grade	P5	L5	F5
Precision grade	P6	L6	F6
Normal grade	PN	LN	FN

Note: Refer to page A58 for details on NSK K1-L lubrication units and to page A73 for details on NSK K1 lubrication units for food processing machinery/medical equipment.

A191 A192


C: Special high carbon steel (NSK standard)

10. Dimensions **DH-AN** (High-load / Standard) DH-BN (Super-high-load / Long)

DH 30 1200 ANC 2 -** P5 3

Model name Preload code (See page A182.) 0: Z0, 1: Z1, 3: Z3 Size Accuracy code (See Table 21.) Rail length (mm) Design serial number Ball slide shape code (See page A180.) Added to the reference number. Number of ball slides per rail Material/surface treatment code (See Table 20.)

	A:	ssemb	ly					Ball slic	de							
Model No.	Height			Width	Length		Mour	nting hole				Grease	fittin	ıg	Width	Height
wouer ivo.																
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L_1	Κ	Τ	Hole size	T ₁	N	W_1	H ₁
DH15AN DH15BN	28	4.6	9.5	34	55 74	26	26	M4×0.7×6	39 58	23.4	8	φ 3	8.5	3.3	15	15
DH20AN DH20BN	30	5	12	44	69.8 91.8	32	36 50	M5×0.8×6	50 72	25	12	M6×0.75	5	11	20	18
DH25AN DH25BN	40	7	12.5	48	79 107	35	35 50	M6×1×9	58 86	33	12	M6×0.75	10	11	23	22
DH30AN DH30BN	45	9	16	60	85.6 124.6	40	40 60	M8×1.25×10	59 98	36	14	M6×0.75	10	11	28	26
DH35AN DH35BN	55	9.5	18	70	109 143	50	50 72	M8×1.25×12	80 114	45.5	15	M6×0.75	15	11	34	29
DH45AN DH45BN	70	14	20.5	86	139 171	60	60 80	M10×1.5×17	105 137	56	17	Rc1/8	20	13	45	38
DH55AN DH55BN	80	15	23.5	100	163 201	75	75 95	M12×1.75×18	126 164	65	18	Rc1/8	21	13	53	44
DH65AN DH65BN	90	16	31.5	126	193 253	76	70 120	M16×2×20	147 207	74	23	Rc1/8	19	13	63	53

Unit: mm

Rail						Ва	asic load	ratings				Wei	ght
Pitch	Mounting	G	Max.	1)Dyn	amic	Static		Static	moment	(N·m)		Ball	Rail
	bolt hole		length	[50km]	[100km]	C_{\circ}	M _{RO}	λ	1 _{PO}	٨	I_{YO}	slide	
F	$d \times D \times h$	(reference)	$L_{ m 0max}$	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	4.5×7.5×5.3	20	2 980	17 800 22 800	14 200 18 100	20 700 32 000	108 166	94.5 216	575 1 150	79.5 181	480 965	0.18 0.26	1.6
60	6×9.5×8.5	20	3 960	29 800 38 000	23 600 30 000	32 500 50 500	219 340	185 420	1 140 2 230	155 355	955 1 870	0.33 0.48	2.6
60	7×11×9	20	3 960	42 500 57 500	33 500 45 500	46 000 71 000	360 555	320 725	1 840 3 700	267 610	1 540 3 100	0.55 0.82	3.6
80	9×14×12	20	4 000	51 500 77 000	41 000 61 000	51 500 91 500	490 870	350 1 030	2 290 5 600	292 865	1 920 4 700	0.77 1.3	5.2
80	9×14×12	20	4 000	78 500 102 000	62 500 81 000	80 500 117 000	950 1 380	755 1 530	4 500 8 350	630 1 280	3 800 7 000	1.5 2.1	7.2
105	14×20×17	22.5	3 990	135 000 164 000	107 000 131 000	140 000 187 000	2 140 2 860	1 740 3 000	9 750 15 600	1 460 2 520	8 150 13 100	3.0 3.9	12.3
120	16×23×20	30	3 960	199 000 243 000	158 000 193 000	198 000 264 000	3 600 4 850	3 000 5 150	16 300 26 300	2 510 4 350	13 700 22 100	4.7 6.1	16.9
150	18×26×22	35	3 900	300 000 390 000	239 000 310 000	281 000 410 000	6 150 8 950	4 950 10 100	27 900 51 500	4 150 8 450	23 400 43 500	7.7 10.8	24.3

Note: 1) The basic load ratings comply with the ISO standard. (ISO 14728-1, 14728-2) For long-life DH model, the rated load is multiplied by a coefficient that reflects the effect of life improvement technologies based on these ISO standards.

C_{six}, the basic dynamic load rating for 50 km rated fatigue life C_{six}, the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

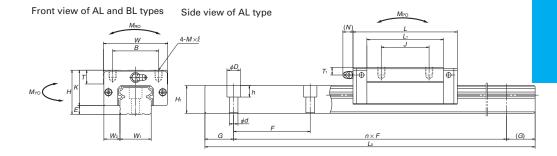
DH-AL (High-load / Standard) DH-BL (Super-high-load / Long)

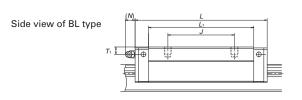
DH 30 1200 AL C 2 -** P5 3

Model name
Size
Rail length (mm)
Ball slide shape code (See page A180.)
Material/surface treatment code (See Table 20.)

Preload code (See page A182.)
0: Z0, 1: Z1, 3: Z3

Accuracy code (See Table 21.)


Design serial number


Added to the reference number.

Number of ball slides per rail

C: Special high carbon steel (NSK standard)

	A	ssemb	olv					Ball slic	de							
Model No.	Height			Width	Length		Mour	nting hole				Grease	fittin	ıg	Width	Height
Wiodel No.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> ₁	N	W_1	H ₁
DH25AL DH25BL	36	7	12.5	48	79 107	35	35 50	M6×1×6	58 86	29	12	M6×0.75	6	11	23	22
DH30AL	42	9	16	60	85.6 124.6	40	40 60	M8×1.25×8	59 98	33	14	M6×0.75	7	11	28	26
DH35AL DH35BL	48	9.5	18	70	109 143	50	50 72	M8×1.25×8	80 114	38.5	15	M6×0.75	8	11	34	29
DH45AL DH45BL	60	14	20.5	86	139 171	60	60 80	M10×1.5×10	105 137	46	17	Rc1/8	10	13	45	38
DH55AL DH55BL	70	15	23.5	100	163 201	75	75 95	M12×1.75×13	126 164	55	15	Rc1/8	11	13	53	44

Unit: mm

Rail					sic load r	atings				Wei	ght		
Pitch	Mounting	G	Max.	1)Dyn	amic	Static		Static	moment	t (N·m)		Ball slide	Rail
	bolt hole		length	[50km]	[100km]	C_{0}	M _{RO}	٨	1 _{PO}	Λ	1 _{YO}		
F	$d \times D \times h$	(reference)	$L_{ m 0max}$	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	7×11×9	20	3 960	42 500	33 500	46 000	360	320	1 840	267	1 540		3.6
- 00	7/11/1/0	20	0 000	57 500	45 500	71 000	555	725	3 700	610	3 100	0.69	0.0
80	9×14×12	20	4 000	51 500	41 000	51 500	490	350	2 290	292	1 920	0.69	5.2
- 00	0/11/1/2	20	1 000	77 000	61 000	91 500	870	1 030	5 600	865	4 700	1.16	0.2
80	9×14×12	20	4 000	78 500	62 500	80 500	950	755	4 500	630	3 800	1.2	7.2
00	0/14/12	20	+ 000	102 000	81 000	117 000	1 380	1 530	8 350	1 280	7 000	1.7	7.2
105	14×20×17	22 5	3 990	135 000	107 000	140 000	2 140	1 740	9 750	1 460	8 150	2.2	12.3
103	14,20,17	22.5	3 330	164 000	131 000	187 000	2 860	3 000	15 600	2 520	13 100	2.9	12.0
120	16×23×20	30	3 960	199 000	158 000	198 000	3 600	3 000	16 300	2 510	13 700	3.7	16.9
120	10/25/20	30	3 300	243 000	193 000	264 000	4 850	5 150	26 300	4 350	22 100	4.7	10.5

Note: 1) The basic load ratings comply with the ISO standard. (ISO 14728-1, 14728-2) For long-life DH model, the rated load is multiplied by a coefficient that reflects the effect of life improvement technologies based on these ISO standards.

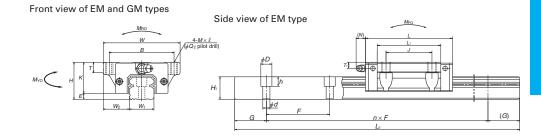
 C_{sp} ; the basic dynamic load rating for 50 km rated fatigue life C_{too} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

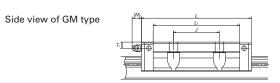
A195 A196

DH-EM (High-load / Standard) DH-GM (Super-high-load / Long)

DH 30 1200 EMC 2 -** P5 3

Model name
Size
Rail length (mm)
Ball slide shape code (See page A180.)
Material/surface treatment code (See Table 20.)


Preload code (See page A182.)
0: Z0, 1: Z1, 3: Z3
Accuracy code (See Table 21.)
Design serial number


Added to the reference number.

Number of ball slides per rail

C: Special high carbon steel (NSK standard)

	As	ssem	bly					Ball	slide								
Model No.	Height			Width	Length		N	Nounting hole					Grease	fittin	g	Width	Height
woder no.	Н	E	147	l w	,	0	,	A 4		,	K	_	Hala aina	_	.,	W.	H,
	П		W_2	VV	L	В	J	$M \times \text{pitch} \times \ell$	Q_2	L ₁	^	1	Hole size	I 1	N	VV ₁	Π_1
DH15EM DH15GM	24	4.6	16	47	55 74	38	30	M5×0.8×7	4.4	39 58	19.4	8	φ 3	4.5	3.3	15	15
DH20EM DH20GM	30	5	21.5	63	69.8 91.8	53	40	M6×1×9.5	5.3	50 72	25	10	M6×0.75	5	11	20	18
DH25EM DH25GM	36	7	23.5	70	79 107	57	45	M8×1.25×10	6.8	58 86	29	11	M6×0.75	6	11	23	22
DH30EM DH30GM	42	9	31	90	98.6 124.6	72	52	M10×1.5×12	8.6	72 98	33	11	M6×0.75	7	11	28	26
DH35EM DH35GM	48	9.5	33	100	109 143	82	62	M10×1.5×13	8.6	80 114	38.5	12	M6×0.75	8	11	34	29
DH45EM DH45GM	60	14	37.5	120	139 171	100	80	M12×1.75×15	10.5	105 137	46	13	Rc1/8	10	13	45	38
DH55EM DH55GM	70	15	43.5	140	163 201	116	95	M14×2×18	12.5	126 164	55	15	Rc1/8	11	13	53	44
DH65EM DH65GM	90	16	53.5	170	193 253	142	110	M16×2×24	14.6	147 207	74	23	Rc1/8	19	13	63	53

Unit: mm

Rail						Basio	c load ra	tings				We	ight
Pitch	Mounting	G	Max.	1)Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
	bolt hole		length	[50km]	[100km]	C_{\circ}	$M_{\scriptscriptstyle{\mathrm{RO}}}$	N	1 _{PO}	Λ	1 _{YO}	slide	
F	$d \times D \times h$	(reference)	$L_{ m 0max}$	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	4.5×7.5×5.3	20	2 980	17 800 22 800	14 200 18 100	20 700 32 000	108 166	94.5 216	575 1 150	79.5 181	480 965	0.17 0.25	1.6
60	6×9.5×8.5	20	3 960	29 800 38 000	23 600 30 000	32 500 50 500	219 340	185 420	1 140 2 230	155 355	955 1 870	0.45 0.65	1 2 6
60	7×11×9	20	3 960	42 500 57 500	33 500 45 500	46 000 71 000	360 555	320 725	1 840 3 700	267 610	1 540 3 100	0.63 0.93	1 .3 D
80	9×14×12	20	4 000	59 000 77 000	47 000 61 000	63 000 91 500	600 870	505 1 030	3 150 5 600	425 865	2 650 4 700	1.2 1.6	5.2
80	9×14×12	20	4 000	78 500 102 000	62 500 81 000	80 500 117 000	950 1 380	755 1 530	4 500 8 350	630 1 280	3 800 7 000	1.7 2.4	7.2
105	14×20×17	22.5	3 990	135 000 164 000	107 000 131 000	140 000 187 000	2 140 2 860	1 740 3 000	9 750 15 600	1 460 2 520	8 150 13 100	3 3.9	12.3
120	16×23×20	30	3 960	199 000 243 000	158 000 193 000	198 000 264 000	3 600 4 850	3 000 5 150	16 300 26 300		13 700 22 100	5 6.5	16.9
150	18×26×22	35	3 900	300 000 390 000	239 000 310 000	281 000 410 000	6 150 8 950	4 950 10 100		4 150 8 450	23 400 43 500		24.3

Note: 1) The basic load ratings comply with the ISO standard. (ISO 14728-1, 14728-2) For long-life DH model, the rated load is multiplied by a coefficient that reflects the effect of life improvement technologies based on these ISO standards.

 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{too} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

0.057 g

0.06

0.04

Penetration of foreign matter, g

A-4-2.2 DV Model

1. Features

(1) High-performance end seals

High-performance end seals with a multi-lip structure prevent the entry of various kinds of foreign matter.

(2) NSK K1-L™ lubrication unit (standard)

The outstanding lubrication support provided by NSK K1-L units further improves resistance to dust and durability. Additional NSK K1-L units can be mounted for specific usage conditions and environments.

(3) Double the life of standard linear guides

DV model is based on our proven, highly reliable standard VH model that feature an optimized groove shape. Applying our special TF heat treatment achieves even longer life.

What is TF (Tough) Technology?

NSK's TF technology is an exclusive heat treatment developed and cultivated over years of experience with rolling bearings and materials. TF technology helps suppress surface flaking on the raceway.

Load ratings are 1.25 times higher and service life is doubled compared to conventional VH model^{*1}. DV linear guide offers greatly improved life at the same size and equal or longer life to the next smallest conventional model, allowing for equipment downsizing.

*1: Representative values for model.

(4) All mounting dimensions are the same as the VH Model

The dimensions surrounding the mounting (assembled dimensions), such as mounting height, width, mounting hole diameter/pitch, etc. of the DV model are identical to the VH model, allowing for easy replacement without design changes.

(5) High vertical load carrying capacity

The contact angle is set at 50 degrees, thus increasing load carrying capacity as well as

rigidity in the vertical direction.

(6) High resistance against impact load

The bottom ball groove forms a Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2.

Vertical load is generally carried by the top rows at two contact points, but with this design, the bottom rows also carry load when a large impact load is applied vertically as shown in Fig. 3. This assures high resistance to impact load.

(7) High accuracy

As shown in Fig. 4, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes for easy and accurate measuring of ball grooves.

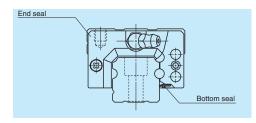


Fig. 1 DV Model

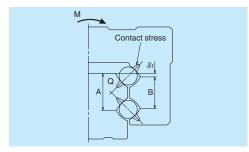


Fig. 2 Enlarged illustration of the offset Gothic arch groove

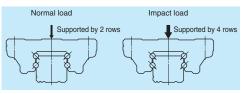


Fig. 3 When load is applied

Grinding of datum surface and ball grooves Master roller Measuring of ball grooves

Fig. 4 Rail grinding and measuring

VH Model

Standard

0.005 g

Comparison with NSK standard products

Level of fine contaminants reduced by 90% or more.

Results of dust resistance tests reveal that the entry of fine contaminants is reduced to less than one-tenth that of existing standard models due to improvements in sealing.

Test sample : VH30AN
Speed : 16.7 mm/sec
Contaminant : Graphite powder

(average grain size: 0.037 mm) +

Grease

Operating life under contaminated environments is more than 5 times longer

Durability test with rubber fragments

Extreme durability tests under contaminated environments using rubber fragments show that durability of the VH Model is more than five times longer than the existing standard model, as shown in the graph.

Test sample : VH30AN, preload code Z1

(preload of 245 N)

Rail orientation : Horizontal (wall mount)

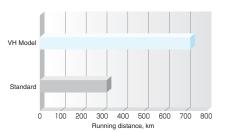
Speed : 500 mm/sec
Lubrication : AS2 grease
(prepacked AS2 only)
Contaminant : Rubber fragments

VH Model Standard 0 250 500 750 1000 1250 1500 Running distance, km

Durability test with fine wood particles

Extreme durability tests in a contaminated environment with fine wood particles show that durability of the VH Model is more than double that of the standard model, as shown in the graph.

Test sample : VH30AN


Rail orientation

(preload of 3 200 N) : Horizontal (wall mount)

Speed : 400 mm/sec Lubrication : AS2 grease

(prepacked AS2 only)

Contaminant : Fine wood particles

The data shown in the catalog are the results of our tests, and no warranty is given to sealing performance in actual machine usage. Sealing performance is affected by usage environment and lubrication conditions. Dust covers and other measures to keep machinery free of dust are recommended.

A199 A200

2. Ball slide shape

Ball slide shape code	Shape/installation method	Type (Upper row, Rating: L High-load Standard	ower row, Ball slide length) Super-high-load Long
AN BN		AN L ₁	BN L ₁
AL BL		AL L1	BL
EM GM		EM L1	GM L ₁

3. Accuracy and preload

(1) Running parallelism of ball slide

			Table	e 1		Unit: µm
	Accuracy grade		Pre	loaded assem	bly	
Rail length (mm)		Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN
_	- 50	2	2	2	4	5
50 -	- 80	2	2	3	4	5
80 -	- 125	2	2	3	4	5
125 –	- 200	2	2	3.5	5	6
200 -	- 250	2	2.5	4.5	6	7.5
250 -	- 315	2	2.5	5	6.5	8.5
315 -	- 400	2	3	5.5	7	9.5
400 -	- 500	2	3	6	7.5	11
500 -	- 630	2	3.5	6.5	8.5	12
630 -	- 800	2	4	7	9.5	13
800 -	- 1 000	2.5	4.5	7.5	10	15
1 000 -	- 1 250	3	5	8.5	12	16
1 250 -	- 1 600	3.5	5.5	9.5	13	17
1 600 -	- 2 000	4	6.5	11	14	19
2 000 -	- 2 500	4.5	7.5	12	16	21
2 500 -	- 3 150	5.5	8.5	13	18	23
3 150 –	- 4 000	6	9.5	14	19	25

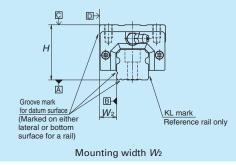
(2) Accuracy standard

The preloaded assembly has five accuracy grades: Ultra precision P3, Super precision P4, High precision P5, Precision P6, and Normal PN grades.

• Tolerance of preloaded assembly

Table 2 Unit: μι						
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±8 3	±10 5	±20 7	±40 15	±80 25	
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±10 3	±15 7	±25 10	±50 20	±100 30	
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1, Fig. 5					

A201 A202


Dust-Recistant DV Model

(3) Combinations of accuracy and preload

Table 3

Tuble 0								
		Accuracy grade						
		Ultra precision	Super precision	High Precision	Precision grade	Normal grade		
With NSK K1-L lubrication unit		L3	L4	L5	L6	LN		
Preload	Fine clearance Z0	0	0	0	0	0		
	Slight preload Z1	0	0	0	0	0		
	Medium preload Z3	0	0	0	0	_		

(4) Assembled accuracy

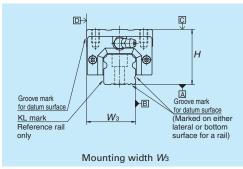


Fig. 5

(5) Preload and rigidity

We offer three levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0.

Preload and rigidity of preloaded assembly

1,4470 1										
	Preload (N)		Rigidity (N/µm)							
Madal Na			Vertical direction		Lateral direction					
iviodel No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload				
	Z1	Z3	Z1	Z3	Z1	Z3				
DV15 AN, EM	78	490	137	226	98	186				
DV20 AN, EM	147	835	186	335	137	245				
DV25 AN, AL, EM	196	1 270	206	380	147	284				
DV30 AN, AL	245	1 570	216	400	157	294				
DV30 EM	294	1 770	265	480	186	355				
DV35 AN, AL, EM	390	2 350	305	560	216	390				
DV45 AN, AL, EM	635	3 900	400	745	284	540				
DV55 AN, AL, EM	980	5 900	490	910	345	645				
DV15 BN, GM	98	685	196	345	137	284				
DV20 BN, GM	196	1 080	265	480	196	355				
DV25 BN, BL, GM	245	1 570	294	560	216	400				
DV30 BN, BL, GM	390	2 260	360	665	265	480				
DV35 BN, BL, GM	490	2 940	430	795	305	570				
	DV20 AN, EM DV25 AN, AL, EM DV30 AN, AL DV30 EM DV35 AN, AL, EM DV45 AN, AL, EM DV45 AN, AL, EM DV55 AN, AL, EM DV15 BN, GM DV20 BN, GM DV25 BN, BL, GM DV30 BN, BL, GM	Model No. Slight preload Z1 DV15 AN, EM 78 DV20 AN, EM 147 DV25 AN, AL, EM 196 DV30 AN, AL 245 DV30 EM 294 DV35 AN, AL, EM 390 DV45 AN, AL, EM 635 DV55 AN, AL, EM 980 DV15 BN, GM 98 DV20 BN, GM 196 DV25 BN, BL, GM 245 DV30 BN, BL, GM 390	Model No. Slight preload Z1 Medium preload Z3 Z1 Z3 DV15 AN, EM 78 490 DV20 AN, EM 147 835 DV25 AN, AL, EM 196 1 270 DV30 AN, AL 245 1 570 DV30 EM 294 1 770 DV35 AN, AL, EM 390 2 350 DV45 AN, AL, EM 635 3 900 DV55 AN, AL, EM 980 5 900 DV15 BN, GM 98 685 DV20 BN, GM 196 1 080 DV25 BN, BL, GM 245 1 570 DV30 BN, BL, GM 390 2 260	Model No. Vertical of Slight preload Z1 Vertical of Slight preload Z1 Z1 DV30 AN, EM 196 1 570 216 DV35 AN, AL, EM 390 2 350 305 DV45 AN, AL, EM 980 5 900 490 DV15 BN, GM 98 685 196 DV20 BN, GM 196 1 080 265 DV25 BN, BL, GM 245 1 570 294 DV30 BN, BL, GM 390 2 260 360 DV30 BN, BL, GM 390 2 260 360 DV30 BN, BL, GM	Preload (N) Vertical direction Wedium preload Vertical direction Slight preload Medium preload Z23 Z1 Z3 Z26 DV26 DV26 Medium preload All Al	Preload (N) Vertical direction Lateral of Slight preload Slight preload Slight preload Slight preload Slight preload Z1 Vertical direction Lateral of Slight preload Medium preload Slight preload Slight preload Z1 Z3 Z1 Z3 Z1 Z3 Z1 DV20 AN, EM 147 835 186 335 137 DV25 AN, AL, EM 196 1 270 206 380 147 DV30 AN, AL 245 1 570 216 400 157 DV30 EM 294 1 770 265 480 186 DV35 AN, AL, EM 390 2 350 305 560 216 DV45 AN, AL, EM 635 3 900 400 745 284 DV55 AN, AL, EM 980 5 900 490 910 345 DV15 BN, GM 98 685 196 345 137 DV20 BN, GM 196 1 080 265 480 196 DV25 BN, BL, GM 245 <t< td=""></t<>				

Table 4

Note: Clearance for Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

785

1 180

However, Z0 of PN grade is 0 to 15 μm .

4. Maximum rail length

DV45 BN, BL, GM

DV55 BN, BL, GM

Table 5 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

4 800

7 050

520

635

960

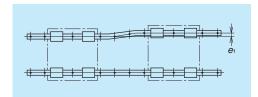
1 170

370

440

695

835


Table 5 Length limitations of rails							Unit: mm	
Model	Size Material	15	20	25	30	35	45	55
DV	Special high carbon steel	2 000	3 960	3 960	4 000	4 000	3 990	3 960

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.

A203 A204

5. Installation

(1) Permissible values of mounting error

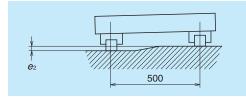


Fig. 6

Fig. 7

Table 6 Unit: μ												
Value	Drolond	Model No.										
value	Preload	DV15	DV20	DV25	DV30	DV35	DV45	DV55				
Darminaible values for	Z0	22	30	40	45	55	65	80				
Permissible values for	1 /1	18	20	25	30	35	45	55				
parallelism error of two rails e_1	Z3	13	15	20	25	30	40	45				
Permissible values for	Z0		375 μm/500 mm									
height error of two rails e_2	Z1, Z3	330 µm/500 mm										

(2) Shoulder height of the mounting surface and corner radius r

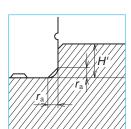


Fig. 8 Shoulder for the

rail datum surface

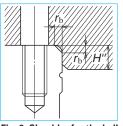


Fig. 9 Shoulder for the ball slide datum surface

				Unit: mm			
Model No.	Corner radiu	s (maximum)	Shoulder height				
Model INO.	$r_{\rm a}$	$r_{\rm b}$	H'	H"			
DV15	/15 0.5 0.5		4	4			
DV20	0.5	0.5	4.5	5			
DV25	0.5	0.5	5	5			
DV30	0.5	0.5	6	6			
DV35			6	6			
DV45	0.7	0.7	8	8			
DV55	0.7	0.7	10	10			

Table 7

Linite mana

(3) Specification for tapped holes on a rail bottom surface

- Applicable accuracy grades are precision grade
 (P6) and normal grades (PN) only.
- The minimum rail length for production is 400 mm
- The tapping pitch is the same as the pitch for regular mounting bolt holes. Please refer to the dimension table.

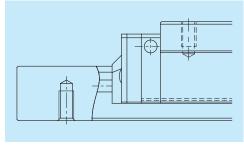


Fig. 10

6. Lubrication components

Refer to pages A58 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 11 and Table 8 show grease fittings and tube fittings.

We provide lubrication accessories with an extended thread body length (*L*) for the addition of dust-resistant accessories such as NSK K1-L lubrication units, double seals and protectors. We provide suitable lubrication accessories for special dust-resistant requirements upon request.

NSK can also provide extended length threads for ease of replenishment.

Please contact NSK if stainless lubrication accessories are required.

(2) Mounting position of lubrication accessories

The standard position for grease fittings is at the end face of the ball slide, but we can mount them on the side of the end cap as an option. (Fig. 12)

Please consult NSK for the installation of grease or tube fittings to the ball slide body.

Using a piping unit with thread of M6 \times 1, requires a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

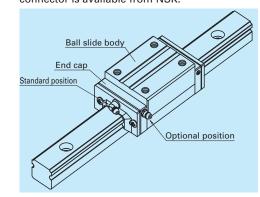


Fig. 12 Mounting position of lubrication accessories



Fig. 11 Grease fitting and tube fitting

		Table 8	ι	Jnit: mm					
Model	Dust-resistant	Dimension L							
	specification	Grease fitting		fitting					
INO.	specification	/Drive-in type	SF type	LF type					
	Standard*	10	-	-					
DV15	Double seal	**	-	-					
	Protector	**	_	_					
	Standard*	12	_	_					
DV20	Double seal	18	_	_					
	Protector	18	-	-					
	Standard*	12	15	16					
DV25	Double seal	18	23	24.5***					
	Protector	18	17	18					
	Standard*	14	18	17.5					
DV30	Double seal	22	25	24.5					
	Protector	22	19.5	19					
	Standard*	14	15	15					
DV35	Double seal	22	25	24.5					
	Protector	22	21.5	22					
	Standard*	18	22	21.5					
DV45	Double seal	22	32	32					
	Protector	28	28	30					
	Standard*	18	20	20					
DV55	Double seal	22	32	32					
DV15 DV20 DV25 DV30 DV35 DV45	Protector	28	28	30					

*) NSK K1-L units are mounted as a standard specification for DV models.

**) A connector is required for grease fitting. Please contact NSK

***) Only available for AN and BN type ball slides.

A205 A206

7. Dust-resistant components

(1) Standard specification

Under normal applications, the DV model can be used without modification thanks to its dust resistance. To keep foreign matter from entering inside the ball slide, the DV model has an end seal on both ends and bottom seals at the bottom.

Two NSK K1-L lubrication units, one at each end, are installed as standard.

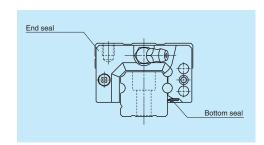


Fig. 13

Table 9 Seal friction per ball slide (maximum value)

lat	Unit: N											
Model Size	Model Size 15 20 25 30 35 45											
DV	11	13	14	17	23	33	44					

(2) Double seal and protector

For DV Models, double-seals and protectors can be installed only before shipping from the factory. Please consult with NSK when double seals or protectors are required.

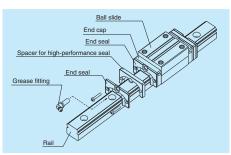
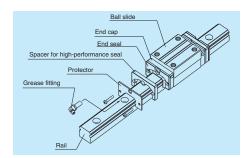
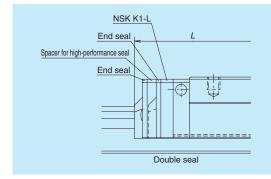


Fig. 14 Double seal

Table 10 shows the ball slide length when a double seal set and a protector are installed.




Fig. 15 Protector

NSK

Table 10 Dimensions with optional dust-resistant components installed

Unit:	mm	ı

DV15 Stand Lon	Ball slide	Ball slide	Ball slide length L						
woder no.	length	shape code	Standard	Double seal installation	Protector installation				
D\/1E	Standard type	AN, EM	70.6	81.6	77				
DV 15	Long type	BN, GM	89.6	100.6	96				
DV20	Standard type	AN, EM	87.4	100.4	94.2				
	Long type	BN, GM	109.4	122.4	116.2				
D\/25	Standard type	AN, AL, EM	97	110	104.4				
DV25	Long type	BN, BL, GM	125	138	132.4				
	Standard type	AN, AL	104.4	120.4	114.8				
DV30	Staridard type	EM	117.4	133.4	127.8				
	Long type	BN, BL, GM	143.4	159.4	153.8				
D//2E	Standard type	AN, AL, EM	128.8	144.8	139.2				
DV35	Long type	BN, BL, GM	162.8	178.8	173.2				
DV/45	Standard type	AN, AL, EM	161.4	180.4	174.2				
DV43	Long type	BN, BL, GM	125 138 104.4 120. 117.4 133. 143.4 159. 128.8 144. 162.8 178. 161.4 180. 193.4 212. 185.4 204.	212.4	206.2				
DV65	Standard type	AN, AL, EM	185.4	204.4	198.2				
D V 55	Long type	BN, BL, GM	223.4	242.4	236.2				

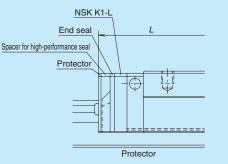


Fig. 16

(3) Caps to plug the rail mounting bolt hole Table 11 Caps to plug rail bolt hole

Model	No	Bolt to	Сар	Quantity		
WIOGCI	140.	secure rail	reference No.	/case		
DV1	5	M4	LG-CAP/M4	20		
DV2	.0	M5	LG-CAP/M5	20		
DV2	:5	M6	LG-CAP/M6	20		
DV30, [DV35	M8	LG-CAP/M8	20		
DV4	5	M12	LG-CAP/M12	20		
DV5	5	M14	LG-CAP/M14	20		

(4) Inner seal

Inner seals are only available for the models shown below.

Table 12

Model	Model No.
DV	DV20, DV25, DV30, DV35, DV45, DV55

8. Design Precautions

Because the product is used under severe operating conditions that require high-performance end seals, please inform NSK about your service conditions using the technical data sheet on page A144.

Dust-Resistant DV Model

9. Reference number

A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

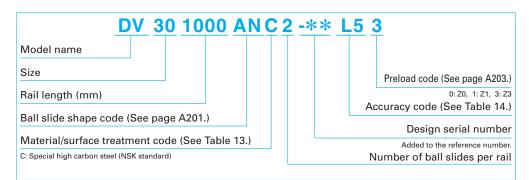


Table 13 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard) + counterbores on a rail top surface
D	Special high carbon steel with surface treatment + counterbores on a rail top surface
V	Special high carbon steel (NSK standard) + tapped holes on a rail bottom surface
W	Special high carbon steel with surface treatment + tapped holes on a rail bottom surface
Z	Other, special

Table 14 Accuracy code

Accuracy	With NSK K1-L
Ultra precision grade	L3
Super precision grade	L4
High precision grade	L5
Precision grade	L6
Normal grade	LN

Note: Refer to page A58 for details on NSK K1-L lubrication units.

10. Dimensions DV-AN (High-load / Standard) DV-BN (Super-high-load / Long)

DV 30 1000 ANC 2 -** L5 3

Model name

Size

Ball slide shape code (See page A201.)

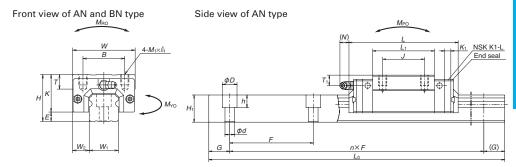
Material/surface treatment code (See Table 13.)

C: Special high carbon steel (NSK standard)

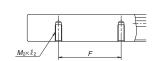
DV 30 1000 ANC 2 -** L5 3

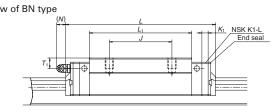
Preload code (See page A203.)

Accuracy code (See page A203.)


Design serial number

Added to the reference number.


Number of ball slides per rail


	A	ssem	bly		Ball slide												
Model No	Height		Width	Length	Mounting hole							Grease fitting			Width	Height	
Wicdorivo	Н	_	147	147	,	_	١,		,	V	_	V	llala aisa	_		147	,,
	Н	Ε	W_2	W	L	В	J	$M_1 \times \text{pitch} \times \ell_1$	L ₁	K	1	<i>K</i> ₁	Hole size	I_1	Ν	W_1	H_1
DV15AN DV15BN	28	4.6	9.5	34	70.6〈 77〉 89.6〈 96〉	26	26	M4×0.7×6	39 58	23.4	8	4.5	φ 3	8.5	1 〈 8.2〉	15	15
DV20AN DV20BN	30	5	12	44	87.4 (94.2) 109.4 (116.2)	32	36 50	M5×0.8×6	50 72	25	12	4.5	M6×0.75	5	11.1 (12.3)	20	18
DV25AN DV25BN	40	7	12.5	48	97 (104.4) 125 (132.4)	35	35 50	M6×1×9	58 86	33	12	5	M6×0.75	10	9.6 (12.9)	23	22
DV30AN DV30BN	45	9	16	60	104.4 (114.8) 143.4 (153.8)	40	40 60	M8×1.25×10	59 98	36	14	5	M6×0.75	10	11.4 (14.2)	28	26
DV35AN DV35BN	55	9.5	18	70	128.8 (139.2) 162.8 (173.2)	50	50 72	M8×1.25×12	80 114	45.5	15	5.5	M6×0.75	15	10.9 (13.7)	34	29
DV45AN DV45BN	70	14	20.5	86	161.4 (174.2) 193.4 (206.2)	60	60 80	M10×1.5×17	105 137	56	17	6.5	Rc1/8	20	12.5 (14.1)	45	38
DV55AN DV55BN	80	15	23.5	100	185.4 (198.2) 223.4 (236.2)	75	75 95	M12×1.75×18	126 164	65	18	6.5	Rc1/8	21	12.5 (14.1)	53	44

Notes: 1) Figures inside () apply when equipped with a protector.

Specification for tapped holes on a rail Side view of BN type bottom face

Unit: mm

	Rail					Basic load ratings							We	ight
Pitch		Tapped hole	G	Max.	3)Dyn	amic	Static		Static	nomen	t (N·m)		Ball	Rail
	bolt hole			length	[50km]	[100km]	C_{0}	M _{RO}	N	1 _{PO}	٨	1 _{YO}	slide	
F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	$L_{ m 0max}$	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	4.5×7.5×5.3	M5×0.8×8	20	2 000	17 800	14 200	20 700	108	94.5	575			0.18	1 1 6
					22 800 29 800	18 100 23 600	32 000 32 500	166 219	216 185	1 150 1 140	_		0.26	
60	6×9.5×8.5	M6×1×10	20	3 960	38 000	30 000	50 500	340	420	2 230		1 870		126
60	7×11×9	M6×1×12	20	3 960	42 500	33 500	46 000	360	320	1 840			0.55	1 3 6
	77/17/0	TVIOXIXIZ	20	0 000	57 500	45 500	71 000	555	725	3 700		3 100		
80	9×14×12	M8×1.25×15	20	4 000	51 500	41 000	51 500	490	350	2 290	_	1 920		5.2
	0/14/12	101021.20210	20	+ 000	77 000	61 000	91 500	870	1 030	5 600	865	4 700	1.3	0.2
80	9×14×12	M8×1.25×17	20	4 000	78 500	62 500	80 500	950	755	4 500		3 800		7.2
-00	0/14/12	1010/11.20/17	20	7 00	102 000	81 000	117 000	1 380	1 530	8 350	1 280	7 000	2.1	7.2
105	1/1√20√17	M12×1.75×24	225	3 990	135 000	107 000	140 000	2 140	1 740	9 750	1 460	8 150	3.0	12.3
100	14,20,17	10112 1.75 24	22.5	3 330	164 000	131 000	187 000	2 860	3 000	15 600	2 520	13 100	3.9	12.5
120	16×23×20	M14×2×24	30	3 960	199 000	158 000	198 000	3 600	3 000	16 300	2 510	13 700	4.7	16.9
120	10/23/20	10114/2/24	30	3 300	243 000	193 000	264 000	4 850	5 150	26 300	4 350	22 100	6.1	10.9

³⁾ The basic load ratings comply with the ISO standard. (ISO 14728-1, 14728-2) For long-life DV model, the rated load is multiplied by a coefficient that reflects the effect of life improvement technologies based on these ISO standards.

 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{so} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

A211 A212

²⁾ DV models do not have a ball retainer. Note that balls will fall out when the ball slide is removed from the rail.

DV-AL (High-load / Standard) DV-BL (Super-high-load / Long)

DV 30 1000 AL C 2 -** L5 3

Model name
Size

Rail length (mm)

Ball slide shape code (See page A201.)

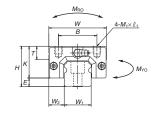
Material/surface treatment code (See Table 13.)

C: Special high carbon steel (NSK standard)

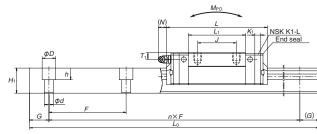
Preload code (See page A203.)

Accuracy code (See Table 14.)

Design serial number

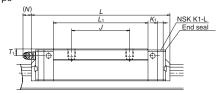

Added to the reference number.

Number of ball slides per rail


	A	ssem	bly		Ball slide												
Model No	Height			Width	Length		Mounting hol						Gre	Grease fitting		Width	Height
	Н	Ε	W_2	W	L	В	J	$M_1 \times \text{pitch} \times \ell_1$	L ₁	K	Т	K ₁	Hole size	<i>T</i> ₁	N	W_1	H ₁
DV25AL DV25BL	36	7	12.5	48	1175 (137.4)			M6×1×6	58 86	29	12	5	M6×0.75	6	9.6 (12.9)	23	22
DV30AL DV30BL	42	9	16	60	104.4 (114.8) 143.4 (153.8)	1	40 60	M8×1.25×8	59 98	33	14	5	M6×0.75	7	11.4 (14.2)	28	26
DV35AL DV35BL	48	9.5	18	70	1162 8 (1 /3 2)	50	50 72	M8×1.25×8	80 114	38.5	15	5.5	M6×0.75	8	10.9 (13.7)	34	29
DV45AL DV45BL	60	14	20.5		1193 4770h 71		1×11	M10×1.5×10	105 137	46	17	6.5	Rc1/8	10	12.5 (14.1)	45	38
DV55AL DV55BL	70	15	23.5	100	185.4 (198.2) 223.4 (236.2)	75	75 95	M12×1.75×13	126 164		15	6.5	Rc1/8	11	12.5 (14.1)	53	44

Notes: 1) Figures inside $\langle \ \rangle$ apply when equipped with a protector.

Front view of AL and BL type


Side view of AL type

Specification for tapped holes on a rail bottom face

Side view of BL type

Unit: mm

	Rail						Basi	c load r	atings				We	ight
Pitch	Mounting	Tapped hole G Max.			3)Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
	bolt hole			length	[50km] [100km]		C _o	M _{RO}	Λ	1 _{PO}	M _{YO}		slide	
F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	$L_{ m 0max}$	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	7×11×9	M6×1×12	20	3 960	42 500	33 500	46 000	360	320	1 840	-		0.46	1 36
00	7,711,70	WIOXIXIZ	20	0 00	57 500	45 500	71 000	555	725	3 700	610	3 100	0.69	0.0
80	9×14×12	M8×1.25×15	20	4 000	51 500	41 000	51 500	490	350	2 290	292	1 920	0.69	5.2
00	5/14/12	1010/1.20/10	20	4 000	77 000	61 000	91 500	870	1 030	5 600	865	4 700	1.16	0.2
80	9×14×12	M8×1.25×17	20	4 000	78 500	62 500	80 500	950	755	4 500	630	3 800	1.2	7.2
00	3/14/12	1010 × 1.25 × 17	20	4 000	102 000	81 000	117 000	1 380	1 530	8 350	1 280	7 000	1.7	7.2
105	1/1/20/17	M12×1.75×24	22.5	3 990	135 000	107 000	140 000	2 140	1 740	9 750	1 460	8 150	2.2	12.3
100	14820817	10112 1.75 24	22.5	3 330	164 000	131 000	187 000	2 860	3 000	15 600	2 520	13 100	2.9	12.3
120	16×23×20	M14×2×24	30	3 960	199 000	158 000	198 000	3 600	3 000	16 300	2 510	13 700	3.7	16.9
120	10/23/20	1011472724	30	3 900	243 000	193 000	264 000	4 850	5 150	26 300	4 350	22 100	4.7	10.9

³⁾ The basic load ratings comply with the ISO standard. (ISO 14728-1, 14728-2) For long-life DV model, the rated load is multiplied by a coefficient that reflects the effect of life improvement technologies based on these ISO standards.

 C_{so} , the basic dynamic load rating for 50 km rated fatigue life C_{roo} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

A213 A214

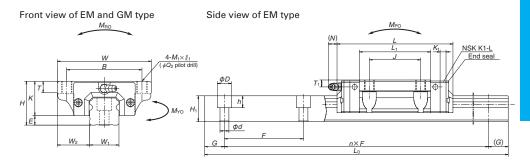
²⁾ DV models do not have a ball retainer. Note that balls will fall out when the ball slide is removed from the rail.

DV-EM (High-load / Standard) DV-GM (Super-high-load / Long)

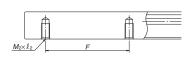
DV 30 1000 EMC 2 -** L5 3

Model name
Size

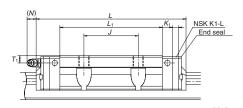
Rail length (mm)
Ball slide shape code (See page A201.)


Material/surface treatment code (See Table 13.)
C: Special high carbon steel (NSK standard)

Preload code (See page A203.)
0: 20, 1: 21, 3: 23
Accuracy code (See Table 14.)


Design serial number
Added to the reference number.
Number of ball slides per rail

	As	ssem	nbly					Ва	ll slid	е								
Model No	Height			Width	Length		Ν	Nounting hole						Gre	ease	fitting	Width	Height
Wiodel No	Н	Ε	W_2	W	L	В	J	$M_1 \times \text{pitch} \times \ell_1$	Q_2	L ₁	К	Т	<i>K</i> ₁	Hole size	<i>T</i> ₁	Ν	W_1	H_1
DV15EM DV15GM	24	4.6	16	47	70.6 〈 77〉 89.6 〈 96〉	38	30	M5×0.8×7	4.4	39 58	19.4	8	4.5	ø 3	4.5	1 〈 8.2〉	15	15
DV20EM DV20GM	30	5	21.5	63	87.4 (94.2) 109.4 (116.2)	53	40	M6×1×9.5	5.3	50 72	25	10	4.5	M6×0.75	5	11.1 (12.3)	20	18
DV25EM DV25GM	36	7	23.5	70	97 (104.4) 125 (132.4)	57	45	M8×1.25×10	6.8	58 86	29	11	5	M6×0.75	6	9.6 (12.9)	23	22
DV30EM DV30GM	1 /1.7	9	31	90	117.4 (127.8) 143.4 (153.8)	72	52	M10×1.5×12	8.6	72 98	33	11	5	M6×0.75	7	11.4 (14.2)	28	26
DV35EM DV35GM	48	9.5	33	100	1162.8(1/3.2)	82		M10×1.5×13	8.6	80 114	38.5	12	5.5	M6×0.75	8	10.9 (13.7)	34	29
DV45EM DV45GM	60	14	37.5	120	161.4 (174.2) 193.4 (206.2)	100	80	M12×1.75×15	10.5	105 137	46	13	6.5	Rc1/8	10	12.5 (14.1)	45	38
DV55EM DV55GM	70	15	43.5	140	185.4 (198.2) 223.4 (236.2)	116	95	M14×2×18	12.5	126 164	lhh	15	6.5	Rc1/8	11	12.5 (14.1)	53	44


Notes: 1) Figures inside () apply when equipped with a protector.

Specification for tapped holes on a rail bottom face

Side view of GM type

Unit: mm

	Rail						Basi	c load r	atings				We	ight
Pitch		Tapped hole	G	Max.	3)Dyn	amic	Static		Static	nomen	t (N·m)		Ball	Rail
	bolt hole			length	[50km]	[100km]	C _o	M _{RO}	N	1 _{PO}	٨	1 _{YO}	slide	
F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	L_{0max}	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	4.5×7.5×5.3	M5×0.8×8	20	2 000	17 800	14 200	20 700	108	94.5	575			0.17	1.6
	1.0/1/1.0/10.0	1010/0.0/0	20	2 000	22 800	18 100	32 000	166	216	1 150	181	965	0.25	1.0
60	6×9.5×8.5	M6×1×10	20	3 960	29 800	23 600	32 500	219	185	1 140	155	955	0.45	2.6
00	0x9.0x6.0	IVIOXIXIO	20	3 900	38 000	30 000	50 500	340	420	2 230	355	1 870	0.65	2.0
60	7×11×9	M6×1×12	20	3 960	42 500	33 500	46 000	360	320	1 840	267	1 540	0.63	3.6
00	/ / / / / / /	IVIOXIXIZ	20	3 300	57 500	45 500	71 000	555	725	3 700	610	3 100	0.93	3.0
80	9×14×12	M8×1.25×15	20	4 000	59 000	47 000	63 000	600	505	3 150	425	2 650	1.2	5.2
80	3/14/12	1010 × 1.25 × 15	20	4 000	77 000	61 000	91 500	870	1 030	5 600	865	4 700	1.6	5.2
80	9×14×12	M8×1.25×17	20	4 000	78 500	62 500	80 500	950	755	4 500	630	3 800	1.7	7.2
00	3X14X12	1010 X 1.25 X 17	20	4 000	102 000	81 000	117 000	1 380	1 530	8 350	1 280	7 000	2.4	1.2
105	14~20~17	M12×1.75×24	22.5	3 990	135 000	107 000	140 000	2 140	1 740	9 750	1 460	8 150	3.0	12.3
100	14820817	1011221.73224	22.5	3 330	164 000	131 000	187 000	2 860	3 000	15 600	2 520	13 100	3.9	12.3
120	16×23×20	M14×2×24	30	3 960	199 000	158 000	198 000	3 600		16 300		13 700		16.9
120	10/23/20	1011472724	30	3 900	243 000	193 000	264 000	4 850	5 150	26 300	4 350	22 100	6.5	10.9

³⁾ The basic load ratings comply with the ISO standard. (ISO 14728-1, 14728-2) For long-life DV model, the rated load is multiplied by a coefficient that reflects the effect of life improvement technologies based on these ISO standards.

A215 A216

²⁾ DV models do not have a ball retainer. Note that balls will fall out when the ball slide is removed from the rail.

 C_{∞} , the basic dynamic load rating for 50 km rated fatigue life C_{100} , the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

A-4-2.3 **DS Model**

1. Features

(1) Double the life of standard linear guides

DS model is based on our proven, highly reliable standard NS model that feature an optimized groove shape. Applying our special TF heat treatment achieves even longer life.

What is TF (Tough) Technology?

NSK's TF technology is an exclusive heat treatment developed and cultivated over years of experience with rolling bearings and materials. TF technology helps suppress surface flaking on the raceway.

Load ratings are 1.25 times higher and service life is doubled compared to conventional NS model^{*1}. DS linear guide offers greatly improved life at the same size and equal or longer life to the next smallest conventional model, allowing for equipment downsizing.

*1: Representative values for model.

(2) Ball circulation path with excellent highspeed property

By reexamining the design for the ball circulation path, we have attained smooth ball circulation and reduced noise. DS models are suited for high-speed applications same as NS models.

(3) All mounting dimensions are the same as the NS Model

The dimensions surrounding the mounting (assembled dimensions), such as mounting height, width, mounting hole diameter/pitch, etc. of the DS model are identical to the NS model, allowing for easy replacement without design changes.

(4) High self-aligning capability (rolling direction)

Similar to a DF arrangement of angular contact bearings, DS models offer large self-aligning capability with the internal intersection of the contact lines of the balls and grooves reducing moment rigidity.

This increases the capacity to absorb errors in installation.

(5) High vertical load carrying capacity

The contact angle is set at 50 degrees, thus increasing load carrying capacity as well as rigidity in the vertical direction.

(6) High resistance against impact load

The bottom ball groove forms a Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2.

Vertical load is generally carried by the top rows at two contact points, but with this design, the bottom rows also carry load when a large impact load is applied vertically as shown in **Fig. 3**. This assures high resistance to impact load.

(7) High accuracy

As shown in **Fig. 4**, fixing the measuring rollers to the ball grooves is simple thanks to the Gothic arch groove. This makes for easy and accurate measuring of ball grooves.

(8) Easy to handle and designed with safety in mind.

Balls are retained in the retainer and do not fall out when the ball slide is withdrawn from the rail.

(9) Abundant variations and sizes

The DS model comes in several sizes and ball slide shapes, allowing for use in a variety of applications.

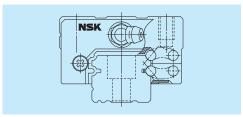


Fig. 1 DS Model

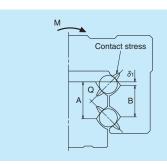


Fig. 2 Enlarged illustration of the offset Gothic arch groove

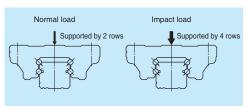


Fig. 3 When load is applied

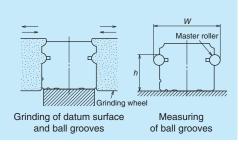


Fig. 4 Rail-grinding and measuring

2. Ball slide shape

Ball slide shape code	Shape/installation method	Type (Upper row, Rating: L Medium-load Standard	ower row, Ball slide length) High-load Long
AL CL		CL L ₁	AL L1
EM JM		JM L ₁	EM L ₁

3. Accuracy and preload

(1) Running parallelism of ball slide

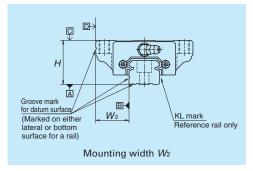
Table 1	Unit: µm
	σα μ

					Ome pm
Accuracy		Pre	loaded assem	bly	
Rail length (mm) over or less	Ultra	Super precision P4	High precision P5	Precision grade P6	Normal grade PN
- 50	2	2	2	4	5
50 – 80	2	2	3	4	5
80 – 125	2	2	3	4	5
125 – 200	2	2	3.5	5	6
200 – 250	2	2.5	4.5	6	7.5
250 – 315	2	2.5	5	6.5	8.5
315 – 400	2	3	5.5	7	9.5
400 - 500	2	3	6	7.5	11
500 - 630	2	3.5	6.5	8.5	12
630 - 800	2	4	7	9.5	13
800 – 1 000	2.5	4.5	7.5	10	15
1 000 – 1 250	3	5	8.5	12	16
1 250 – 1 600	3.5	5.5	9.5	13	17
1 600 – 2 000	4	6.5	11	14	19
2 000 – 2 500	4.5	7.5	12	16	21
2 500 – 3 150	5.5	8.5	13	18	23
3 150 – 4 000	6	9.5	14	19	25

(2) Accuracy standard

The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades.

Tolerance of preloaded assembly


referance of preferance accomisty									
Table 2									
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN				
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±8 3	±10 5	±20 7	±40 15	±80 25				
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±10 3	±15 7	±25 10	±50 20	±100 30				
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		S	ee Table 1, Fig.	5					

(3) Combinations of accuracy and preload

Table 3

			Ac	curacy gra	de	
		Ultra precision	Super precision	High precision	Precision grade	Normal grade
Wi	thout NSK K1-L lubrication unit	P3	P4	P5	P6	PN
Wi	th NSK K1-L lubrication unit	L3	L4	L5	L6	LN
With	n NSK K1 for food and medical equipment	F3	F4	F5	F6	FN
	Fine clearance					
	Z0					
Preload	Slight preload					
rel	Z1	0				
	Medium preload					
	Z3					_

(4) Assembled accuracy

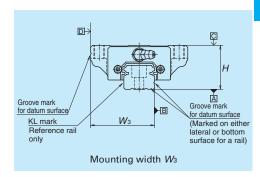


Fig. 5

(5) Preload and rigidity

We offer three levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0.

· Preload and rigidity of preloaded assembly

Table 4

			I able 4				
		DI-	l /NI\		Rigidity	(N/µm)	
	Model No.	Preio	ad (N)	Vertical	direction	Lateral	direction
	Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload
		Z1	Z3	Z1	Z3	Z1	Z3
	DS15 AL, EM	69	390	127	226	88	167
oad	DS20 AL, EM	88	540	147	284	108	206
High-load	DS25 AL, EM	147	880	206	370	147	275
Hig	DS30 AL, EM	245	1 370	255	460	186	345
	DS35 AL, EM	345	1 960	305	550	216	400
ō	DS15 CL, JM	49	294	78	147	59	108
Medium-load	DS20 CL, JM	69	390	108	186	78	137
Ü	DS25 CL, JM	98	635	127	235	88	177
ledi	DS30 CL, JM	147	980	147	275	108	206
Σ	DS35 CL, JM	245	1 370	186	335	137	245

Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero.

However, Z0 of PN grade is 0 to 15µm.

4. Maximum rail length

Table 5 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade. Table E. Langth limitations of vaile

	Unit: mr											
Model	Size Material	15	20	25	30	35						
DS	Special high carbon steel	2 920	3 960	3 960	4 000	4 000						

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

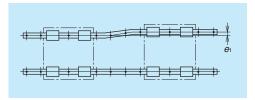
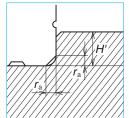


Fig. 6

Fig. 7

Table 6


Unit: µm

Unit: mm

6

Value	Preload			Model No.							
value	Freibau	DS15	DS20	DS25	DS30	DS35					
Permissible values for	Z0	20	22	30	35	40					
parallelism error of two rails e_1	Z1	15	17	20	25	30					
parallelisiti ettoi oi two talis e _i	Z3	12	15	15	20	25					
Permissible values for	Z0	375 μm/500 mm									
height error of two rails e_2	Z1, Z3	330 µm/500 mm									

(2) Shoulder height of the mounting surface and corner radius r

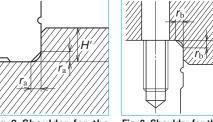


Table 7 Corner radius (maximum) Shoulder height Model No. H' DS15 0.5 0.5 4 DS20 4.5 0.5 0.5 DS25 0.5 0.5 5 DS30 0.5 0.5 6 DS35 0.5 0.5

Fig. 8 Shoulder for the rail datum surface

Fig. 9 Shoulder for the ball slide datum surface

6. Maximum allowable speed

Table 8 indicates the maximum allowable speed for 10,000 km operation when using an DS model under normal conditions. However, the maximum allowable speed can be affected by accuracy of installation, operating temperature, external load, etc. If the operation is made exceeding the permissible distance and speed, please consult NSK.

Table 8 Maximum allowable speed Unit: m/min

Size Model	15	20	25	30	35
DS			300		

7. Lubrication components

Refer to pages A58 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 10 and Table 9 show grease fittings and tube fittings.

We provide lubrication accessories with an extended thread body length (L) for the addition of dust-resistant accessories such as NSK K1-L lubrication units, double seals and protectors. We provide suitable lubrication accesories for special dust-resistant requirements upon request.

NSK can also provide extended length threads for ease of replenishment.

Please contact NSK if stainless lubrication accessories are required.

(2) Mounting position of lubrication accessories

The standard position for grease fittings is at the end face of the ball slide, but we can mount them on the side of the end cap as an option. (Fig. 11)

Please consult NSK for the installation of grease or tube fittings to the ball slide body.

Using a piping unit with thread of $M6 \times 1$, requires a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

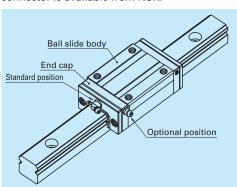


Fig. 11 Mounting position of lubrication accessories

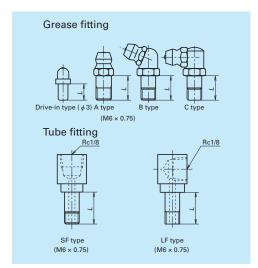


Fig. 10 Grease fitting and tube fitting

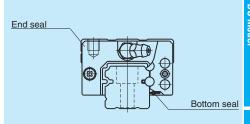
		Table 9	l	Jnit: mm
Model	Dust-resistant		ension <i>L</i>	
No.	specification	Grease fitting		fitting
INO.	specification	/Drive-in type	SF type	LF type
	Standard	5	-	-
DS15	With NSK K1-L	10	-	_
פופט	Double seal	*	_	_
	Protector	*	_	_
	Standard	5	_	_
DS20	With NSK K1-L	10	-	_
D320	Double seal	8	-	_
	Protector	8	_	_
	Standard	5	6	6
DS25	With NSK K1-L	12	11	11
D325	Double seal	10	9	9
	Protector	10	9	9
	Standard	5	6	6
DS30	With NSK K1-L	14	12	13
D330	Double seal	12	10	11
	Protector	12	10	11
	Standard	5	6	6
DS35	With NSK K1-L	14	12	13
טטטט	Double seal	12	10	11
	Protector	12	10	11

^{*)} A connector is required for this model. Please contact NSK.

8. Dust-resistant components

(1) Standard specification

Under normal applications, the DS model can be used without modification thanks to its dust resistance. As standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.



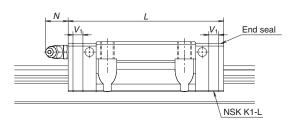

Fig. 12

Table 10 Seal friction per ball slide (maximum value)

					Unit: N
Model Size	15	20	25	30	35
DS	8	9	9	9	10

(2) NSK K1-L[™] and NSK K1[™] lubrication units for food processing machinery/ medical equipment

Table 11 shows linear guide dimensions when equipped with NSK K1-L lubrication units.

Table 11 Dimensions when equipped with NSK K1-L lubrication units Unit: mm

Model No.	Ball slide length	Ball slide shape code	Standard ball slide length	Ball slide length with two NSK K1-L units <i>L</i>	Thickness of single NSK K1-L unit V ₁	Protrusion of grease fitting N	
DS15	Standard	AL, EM	56.8	66.4	4.8	(5)	
D315	Short	CL, JM	40.4	50	4.0	(5)	
DS20	Standard	AL, EM	65.2	75.8	5.3	(14)	
D320	Short	CL, JM	47.2	57.8	5.5	(14)	
DS25	Standard	AL, EM	82	92.2	5.3	(14)	
D325	Short	CL, JM	59.6	70.2	5.5	(14)	
DS30	Standard	AL, EM	96.4	108.4	- 6	(14)	
D530	Short	CL, JM	67.4	79.4		(14)	
DS35	Standard	AL, EM	108	121	6.5	(1.4)	
D335	Short	CL, JM	77	90	0.5	(14)	

Notes: 1) When using NSK K1 for food processing machinery/medical equipment, refer to Table 12.

2) Slide length when equipped with NSK K1-L = (standard ball slide length) + (V₁ thickness of single NSK K1-L unit) × (number of K1-L units).

Table 14 Protector set

Table 13 Double seal set Increased Reference No. Model No thickness V2 With connector Without connector (mm) **DS15** * LS15WS-01 2.8 **DS20** LS20WS-01 LS20WSC-01 2.5 DS25 LS25WS-01 LS25WSC-01 2.8 **DS30** LS30WS-01 LS30WSC-01 3.6 DS35 LS35WS-01 LS35WSC-01 3.6

Model No.	Referer	nce No.	Increased thickness V ₄
11100011101	Without connector	With connector	(mm)
DS15	LS15PT-01	*	3
DS20	LS20PT-01	LS20PTC-01	2.7
DS25	LS25PT-01	LS25PTC-01	3.2
DS30	LS30PT-01	LS30PTC-01	4.2
DS35	LS35PT-01	LS35PTC-01	4.2

*) For installation of a connector to a drive-in grease fitting, contact NSK.

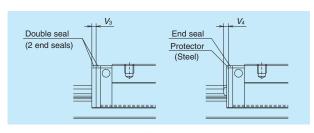


Fig. 15

(5) Caps to plug the rail mounting bolt hole Table 15 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
	secure rail	reference No.	/case
DS15	M3	LG-CAP/M3	20
DS15	M4	LG-CAP/M4	20
DS20	M5	LG-CAP/M5	20
DS25, DS30	M6	LG-CAP/M6	20
DS35	M8	LG-CAP/M8	20

Table 12 shows linear guide dimensions when equipped with NSK K1 for food processing machinery/medical equipment.

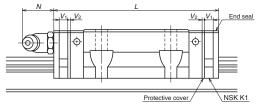


Table 12 Dimensions when equipped with NSK K1 for food processing machinery/medical equipment

Unit: mm

Model No.	Ball slide length	Ball slide shape code	Standard ball slide length	Ball slide length with two NSK K1 installed L	Thickness of single NSK K1	Protective cover thickness V ₂	Protrusion of grease fitting N	
DS15	Standard	AL, EM	56.8	66.4	.4		(5)	
D315	Short	CL, JM	40.4	50	4.0	0.8	(5)	
DS20	Standard	AL, EM	65.2	75.8	4.5	0.8	(14)	
D320	Short	CL, JM	47.2	57.8	4.5	0.0	(14)	
DS25	Standard	AL, EM	81.6	92.2	4.5	0.8	(14)	
D325	Short	CL, JM	59.6	70.2	4.5	0.6	(14)	
DS30	Standard	AL, EM	96.4	108.4	5.0	1.0	(1.4)	
D530	Short	CL, JM	67.4	79.4	5.0	1.0	(14)	
DS35	Standard	AL, EM	108	121	5.5	1.0	(1.4)	
D335	Short	CL, JM	77	90	0.5	1.0	(14)	

Note: Slide length when equipped with NSK K1 for food processing machinery/medical equipment = (standard ball slide length) + $(V_1$ thickness of single NSK K1 unit) × (number of K1 units) + $(V_2$ thickness of the protective cover) × 2.

(3) Double seal

Use a double seal set as shown in **Table 13** when installing an extra seal to completed standard products. (**Fig. 13**)

When installing a grease fitting after the installation of double seals, a connector as shown in Fig.14 is required.

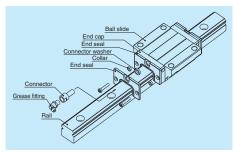


Fig. 13 Double seal

(4) Protector

Use a protector set as shown in **Table 14** when installing a protector to completed standard products. (**Fig. 14**)

When installing a grease fitting after the installation of protectors, a connector as shown in Fig. 14 is required.

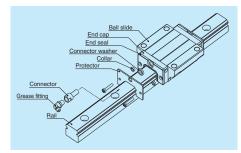
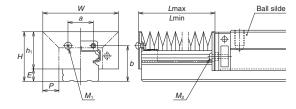


Fig. 14 Protector

A225 A226


(6) Bellows

- A bellows fastener kit, which includes one bellows faster, two M_1 set screws, two M_2 set screws, and two collars for M_2 set screws as shown in Fig. 7.7 on page A69, is supplied with bellows for the ends.
- Middle bellows are supplied with four set screws and four collars.
- Use a bellows fastener kit as shown in Table
 16, when installing bellows to completed standard products.
- When NSK K1-L units, NSK K1 for food and medical equipment, double seals, or protectors are used, the set screws of bellows fastener kits cannot be used.
- Please contact NSK for details.
- Bellows fasteners are available only for horizontal mounting positions; other mounting positions require a sliding plate (see Fig. 7.10 on page A70).
- To fix the bellows to the rail, make tap holes on the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes with a machine screw. NSK prepares tap holes on the rail end surface when bellows are ordered with a linear guide.

Table 16 Bellows fastner kit reference No.

Model No.	Kit reference No.
DS15	LS15FS-01
DS20	LS20FS-01
DS25	LS25FS-01
DS30	LS30FS-01
DS35	LS35FS-01

Dimension tables for bellows DS Model

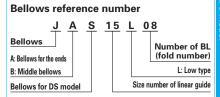


Fig. 16 Dimensions of bellows

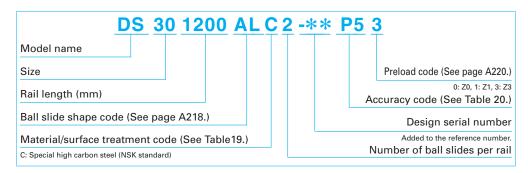
Table 17 Dimensions of bellows

Unit: mm

Model No.	Н	h ₁	Ε	W	Р	а	b	BL minimum length	M₁Tap x depth	<i>M</i> ₂Tap x depth
JAS15L	23.5	18.9	4.6	43	10	8	16.5	17	M3 × 5	M3 × 14
JAS20L	27	21	6	48	10	13	19.7	17	M3 × 5	M2.5 × 14
JAS25L	32	25	7	51	10	15	23.2	17	M3 × 5	M3 × 18
JAS30L	41	32	9	66	15	16	29	17	M4 × 6	M4 × 19
JAS35L	47	36.5	10.5	72	15	22	33.5	17	M4 × 6	M4 × 22

Table 18 Numbers of folds (BL) and lengths of bellows

Unit: mm


Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
Wiodel No.	<u>L</u> min	34	68	102	136	170	204	238	272	306	340
JAS15L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JASTSL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAS20L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JASZUL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAS25L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JASZSL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
14 5201	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAS30L	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAS35L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JASSE	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on both sides, then by dividing the sum by 2.

9. Reference number

A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Table 20 Accuracy code

Accuracy	Standard (Without NSK K1-L)	With NSK K1-L	With NSK K1 for food and medical equipment						
Ultra precision grade	P3	L3	F3						
Super precision grade	P4	L4	F4						
High precision grade	P5	L5	F5						
Precision grade	P6	L6	F6						
Normal grade	PN	LN	FN						

Note: Refer to page A58 for details on NSK K1-L lubrication units and to page A73 for details on NSK K1 lubrication units for food processing machinery/medical equipment.

A229 A230

10. Dimensions DS-CL (Medium-load / Short) DS-AL (High-load / Standard)

DS 30 1200 AL C 2 -** P5 3

Model name

Size

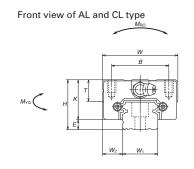
Rail length (mm)

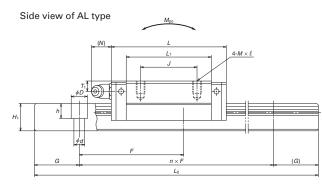
Ball slide shape code (See page A218.)

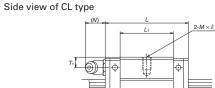
Material/surface treatment code (See Table 19.)

C: Special high carbon steel (NSK standard)

Preload code (See page A220.)


Accuracy code (See Table 20.)


Design serial number


Added to the reference number.

Number of ball slides per rail

	A:	ssemb	oly		Ball slide											
Model No.	Height			Width	dth Length Mounting hole						Grease	fittin	g	Width	Height	
WIOGCI WO.	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	Т	Hole size	T ₁	N	W ₁	H ₁
DS15CL DS15AL	24	4.6	9.5	34	40.4 56.8	26	— 26	M4×0.7×6	23.6 40	19.4	10	\$ 3	6	3	15	12.5
DS20CL DS20AL	28	6	11	42	47.2 65.2	32	 32	M5×0.8×7	30 48	22	12	M6×0.75	5.5	11	20	15.5
DS25CL DS25AL	33	7	12.5	48	59.6 81.6	35	— 35	M6×1×9	38 60	26	12	M6×0.75	7	11	23	18
DS30CL DS30AL	42	9	16	60	67.4 96.4	40	<u>-</u>	M8×1.25×12	42 71	33	13	M6×0.75	8	11	28	23
DS35CL DS35AL	48	10.5	18	70	77 108	50	— 50	M8×1.25×12	49 80	37.5	14	M6×0.75	8.5	11	34	27.5

Unit: mm

Rail					Basic load ratings					We	ight		
Pitch	Mounting	G	Max.	¹¹Dyr	amic	Static		Static	momen	t (N·m)		Ball	Rail
	bolt hole		length	[50km]	[100km]	C_0	MRO	М	PO	M	YO	slide	
F	$d \times D \times h$	(reference)	L_{0max}	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	*4.5×7.5×5.3 3.5×6×4.5	20	2 920	9 150 14 100	7 250 11 200	9 100 16 900	45.5 84.5	24.5 77	196 470	20.5 64.5	165 395	0.14 0.20	1.4
60	6×9.5×8.5	20	3 960	13 400 19 700	10 600 15 600	13 400 23 500	91.5 160	46.5 133	330 755	39 111	279 630	0.19 0.28	2.3
60	7×11×9	20	3 960	22 300 33 000	17 700 26 100	20 800 36 500	164 286	91 258	655 1 470	76 217	550 1 230	0.34 0.51	3.1
80	7×11×9	20	4 000	31 000 48 000	24 700 38 000	29 600 55 000	282 520	139 435	1 080 2 650	116 365	905 2 220	0.58 0.85	4.8
80	9×14×12	20	4 000	43 000 66 500	34 500 52 500	40 000 74 500	465 865	220 695	1 670 4 000	185 580	1 400 3 350	0.86 1.3	7.0

Note: 1) The basic load ratings comply with the ISO standard. (ISO 14728-1, 14728-2) For long-life DS model, the rated load is multiplied by a coefficient that reflects the effect of life improvement technologies based on these ISO standards.

 C_{so} ; the basic dynamic load rating for 50 km rated fatigue life C_{so} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

If you require mounting hole for M3 bolts (Hole size: $3.5 \times 6 \times 4.5$), please specify when ordering.

^{*} Standard mounting hole of DS15 rail is for M4 bolts (Hole size: 4.5 × 7.5 × 5.3).

DS-JM (Medium-load / Short) DS-EM (High-load / Standard)

DS 30 1200 EMC 2 -** P5 3

Model name

Size

Rail length (mm)

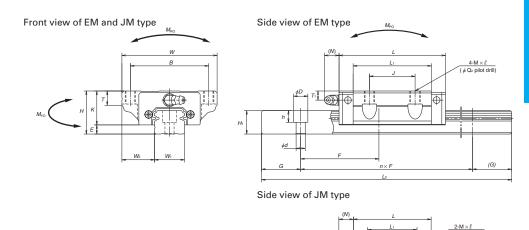
Ball slide shape code (See page A218.)

Material/surface treatment code (See Table 19.)

C: Special high carbon steel (NSK standard)

Preload code (See page A220.)

0: Z0, 1: Z1, 3: Z3


Accuracy code (See Table 20.)

Design serial number

Added to the reference number.

Number of ball slides per rail

	As	ssemb	oly		Ball slide												
Model No.	Height			Width	Length		1	Mounting hole					Grease	fittin	g	Width	Height
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	Q_2	L ₁	K	Т	Hole size	<i>T</i> ₁	Ν	W_1	H ₁
DS15JM DS15EM	24	4.6	18.5	52	40.4 56.8	41	— 26	M5×0.8×7	4.4	23.6 40	19.4	8	ø 3	6	3	15	12.5
DS20JM DS20EM	28	6	19.5	59	47.2 65.2	49	— 32	M6×1×9	5.3	30 48	22	10	M6×0.75	5.5	11	20	15.5
DS25JM DS25EM	33	7	25	73	59.6 81.6	60	— 35	M8×1.25×10		38 60	26	11	M6×0.75	7	11	23	18
DS30JM DS30EM	42	9	31	90	67.4 96.4	72	— 40	M10×1.5×12	8.6	42 71	33	11	M6×0.75	8	11	28	23
DS35JM DS35EM	48	10.5	33	100	77 108	82	— 50	M10×1.5×13	8.6	49 80	37.5	12	M6×0.75	8.5	11	34	27.5

Unit: mm

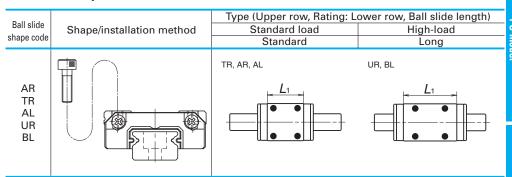
Rail				Basic load ratings					We	ight			
Pitch	Mounting	G	Max.	1)Dyn	amic	Static		Static moment (N·m)				Ball	Rail
	bolt hole		length	[50km]	[100km]	C 0	M _{RO}	М	PO	М	140	slide	
F	$d \times D \times h$	(reference)	L_{0max}	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	*4.5×7.5×5.3 3.5×6×4.5	20	2 920	9 150 14 100	7 250 11 200	9 100 16 900	45.5 84.5	24.5 77	196 470	20.5 64.5	165 395	0.17 0.26	1.4
60	6×9.5×8.5	20	3 960	13 400 19 700	10 600 15 600	13 400 23 500	91.5 160	46.5 133	330 755	39 111	279 630	0.24 0.35	2.3
60	7×11×9	20	3 960	22 300 33 000	17 700 26 100	20 800 36 500	164 286	91 258	655 1 470	76 217	550 1 230	0.44 0.66	3.1
80	7×11×9	20	4 000	31 000 48 000	24 700 38 000	29 600 55 000	282 520	139 435	1 080 2 650	116 365	905 2 220	0.76 1.2	4.8
80	9×14×12	20	4 000	43 000 66 500	34 500 52 500	40 000 74 500	465 865	220 695	1 670 4 000	185 580	1 400 3 350	1.2 1.7	7

Note: 1) The basic load ratings comply with the ISO standard. (ISO 14728-1, 14728-2) For long-life DS model, the rated load is multiplied by a coefficient that reflects the effect of life improvement technologies based on these ISO standards.

Coo, the basic dynamic load rating for 50 km rated fatigue life Coo, the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

* Standard mounting hole of DS15 rail is for M4 bolts (Hole size: 4.5 × 7.5 × 5.3).

If you require mounting hole for M3 bolts (Hole size: $3.5 \times 6 \times 4.5$), please specify when ordering.


	V	

1. PU Model	A237
2. LU Model	A247
3. PE Model	A259
4. LE Model	A269
5. Miniature LH	
Model	A283
6. LL Model	A293

A-4-3 Miniature Series

A235 A236

2. Ball slide shape

A-4-3.1 PU Model (Miniature type)

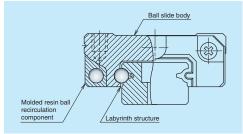


Fig. 1

1. Features

(1) Motion performance

A newly designed recirculation component facilitates smooth circulation of steel balls.

(2) Lightweight

The ball slide is approximately 20% lighter than the LU Model thanks to resin parts incorporated into its design.

(3) Reduced noise intensity

Resin parts used in ball recirculation components reduce collision noise between the steel balls and inner wall.

(4) Low dust generation

The guide structure is designed to prevent dust generation.

(5) Excellent dust resistance

PU model linear guides are designed to minimize the clearance between the rail sides and slide inner walls to help prevent foreign matter from entering.

(6) High corrosion resistance

Highly corrosion-resistant martensite stainless steel comes standard, providing excellent resistance to corrosion.

(7) Easy to handle

Designed for safety with a retainer that prevents steel balls from dropping out of the ball slide even when the slide is removed from the rail.

(8) Long-term, maintenance-free operation

PU model guides equipped with the NSK K1 lubrication units realize long term, maintenance-free operation.

(9) Fast delivery

A lineup of interchangeable rails and ball slides facilitates fast delivery.

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1

п	l١	n i t	٠,	ır

				σ μ		
Preload	Preloaded assembly type (not interchangeable)					
il length (mm) Super precision P4		High precision Precision grade P6		Normal grade PC		
2	2	4.5	6	6		
2	3	5	6	6		
2	3.5	5.5	6.5	6.5		
2	4	6	7	7		
2.5	5	7	8	8		
2.5	5	8	9	9		
3	6	9	11	11		
3	6	10	12	12		
3.5	7	12	14	14		
4.5	8	14	16	16		
5	9	16	18	18		
6	10	17	20	20		
	Super precision P4 2 2 2 2 2 2.5 2.5 3 3 3.5 4.5 5	Super precision P4 High precision P5 2 2 2 2 3 2 3.5 2 4 2.5 5 2.5 5 3 6 3 6 3 6 3.5 7 4.5 8 5 9	Super precision P4 High precision P5 Precision grade P6 2 2 4.5 2 3.5 5.5 2 4 6 2.5 5 7 2.5 5 8 3 6 9 3 6 10 3.5 7 12 4.5 8 14 5 9 16	Super precision P4 High precision P5 Precision grade P6 Normal grade PN 2 2 4.5 6 2 3 5 6 2 3.5 5.5 6.5 2 4 6 7 2.5 5 7 8 2.5 5 8 9 3 6 9 11 3 6 10 12 3.5 7 12 14 4.5 8 14 16 5 9 16 18		

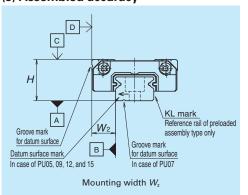
A237 A238

(2) Accuracy standard

The preloaded assembly has four accuracy grades; Super precision P4, High precision P5, Precision grade P6, and normal grade PN, while the interchangeable type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the interchangeable type.

· Tolerance of preloaded assembly


	Table 2 Unit: μm							
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN				
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25				
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30				
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2							

Tolerance of interchangeable type: Normal grade PC

Tabl	e 3 Unit: μm			
Model No. Characteristics	PU09, 12 and 15			
Mounting height H	±20			
Variation of mounting height H	15① 30②			
Mounting width W_2 or W_3	±20			
Variation of mounting width W_2 or W_3	20			
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2			

Notes: ① Variation on the same rail ② Variation on multiple rails

(3) Assembled accuracy

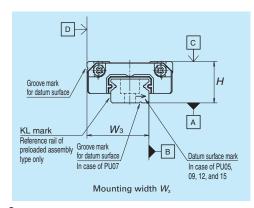


Fig. 2

Note: Please refer to page A77 for marks on the datum surfaces.

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0 for preloaded assembly type, along with Fine clearance ZT for interchangeable type. Values for preload and rigidity of the 🔁 preloaded assembly type are shown in Table 4. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

	Table 4								
		Preload	Rigidity						
	Model No.	(N)	(N/µm)						
		Slight preload (Z1)	Slight preload (Z1)						
ard	PU09TR	0 – 10	30						
Standard	PU12TR	0 – 17	33						
Sta	PU15AL	0 – 33	45						
ad	PU09UR	0 – 14	46						
High-load	PU12UR	0 – 25	52						
ΞĒ	PU15BL	0 – 51	75						

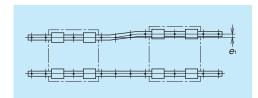
Note: Clearance of Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

Clearance of interchangeable type

	Tab	le 5 Unit: μm
Model No.		Fine clearance ZT
ard	PU09TR	
Standard	PU12TR	3 or less
Sta	PU15AL	
oad	PU09UR	
High-load	PU12UR	5 or less
퍞	PU15BL	

4. Maximum rail length

Table 6 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.


Table 6 Length limitations of rails

Unit: mm										
Madal	Size									
Model	Material	09	12	15						
PU	Stainless steel	600	800	1 000						

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

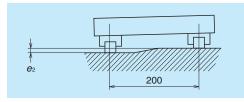
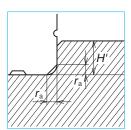



Fig. 3

Fig. 4

Table 7 Unit:											
Value	Preload										
value	rieloau	PU09	PU12	PU15							
Permissible values for	Z0, ZT	15	20	25							
parallelism error of two rails e_1	Z1	13	15	21							
Permissible values for	Z0, ZT	70, ZT 150 μm/200 mm									
height error of two rails e_2 Z1 90 μ m/200 mm											

(2) Shoulder height of the mounting surface and corner radius r

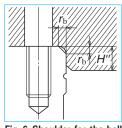


Fig. 5 Shoulder for the rail datum surface Fig. 6 Shoulder for the ball slide datum surface

Uni											
Model No.	Corner radius	s (maximum)	Shoulder height								
Model No.	ra	r _b	H′	H"*							
PU09	0.3	0.3	1.9	2.6							
PU12	0.3	0.3	2.5	3.4							
PU15	0.3	0.5	3.5	4.4							

Table 8

6. Lubrication accessories

A drive-in grease fitting can be selected as an option for model PU15.

For models PU09 to PU12, apply grease directly to the rail ball grooves using a point nozzle.

Drive-in type

7. Dust-resistant components

(1) Standard specification

An end seal is provided on both ends of the ball slide as a standard feature. Seal friction per standard ball slide is shown in **Table 9**.

Table 9 Seal friction per ball slide (maximum value)

			Unit: N
Model Size	09	12	15
PU	0.5	0.5	0.5

(2) NSK K1[™] lubrication unit

Table 10 shows the dimensions of linear guides equipped with NSK K1 lubrication units.

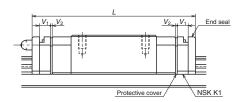
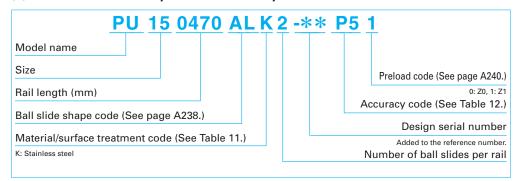


Table 10 Dimensions when equipped with NSK K1 lubrication units $\;$ $_{\mbox{Unit: }mm}$

Model No.	Ball slide length	Ball slide shape code	Standard ball slide length	Ball slide length with two NSK K1 installed <i>L</i>	Thickness of single NSK K1, V ₁	Thickness of protective cover, V_2	
PU09	Standard	TR	30	36.4		0.5	
P009	Long	UR	41	47.4	2.7	0.5	
PU12	Standard	TR	35	42	3	0.5	
PU12	Long	UR	48.7	55.7	3	0.5	
PU15	Standard	AL	43	51.2	3.5	0.6	
	Long	BL	61	69.2	3.5	0.6	

Note: Slide length when equipped with NSK K1 = (standard ball slide length) + (V_1 thickness of single NSK K1 unit) × (number of K1 units) + (V_2 thickness of the protective cover) × 2.

A241 A242


^{*)} H" is the minimum recommended value based on dimension T in the dimension tables.

8. Reference number

A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for interchangeable type

P1U15 0470 RI	KN -** PC T
Interchangeable rail model code	Preload code (See page A240.)
P1U: PU Model interchangeable rail	T: Fine clearance
Size	Accuracy code: PC
Rail length (mm)	PC: Only normal grade is available.
naii leligili (IIIII)	Design serial number
Rail shape code	Added to the reference number.
S: PU09. 12. R: PU15	*Butting rail specification
	N: Non-butting. L: Butting specification
Material/surface treatment code (See Table 11.)	
	*Please consult with NSK for butting rail specification.

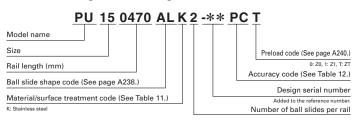
When interchangeable rails and slides are assembled, reference number coding is the same as that for preloaded assemblies. However, only preload code T (fine clearance) may be used (Refer to Page A240.)

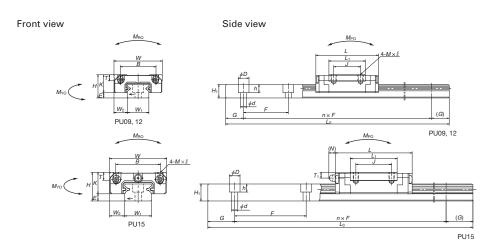
Click!Speedy™ NSK Linear Guide Quick Delivery System uses a new numbering system. For details, please refer to the Click!Speedy general catalog CAT. No. E3191.

Table 11 Material/surface treatment code

Code	Description						
K	Stainless steel						
Н	Stainless steel with surface treatment						
Z	Other, special						

Table 12 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (interchangeable type)	PC	KC	FC


Note: Refer to pages A58 and A73 for details on NSK K1 lubrication units.

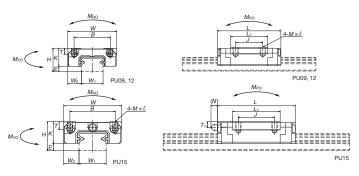
A243 A244

9. Dimensions

PU-TR, AR, AL (Standard load / Standard) PU-UR, BL (High-load / Long)

Assembly Ball slide																
Model No.	Height			Width	Length		Mounting hole					Oil hole			Width	Height
Model No.																
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	T	Hole size	T_1	Ν	W_1	H ₁
PU09TR	10	2.2	5.5	20	30	15	10	M3×0.5×3	19.6	7.8	2.6		_		9	5.5
PU09UR	10	2.2	0.0	20	41	10	16	1410/10/10/10	30.6	7.0	2.0					0.0
PU12TR	13	3	7.5	27	35	20	15	M3×0.5×3.5	20.4	10	3.4				12	7.5
PU12UR	13	3	7.5	21	48.7	20	20	1013.0.3.3.3	34.1	10	3.4			_	12	7.5
PU15AL	16	4	8.5	32	43	25	20	M3×0.5×5	26.2	12	4.4	<i>ф</i> 3	3.2	(3.6)	15	9.5
PU15BL					61		25		44.2			'				

Reference number for ball slide of interchangeable type


PAU 15 AL S -K

Interchangeable ball slide model code
PAU: PU Model interchangeable ball slide
Size
Ball slide shape code (See page A238.)

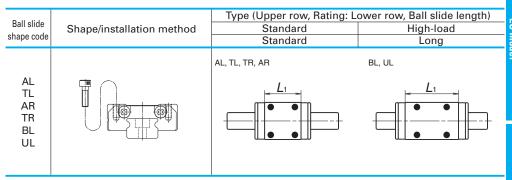
PAU S -K

Option code
4: Equipped with NSK IX

Material code
S: Stainless steel

Reference number for rail of interchangeable type

P1U15 0470 RKN -** PC T Rail Interchangeable rail model code Preload code (See page A240.) P1U: PU Model interchangeable rail T: Fine clearance Size Accuracy code: PC PC: Only normal grade is available. Rail length (mm) Design serial number Added to the reference number. Rail shape code *Butting rail specification S: PU09, 12. R: PU15 N: Non-butting. L: Butting specification Material/surface treatment code (See Table 11.) *Please consult with NSK for butting rail specification.


> > Unit: mm

Rail					Basic load ratings							We	eight
Pitch	Mounting bolt	G	Maximum	²⁾ Dyr	namic	Static		Static	momen	t (N·m)		Ball	Rail
	hole		length	[50km]	[100km]	C 0	MRO	M	PO	М	YO	slide	
F	$d \times D \times h$	(reference)	L_{0max}	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100mm)
20	3.5×6×4.5	7.5	600	1 490	1 180	2 150	9.90	6.10	41.0	6.10	41.0	16	35
20	3.50004.5	7.5	000	2 100	1 670	3 500	16.2	15.6	88.0	15.6	88.0	25	35
25	3.5×6×4.5	10	800	2 830	2 250	3 500	21.1	11.4	73.5	11.4	73.5	32	65
25	3.0004.0	10	000	4 000	3 150	5 700	34.5	28.3	174	28.3	174	53	05
40	3.5×6×4.5	15	1 000	5 550	4 400	6 600	49.5	25.6	190	25.6	190	59	105
40	3.5×6×4.5	15	1 000	8 100	6 400	11 300	84.5	69.5	435	69.5	435	100	105

Note: Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

C₅₀; the basic dynamic load rating for 50 km rated fatigue life C₁₀₀; the basic dynamic load rating for 100 km rated fatigue life

2. Ball slide shape

Specification	Detail	Туре				
Mounting hole	Normal	AL, AR	BL			
Mounting hole	Large	TL, TR	UL			
Ball retainer	Without	AL*, TL	BL*, UL			
Ball retailler	With	AR, TR	-			

^{*)} LU15 is equipped with ball retainer

3. Accuracy and preload

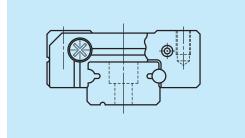
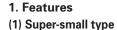
(1) Running parallelism of ball slide

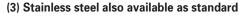
Table 1

Unit: µm

Preloaded assembly type (not interchangeable) Interchangeable type Rail length Super precision High precision Precision grade P5 P6 Normal grade PC Normal grade (mm) over or less 50 2 2 4.5 6 6 50 – 80 2 3 6 6 80 - 125 2 3.5 5.5 6.5 6.5 125 - 200 2 4 6 7 7 200 - 250 2.5 5 8 8 250 - 315 2.5 5 8 9 9 315 - 4003 6 9 11 11 3 400 - 500 6 10 12 12 500 - 630 3.5 7 12 14 14 630 - 800 4.5 8 14 16 16 800 - 10005 9 16 18 18 1000 - 12506 10 17 20 20

A-4-3.2 LU Model (Miniature type)


Fig. 1 LU Model

This compact guide owes its design to the single ball groove on both right and left sides (Gothic arch).

(2) Equal load carrying capacity in vertical and lateral directions

The contact angle is set at 45 degrees, thus facilitating equal load carrying capacity in vertical and lateral directions. This also provides equal rigidity in both directions.

Items made of martensitic stainless steel also available as standard.

(4) Models with ball retainers available

Ball retaining models (slide shape code AR and TR), including interchangeable types and LU15, come with a ball retainer to prevent balls from falling out when the slide is removed from the rail.

(5) Fast delivery

Interchangeable rails and ball slides are available. (LU09 to LU15)

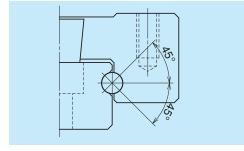


Fig. 2 Ball contact

(2) Accuracy standard

The preloaded assembly type has four accuracy grades; Super precision P4, High precision P5, Precision P6, and Normal grade PN, while the interchangeable type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type, while Table 3 shows the accuracy standard for the interchangeable type.

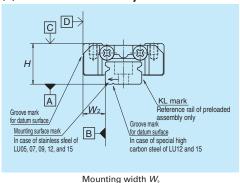

· Tolerance of preloaded assembly

Table 2 Uni										
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN						
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25						
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30						
Running parallelism of surface C to surface A Running parallelism of surface D to surface B Refer to Table 1 and Fig. 3										

Tolerance of interchangeable type: Normal grade PC

Tabl	e 3 Unit: μm
Accuracy grade Characteristics	LU09, 12, 15
Mounting height H	±20
Variation of mounting height H	40
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	40
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Refer to Table 1 and Fig. 3

(3) Assembled accuracy

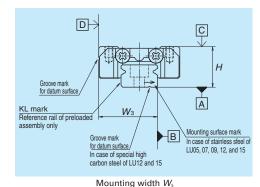


Fig. 3

Note: Please refer to page A77 for marks on the datum surfaces.

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0 for the preloaded assembly type and Fine clearance ZT for the interchangeable type. Values for preload and rigidity of the \Xi preloaded assembly type are shown in Table 4. Rigidities are for the median of the preload range.

Preload and rigidity of preloaded assembly

Table 4

		Preload	Rigidity
	NA I - I NI -	(N)	(N/µm)
	Model No.	Slight preload	Slight preload
		(Z1)	(Z1)
	LU05 TL	0 - 3	15
96	LU07 AL	0 - 8	22
typ	LU09 AL, TL	0 – 12	26
lard	LU09 AR, TR	0 – 10	30
Standard type	LU12 AL, TL	0 – 17	33
St	LU12 AR, TR	0 – 17	33
	LU15 AL	0 – 33	45
ad	LU09 BL, UL	0 – 17	43
High-load type	LU12 BL, UL	0 – 25	52
Hig	LU15 BL	0 – 51	75

Note: Clearance of Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

However, the clearance of the Z0 of PN grade is 3 to 10 μm .

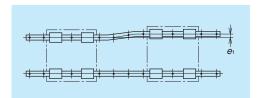
· Clearance of interchangeable type

Tab	o le 5 Unit: μm
Model No.	Fine clearance ZT
LU09	
LU12	0 – 15
LU15	

4. Maximum rail length

Table 6 shows the limitations of rail length.

However, the limitations vary by accuracy grades.


Table 6 Length limitation of rails

Unit: mm											
Model	Size Material	05	07	09	12	15					
LU	Special high carbon steel	_	_	1 200	1 800	2 000					
	Stainless steel	210	375	600	800	1 000					

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

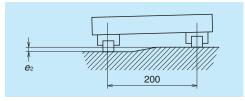


Fig. 4

Fig. 5

Table 8

0.2

0.3

0.3

0.3

0.5

Corner radius (maximum)

0.2

0.2

0.3

0.3

0.3

Unit: mm

3

3

4

Shoulder height

0.7

1.2

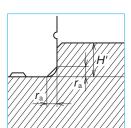
1.9

2.5

3.5

Table 7 Unit: μm										
Value	Dualaad	Model No.								
value	Preload	LU05	LU07	LU09	LU12	LU15				
Permissible values for	Z0, ZT	10	12	15	20	25				
parallelism error of two rails e_1	Z1	7	10	13	15	21				
Permissible values for	Z0, ZT		150 μm/200 mm							
height error of two rails e_2	Z1		90 μm/200 mm							

Model No LU05


LU07

LU09

LU12

LU15

(2) Shoulder height of the mounting surface and corner radius r

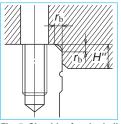


Fig. 6 Shoulder for the rail datum surface

Fig. 7 Shoulder for the ball slide datum surface

6. Lubrication accessories

There is no standard grease fitting for LU05 to LU15.

For the LU Model, apply grease directly to the rail ball grooves using a point nozzle.

7. Dust-resistant components

(1) Standard specification

An end seal is provided on both ends of the ball slide as a standard feature. LU05TL, LU07AL, LU09AL, and LU09TL can install the end seal as an option.

· Seal friction per standard ball slide is shown in Table 9.

Table 9 Seal friction per ball slide (maximum value)

					Unit: N
Model Size	05	07	09	12	15
LU	0.3	0.3	0.5	0.5	0.5

(2) NSK K1[™] lubrication unit

Table 10 shows dimensions when installed with NSK K1 lubrication units.

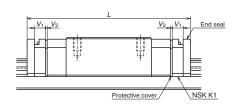
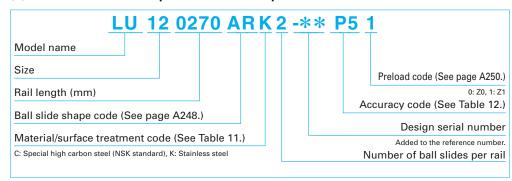


Table 10 Dimensions when equipped with NSK K1 lubrication units

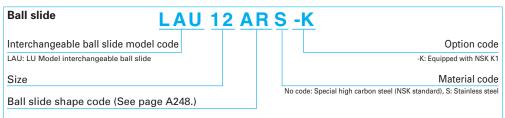
Unit: mm

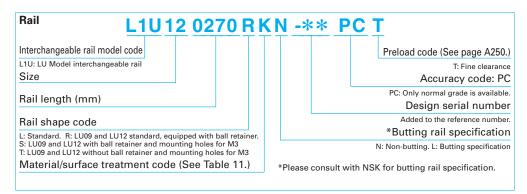
Model No.	Ball slide length	Ball slide shape code	Standard ball slide length	Ball slide length with two NSK K1 installed L	Thickness of single NSK K1	Protective cover thickness V_2
LU05	Standard	TL	18*	24.4	2.0	0.5
LU07	Standard	AL	20.4*	29.4	2.5	0.5
	Standard	AR, TR	30	36.4		
LU09	Standard	AL, TL	26.8*	34.2	2.7	0.5
	Long	BL, UL	41	47.4		
	Standard	AR, TR	35.2	42.2		
LU12	Standard	AL, TL	34	41	3.0	0.5
	Long	BL, UL	47.5	54.5		
LU15	Standard	AL	43.6	51.8	3.5	0.6
LU15	Long	BL	61	69.2	3.5	0.6

^{*)} Standard ball slide length of LU05TL, LU07AL, LU09AL and LU09TL does not include the thickness of the end seal (1.5 mm). However, it includes the height of the screw head for end cap installation (Included length – LU05, 0.8 mm; LU07, no projection; LU09, 1 mm)


Note: 1) Slide length when equipped with NSK K1 = (standard ball slide length) + (V_1 thickness of single NSK K1 unit) × (number of K1 units) + (V_2 thickness of the protective cover) × 2.

8. Reference number


A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.


Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for interchangeable type

When interchangeable rails and slides are assembled, reference number coding is the same as that for preloaded assemblies. However, only preload code T (fine clearance) may be used (Refer to Page A250.)

Table 11 Material/surface treatment code

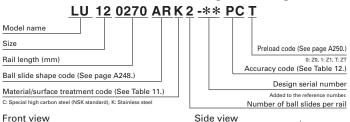
Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

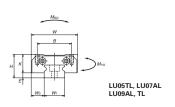
Table 12 Accuracy code

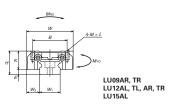
Accuracy	Standard (Without NSK K1)	With NSK K1
Super precision grade	P4	K4
High precision grade	P5	K5
Precision grade	P6	K6
Normal grade	PN	KN
Normal grade (interchangeable type)	PC	KC

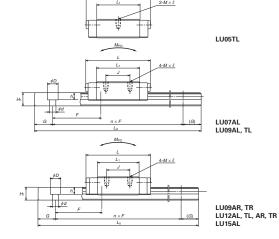
Note: Refer to page A58 for details on NSK K1 lubrication units.

A253 A254


9. Dimensions


LU-AL (Standard load, Standard, Only LU15 is equipped with ball retainer)


LU-TL (Standard load, Standard, Large mounting hole)

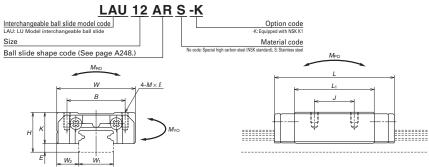

LU-AR (Standard load, Standard, With ball retainer)

LU-TR (Standard load, Standard, Large mounting hole, with ball retainer)

	А	ssemb	ly	Ball slide									
Model No.	Height			Width	Length		Mour	nting hole			Width	Height	Pitch
Wiodel No.	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	$W_{\scriptscriptstyle 1}$	H_1	F
LU05TL	6	1	3.5	12	18	8		M2×0.4×1.5	12	5	5	3.2	15
LU07AL	8	1.5	5	17	20.4	12	8	M2×0.4×2.4	13.6	6.5	7	4.7	15
LU09AL LU09TL	10	2.2	5.5	20	26.8	15	13 10	M2×0.4×2.5 M3×0.5×3	18	7.8	9	5.5	20
LU09AR LU09TR	10	2.2	5.5	20	30	15	13 10	M2×0.4×2.5 M3×0.5×3	20	7.8	9	5.5	20
LU12AL LU12TL	13	3	7.5	27	34	20	15	M2.5×0.45×3 M3×0.5×3.5	21.8	10	12	7.5	25
LU12AR LU12TR	13	3	7.5	27	35.2	20	15	M2.5×0.45×3 M3×0.5×3.5	21.8	10	12	7.5	25
LU15AL	16	4	8.5	32	43.6	25	20	M3×0.5×4	27	12	15	9.5	40

Notes 1) LU05TL, LU07AL, LU09TL, LU09AR, LU09TR, LU12AR and LU12TR come in stainless steel only.

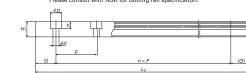
- 2) Ball slide of LU05TL has only two mounting tap holes in the center.
- 3) End seals of LU05TL, LU07AL, LU09AL and LU09TL are available on request.


Reference number for ball slide of interchangeable type

Interchangeable with retainer: LU09 - 12 are AR/TR, LU15 is AL.

LAU-AR (With ball retainer)

LAU-TR (Large mounting hole, with ball retainer)


LAU-AL (LU15 is equipped with ball retainer)

Reference number for rail of interchangeable type

L1U12 02/0 RF	(N -** PC I
Interchangeable rail model code L10: LU Model interchangeable rail Size	Preload code (See page A250.) T: Fine clearance Accuracy code: PC
Rail length (mm)	PC: Only normal grade is available.
Rail shape code	Design serial number
L: Standard. R:LU09 and LU12 standard equipped with ball retainer.	Added to the reference number.
S: LU09 and LU12 with ball retainer and mounting holes for M3 T: LU09 and LU12 without ball retainer and mounting holes for M3	*Butting rail specification
Material/surface treatment code (See Table 11.)	N: Non-butting. L: Butting specification

*Please consult with NSK for butting rail specification.

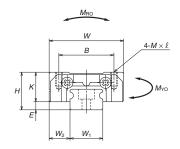
Unit: mm

Rail	il				Basic load ratings							Weight	
Mounting bolt	G	G Max. length		amic	Static		Static	moment	t (N·m)		Ball	Rail	
hole		L_{0max} .	[50km]	[100km]	C 0	M _{RO}	М	PO	М	YO	slide		
$d \times D \times h$	(reference)	() for stainless	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)	
2.3×3.3×1.5	5	— (210)	545	435	740	1.93	1.22	8.85	1.22	8.85	4	11	
2.4×4.2×2.3	5	— (375)	1 090	865	1 370	4.90	2.66	18.6	2.66	18.6	10	23	
2.6×4.5×3 3.5×6×4.5	7.5	1 200 (600)	1 760	1 400	2 220	10.2	6.10	38.5	6.10	38.5	17	35	
2.6×4.5×3 3.5×6×4.5	7.5	— (600)	1 490	1 180	2 150	9.9	6.10	41.0	6.10	41.0	19	35	
3×5.5×3.5 3.5×6×4.5	10	1 800 (800)	2 830	2 250	3 500	21.1	11.4	78.5	11.4	78.5	38	65	
3×5.5×3.5 3.5×6×4.5	10	— (800)	2 830	2 250	3 500	21.1	11.4	81.5	11.4	81.5	38	65	
3.5×6×4.5	15	2 000 (1 000)	5 550	4 400	6 600	49.5	25.6	193	25.6	193	70	105	

⁴⁾ To fix rail of LU05TL, use M2 \times 0.4 cross-recessed pan head machine screws for precision instruments.

⁽JCIS 10-70 No. 0 pan head machine screw No.1.)

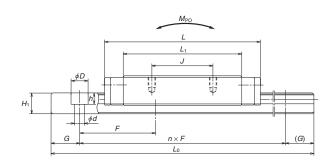
⁽JCIS: Japanese Camera Industrial Standard.)


⁵⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

C_{roix} the basic dynamic load rating for 50 km rated fatigue life C₁₀₀, the basic dynamic load rating for 100 km rated fatigue life

LU-BL (High-load / Long) LU-UL (High-load / Long, large mounting hole)

LU 12 0270 BL K 2 -** P5 1 Model name Size Preload code (See page A250.) Rail length (mm) Accuracy code (See Table 12.) Ball slide shape code (See page A248.) Design serial number Material/surface treatment code (See Table 11.) Added to the reference number. C: Special high carbon steel (NSK standard), K: Stainless steel Number of ball slides per rail


Front view

	Assembly			Ball slide									
Model No.	Height			Width	Length		Mour	nting hole			Width	Height	Pitch
wiodei ivo.	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	$W_{\scriptscriptstyle 1}$	H ₁	F
LU09BL								M2×0.4×2.5					
LU09UL	10	2.2	5.5	20	41	15	16	16 M3×0.5×3	31.2	7.8	9	5.5	20
LU12BL	13	3	7.5	27	47.5	20	20	M2.5×0.45×3	25.2	10	12	7.5	25
LU12UL	13	3	7.5	27	47.5	20	20	M3×0.5×3.5	35.3	10	12	7.5	25
LU15BL	16	4	8.5	32	61	25	25	M3×0.5×4	44.4	12	15	9.5	40

Notes 1) LU09UL is available only in stainless steel. 2) LU15BL is equipped with ball retainer.

Side view

Unit: mm

Rail					В	asic loa	d ratings	3			Weight	
Mounting bolt	G	Max.	³Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
hole		length $L_{\scriptscriptstyle 0max}$.	[50km]	[100km]	C 0	M _{RO}	М	PO	М	YO	slide	
$d \times D \times h$	(reference)	() for stainless	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
2.6×4.5×3	7.5	1 200	2 600	2 070	3 900	17.9	17.2	98.0	17.2	98.0	29	35
3.5×6×4.5	7.5	7.5 (600)	2 600 2	2 0/0	3 900	17.9	17.2	36.0	17.2	90.0	29	35
3×5.5×3.5	10	1 800	4 000	3 150	5 700	34.5	28.3	169	28.3	169	59	65
3.5×6×4.5	10	(800)	4 000	3 150	5 700	34.5	28.3	109	28.3	109	59	65
3.5×6×4.5	15	2 000 (1 000)	8 100	6 400	11 300	84.5	69.5	435	69.5	435	107	105

3) Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2). C_{∞} , the basic dynamic load rating for 50 km rated fatigue life C_{∞} , the basic dynamic load rating for 100 km rated fatigue life

A-4-3.3 PE Model (Miniature wide type)

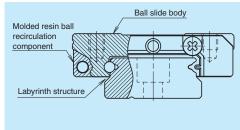


Fig. 1

1. Features

(1) Ideal for use of single rail

PE model miniature linear guides feature a wide rail, allowing for high load carrying capacity against moment loads in the rolling direction.

(2) Motion performance

A newly designed recirculation component facilitates smooth circulation of steel balls.

(3) Lightweight

The ball slide is approximately 20% lighter than the LE Model thanks to resin parts incorporated into its design.

(4) Reduced noise intensity

Resin parts used in ball recirculation components reduce collision noise between the steel balls and inner wall.

(5) Low dust generation

The guide structure is designed to prevent dust generation.

(6) Excellent dust resistance

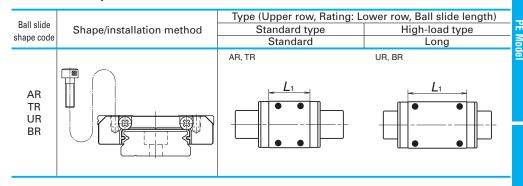
PE model linear guides are designed to minimize the clearance between the rail sides and slide inner walls to help prevent foreign matter from entering.

(7) High corrosion resistance

Highly corrosion-resistant martensite stainless steel comes standard, providing excellent resistance to corrosion.

(8) Easy to handle

Designed for safety with a retainer that prevents steel balls from dropping out of the ball slide even when the slide is removed from the rail.


(9) Long-term, maintenance-free operation

PE model guides equipped with the NSK K1 lubrication units realize long-term, maintenance-free operation.

(10) Fast delivery

A lineup of interchangeable rails and ball slides facilitates fast delivery.

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1

- 1	Init:	

	Preloa	Preloaded assembly type (not interchangeable)						
Rail length (mm)	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC			
- 50	2	2	4.5	6	6			
50 – 80	2	3	5	6	6			
80 – 125	2	3.5	5.5	6.5	6.5			
125 – 200	2	4	6	7	7			
200 – 250	2.5	5	7	8	8			
250 - 315	2.5	5	8	9	9			
315 – 400	3	6	9	11	11			
400 - 500	3	6	10	12	12			
500 - 630	3.5	7	12	14	14			
630 - 800	4.5	8	14	16	16			
800 – 1 000	5	9	16	18	18			
1 000 – 1 250	6	10	17	20	20			

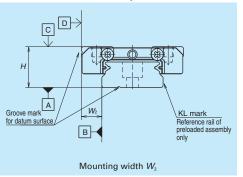
A259 A260

(2) Accuracy standard

The preloaded assembly type has four accuracy grades; Super precision P4, High precision P5, Precision P6, and Normal PN grades, while the interchangeable type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the interchangeable type.

· Tolerance of preloaded assembly


	Unit: µm				
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25	
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30	
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2				

· Tolerance of interchangeable type: Normal grade PC

Tabl	e 3 Unit: μm
Model No. Characteristics	PE09, 12 and 15
Mounting height H	±20
Variation of mounting height H	15① 30②
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2

Note: ① Variation on the same rail ② Variation on multiple rails

(3) Assembled accuracy

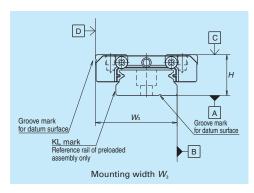


Fig. 2

NSK

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0 and Fine clearance ZT for the interchengeable type. Values for preload and rigidity of the preloaded assembly types are shown in Table 4. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

Table 4							
		Preload	Rigidity				
Model No.		(N)	(N/µm)				
		Slight preload (Z1)	Slight preload (Z1)				
ard	PE09TR	0 – 37	61				
Standard	PE12AR	0 – 40	63				
Sta	PE15AR	0 – 49	66				
ad	PE09UR	0 – 54	86				
High-load	PE12BR	0 – 59	97				
Hig	PE15BR	0 – 75	114				

Note: Clearance of Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

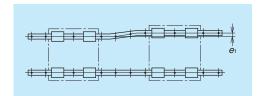
· Clearance of interchangeable type

	Tab	le 5 Unit: μm
	Model No.	Fine clearance ZT
ard	PE09TR	
Standard	PE12AR	3 or less
Sta	PE15AR	
oad	PE09UR	
High-load	PE12BR	5 or less
±°	PE15BR	

4. Maximum rail length

Table 6 shows the limitations of rail length.

However, the limitations vary by accuracy grades.


Table 6 Length limitations of rails

			Unit:	mm
Model	Size			
Wiodei	Material	09	12	15
PE	Stainless steel	800	1 000	1 200

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

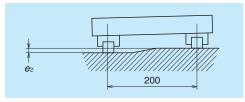
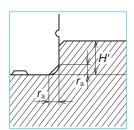



Fig. 3

Fig. 4

Table 7 Unit: μn								
Value	Preload							
value	rieloau	PE09	PE12	PE15				
Permissible values for	Z0, ZT	15	18	22				
parallelism error of two rails e_1	Z1	10	13	17				
Permissible values for	Z0, ZT	50 μm/200 mm						
height error of two rails e_2	Z1	35 μm/200 mm						

(2) Shoulder height of the mounting surface and corner radius r

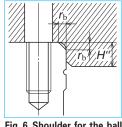


Fig. 5 Shoulder for the rail datum surface

Fig. 6 Shoulder for the ball slide datum surface

	Tab	le 8	Unit: mm		
Model No.	Corner radius	s (maximum)	Shoulder height		
woder No.	ra	r _b	H′	H"*	
PE09	0.3	0.3	3.5	2.8	
PE12	0.3	0.3	3.5	3.2	
PE15	0.3	0.5	3.5	4.1	

^{*)} H" is the minimum recommended value based on the dimension T in dimension table.

6. Lubrication accessories

A drive-in grease fitting can be selected as an option for model PE15.

For models PE09 to PE12, apply grease directly to the rail ball grooves using a point nozzle.

Drive-in type

7. Dust-resistant components

(1) Standard specification

An end seal is provided on both ends of the ball slide as a standard feature. Seal friction per standard ball slide is shown in **Table 9**.

Table 9 Seal friction per ball slide (maximum value)

			Unit: N
Model Size	09	12	15
PE	8.0	1	1.2

(2) NSK K1[™] lubrication unit

Table 10 shows the dimensions of linear guides equipped with NSK K1 lubrication units.

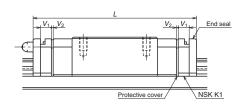
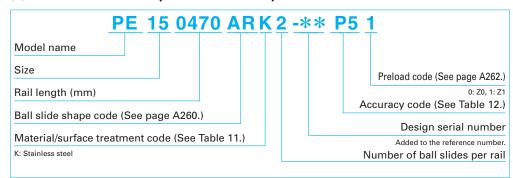


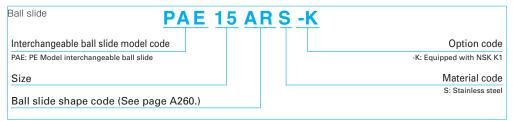
Table 10 Dimensions when equipped with NSK K1 lubrication units Unit: mm

Model No.	Ball slide length	Ball slide shape code	Standard ball slide length	Ball slide length with two NSK K1 installed <i>L</i>	Thickness of single NSK K1 V ₁	Thickness of protective cover V_2
DEOO	Standard	TR	39.8	46.8	3	0.5
PE09 Long		UR	51.2	58.2	3	0.5
PE12	Standard	AR	45	53	3.5	0.5
FEIZ	Long	BR	60	68	3.0	0.5
PE15	Standard	AR	56.6	66.2	4	0.8
FE15	Long	BR	76	85.6	4	0.8

Note: Slide length when equipped with NSK K1 = (standard ball slide length) + (V_1 thickness of single NSK K1 unit) × (number of K1 units) + (V_2 thickness of the protective cover) × 2.


A263 A264

8. Reference number


A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for interchangeable type

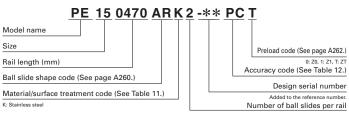
P1E 15 0470 PKN	-** <u>PC T</u>
Interchangeable rail model code	Preload code (See page A262.)
P1E: PE Model interchangeable rail	T: Fine clearance
Size	Accuracy code: PC
Rail length (mm)	PC: Only normal grade is available. Design serial number
Rail shape code	Added to the reference number.
R: PE09, 12. P: PE15	*Butting rail specification
Material/surface treatment code (See Table 11.)	N: Non-butting. L: Butting specification
*PI	ease consult with NSK for butting rail specification.

When interchangeable rails and slides are assembled, reference number coding is the same as that for preloaded assemblies. However, only preload code T (fine clearance) may be used (Refer to Page A262.)

Click!Speedy™ NSK Linear Guide Quick Delivery System uses a new numbering system. For details, please refer to the Click!Speedy general catalog CAT. No. E3191.

Table 11 Material/surface treatment code

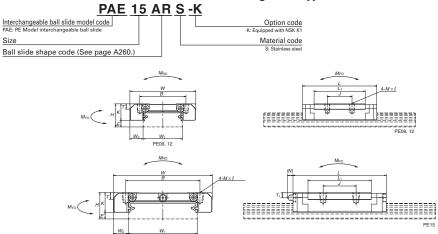
Code	Description				
K	K Stainless steel				
Н	Stainless steel with surface treatment				
Z Other, special					

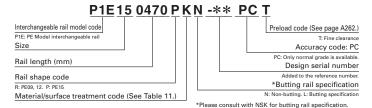

Table 12 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (interchangeable type)	PC	KC	FC

Note: Refer to pages A58 and A73 for details on NSK K1 lubrication units.

A265 A266


9. Dimensions PE-AR, TR (Standard load / Standard) PE-UR, BR (High-load / Long)



		A:	ssemb	ly		Ball slide											
1	Model No.	Height			Width	Length		Mour	ting hole				Oil	hole		Width	Height
		Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	Т	Hole size	<i>T</i> 1	N	W₁	H ₁
	PE09TR PE09UR	12	4	6	30	39.8 51.2	21 23	12 24	M3×0.5×3	26.6 38	8	2.8	φ 2	2.3	_	18	7.5
	PE12AR PE12BR	14	4	8	40	45 60	28	15 28	M3×0.5×4	31 46	10	3.2	φ2.5	2.7	_	24	8.5
	PE15AR PE15BR	16	4	9	60	56.6 76	45	20 35	M4×0.7×4.5	38.4 57.8	12	4.1	\$ 3	3.2	(3.3)	42	9.5

Reference number for ball slide of interchangeable type

Reference number for rail of interchangeable type

	Un	11+	m	n
,	OII	III.	11	

Ra	Rail			Basic load ratings							We	eight		
	Pitch	Mounting bolt	G	Maximum	2)Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
		hole		length	[50km]	[100km]	C 0	MRO	М	PO	M	YO	slide	
B_2	F	$d \times D \times h$	(reference)	L_{0max}	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
	30	3.5×6×4.5	10	800	3 000	2 390	4 500	36.5	17.3	113	17.3	113	35	95
	30	0.0004.0	10	000	4 000	3 150	6 700	54.5	37.5	210	37.5	210	50	33
	40	4.5×8×4.5	15	1 000	4 350	3 450	6 350	70.5	29.3	180	29.3	180	66	140
_	40	4.57674.5	15	1 000	5 800	4 600	9 550	106	63.5	345	63.5	345	98	140
23	40	4.5×8×4.5	15	1 200	7 600	6 050	10 400	207	59.0	370	59.0	370	140	275
23	40	4.0x6x4.5	13	1 200	10 300	8 200	16 000	320	135	740	135	740	211	2/5

Note: Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2). $C_{\rm so}$; the basic dynamic load rating for 50 km rated fatigue life $C_{\rm 100}$; the basic dynamic load rating for 100 km rated fatigue life

A-4-3.4 LE Model (Miniature wide type)

(1) Ideal for use of single rail

LE model miniature linear guides feature a wide rail, allowing for high load carrying capacity against moment loads in the rolling direction.

(2) Equal load carrying capacity in vertical and lateral directions

Contact angle is set at 45 degrees, equally dispersing the load from vertical and lateral directions. This also provides equal rigidity in the two directions.

(3) Super thin

Super-thin guides owe their design to the single ball groove on right and left sides (Gothic arch).

(4) High accuracy

Fixing the master rollers to the ball grooves is easy thanks to the Groove arch groove. This makes for easy and accurate measuring of ball grooves.

(5) Stainless steel standard

Rails and ball slides are made of martensitic stainless steel.

(6) Models with ball retainers available

Ball retaining models (slide shape code AR and TR), including interchangeable types, come with a ball retainer to prevent balls from falling out when the slide is removed from the rail.

(7) Fast delivery

Interchangeable rails and ball slides available. (LE09 to LE15)

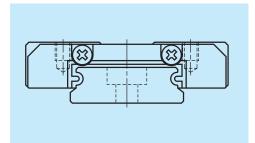


Fig. 1 LE Model

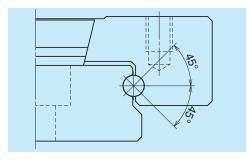


Fig. 2 Ball contact

2. Ball slide shape

		Type (Upper roy	v, Rating: Lower row,	Ball slide length)
Ball slide	Shape/installation method	Medium-load	Standard	High-load
shape code		Short	Standard	Long
AL TL AR TR		CL, SL	AL, TL, AR, TR	BL, UL
BL UL CL SL				

Specification	Detail		Type	
Mounting halo	Normal	CL*	AL, AR	BL*
Mounting hole	Large	SL*	TL, TR	UL*
Ball retainer	Without	CL, SL	AL, TL	BL, UL
ball retainer	With	_	AR, TR	_

^{*} Only applicable to LE09

3. Accuracy and preload

(1) Running parallelism of ball slide

	Table 1								
	Preloaded assembly type (not interchangeable)								
Rail length (mm) over or less	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC					
- 50	2	4.5	6	6					
50 – 80	3	5	6	6					
80 - 125	3.5	5.5	6.5	6.5					
125 – 200	4	6	7	7					
200 – 250	5	7	8	8					
250 – 315	5	8	9	9					
315 – 400	6	9	11	11					
400 - 500	6	10	12	12					
500 - 630	7	12	14	14					
630 - 800	8	14	16	16					
800 – 1 000	9	16	18	18					
1 000 – 1 250	10	17	20	20					

Table 1

A269 A270

(2) Accuracy standard

The preloaded assembly type has three accuracy grades; High precision P5, Precision P6, and Normal PN grades, while the interchangeable type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the interchangeable type.

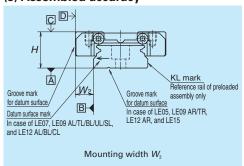

· Tolerance of preloaded assembly

	Table 2		Unit: µm
Accuracy grade Characteristics	High precision P5	Precision grade P6	Normal grade PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±15 7	±20 15	±40 25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±20 10	±30 20	±50 30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Refe	er to Table 1 and F	ig. 3

Tolerance of interchangeable type: Normal grade PC

Table	e 3 Unit: μm			
Accuracy grade Characteristics	LE09, 12, 15			
Mounting height H	±20			
Variation of mounting height H	40			
Mounting width W_2 or W_3	±20			
Variation of mounting width W_2 or W_3	40			
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Refer to Table 1 and Fig. 3			

(3) Assembled accuracy

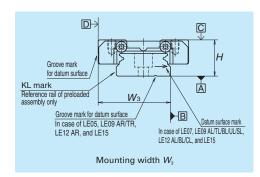


Fig. 3

NSK

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0 for the preloaded assembly type, along with Fine clearance ZT for the interchangeable type. Values for preload and rigidity of the 📻 preloaded assembly type are shown in Table 4. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

Table 4

Madal Na		Preload	Rigidity	
		(N)	(N/µm)	
	Model No.		Slight preload	
		(Z1)	(Z1)	
	LE05 AL	0 – 23	36	
ard	LE07 TL	0 – 29	46	
Standard	LE09 AL, TL, AR, TR	0 – 37	61	
Sta	LE12 AL, AR	0 – 40	63	
	LE15 AL, AR	0 – 49	66	
р	LE05 CL	0 – 18	29	
Medium-load	LE07 SL	0 – 16	28	
Ш	LE09 CL, SL	0 – 21	33	
edi	LE12 CL	0 – 23	36	
Σ	LE15 CL	0 – 29	44	
р	LE07 UL	0 – 43	71	
High-load	LE09 BL, UL	0 – 54	86	
igh	LE12 BL	0 – 59	97	
I	LE15 BL	0 – 75	114	

Note: The clearance of Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero. However, the clearance of the Z0 of PN grade is 3 to 10 μm.

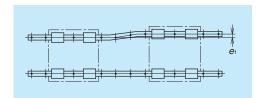
· Clearance of interchangeable type

Table 5 Unit: µm Fine clearance Model No. ZT LE09 LE12 0 - 15

4. Maximum rail length

LE15

Table 6 shows the limitations of rail length. The limitations vary by accuracy grades.


Table 6 Length limitation of rails

-	abio o Longin		ation	0		: mm
Model	Size					
	Material	05	07	09	12	15
LE	Stainless steel	150	600	800	1 000	1 200

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

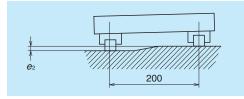


Fig. 4

Fig. 5

Table 8

0.2

0.3

0.3

0.3

0.5

Corner radius (maximum)

0.2

0.2

0.3

0.3

0.3

Unit: mm

3

3

4

Shoulder height

H'

1.1

1.7

3.5

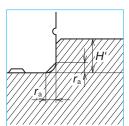
3.5

3.5

Table 7 Unit: μr						Unit: µm
Value	Dualaad					
value	Preload	LE05	LE07	LE09	LE12	LE15
Permissible values for	Z0, ZT	10	12	15	18	22
parallelism error of two rails e1	Z1	5	7	10	13	17
Permissible values for	Z0, ZT	50 μm/200 mm				
height error of two rails e	Z1	35 µm/200 mm				

Model No

LE05


LE07

LE09

LE12

LE15

(2) Shoulder height of the mounting surface and corner radius r

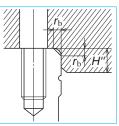


Fig. 6 Shoulder for the rail datum surface

Fig. 7 Shoulder for the ball slide datum surface

6. Lubrication accessories

Model LE15AR can select drive-in grease fitting as option.

There is no standard grease fitting for LE05 to LE12.

For the models of LE05 to LE15 except for LE15AR, apply grease directly to the ball grooves of rail, using a point nozzle.

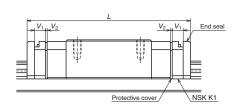
Drive-in type

NSK

7. Dust-resistant components

(1) Standard specification

An end seal is provided on both ends of the ball slide as a standard feature.


• Seal friction per standard ball slide is shown in Table 9.

....

Table 9 Seal friction per ball slide (maximum value) Unit: N					
Model	05	07	09	12	15
LE	0.4	0.4	0.8	1.0	1.2

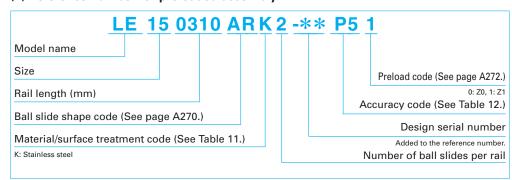
(2) NSK K1[™] lubrication unit

The installed dimensions of NSK K1 lubrication units are shown in Table 10.

Table 10 Dimensions when equipped with NSK K1 lubrication units

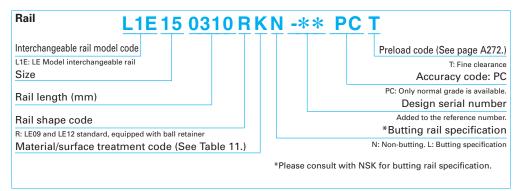
- 11	lnit:	m	m

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length with two NSK K1 installed L	Thickness of single NSK K1	Protective cover thickness V_2
	Standard	TL	31	37		
LE07	Long	UL	42	48	2.5	0.5
	Short	SL	22.4	28.4		
	Standard	AL, TL	39	46		
1.500	Standard	AR, TR	39.8	46.8		٥٦
LE09	Long	BL, UL	50.4	57.4	3.0	0.5
	Short	CL, SL	SL 26.4 33.4			
	Standard	AL	44	52		
L E 10	Standard	AR	45	53	2.5	0.5
LE12	Long	BL	59	67	3.5	0.5
	Short	CL	30.5	38.5		
	Standard	AL	55.0	64.6		
1.515	Standard	AR	56.6	66.2	4.0	0.0
LE15	Long	BL	74.4	84	4.0	0.8
	Short	CL	41.4	51	1	


Note: Slide length when equipped with NSK K1 = (standard ball slide length) + (V_1 thickness of single NSK K1 unit) × (number of K1 units) + (V_2 thickness of the protective cover) × 2.

8. Reference number

A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.


Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for interchangeable type

When interchangeable rails and slides are assembled, reference number coding is the same as that for preloaded assemblies. However, only preload code T (fine clearance) may be used (Refer to Page A272.)

Table 11 Material/surface treatment code

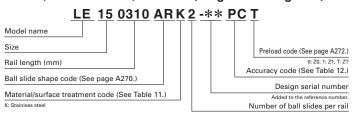
Code	Description
K	Stainless steel
Н	Stainless steel with surface treatment
Z	Other, special

Table 12 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1
High precision grade	P5	K5
Precision grade	P6	K6
Normal grade	PN	KN
Normal grade (interchangeable type)	PC	KC

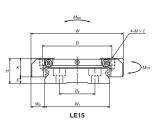
Note: Refer to page A58 for details on NSK K1 lubrication units.

A275 A276

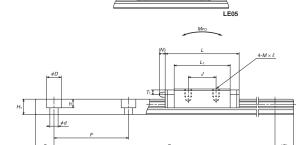

9. Dimensions

LE-AL (Standard load / Standard)

LE-TL (Standard load / Standard, large mounting hole)


LE-AR (Standard load / Standard, with ball retainer)

LE-TR (Standard load / Standard, large mounting hole, with ball retainer)



Front view

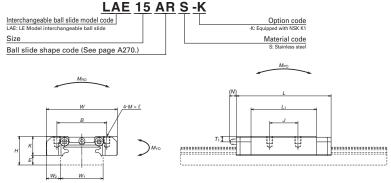
LE05, 07, 09, 12

Side view

LE07, 09, 12, 15

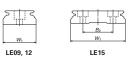
	А	ssembl	ly				Bal	l slide		Grease fitting							
Model No.	Height			Width	Length	Mounting hole							Width	Height		Pitch	
Model No.											Hole						
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	size	T_1	Ν	W_1	H ₁	B_2	F
LE05AL	6.5	1.4	3.5	17	24	13	_	M2.5×0.45×2	17	5.1	_		_	10	4	_	20
LE07TL	9	2	5.5	25	31	19	10	M3×0.5×3	21.2	7	_	_	_	14	5.2	_	30
LE09AL LE09TL	12	4	6	30	39	21	12	M2.6×0.45×3 M3×0.5×3	27.6	8	_	_	_	18	7.5	_	30
LE09AR LE09TR	12	4	6	30	39.8	21	12	M2.6×0.45×3 M3×0.5×3	27.6	8	_		_	18	7.5	_	30
LE12AL LE12AR	14	4	8	40	44 45	28	15	M3×0.5×4	31	10	_	_	_	24	8.5	_	40
LE15AL LE15AR	16	4	9	60	55 56.6	45	20	M4×0.7×4.5	38.4	12	— φ3	— 3.2	— 3	42	9.5	23	40

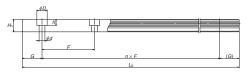
Notes: 1) Ball slide LE05 has only two mounting tap holes.


NSK

Reference number for ball slide of interchangeable type

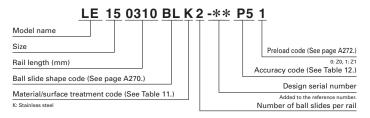
Interchangeable with retainer: LAE09AR/TR, LAE12AR, LAE15AR


LAE-AR (With ball retainer)

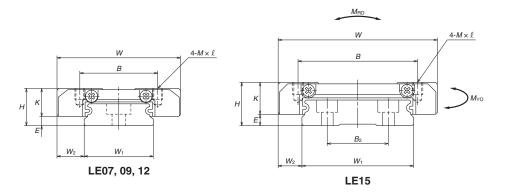

LAE-TR (Large mounting hole with ball retainer)

Reference number for rail of interchangeable type

Rail	L1E 15 0310 R	(N -** PC T
Interchangeable	rail model code	Preload code (See page A272.)
L1E: LE Model inte	rchangeable rail	T: Fine clearance
Size		Accuracy code: PC
Rail length (r		PC: Only normal grade is available.
haii ierigiri (i	nin)	Design serial number
Rail shape co	ode	Added to the reference number.
	standard equipped with ball retainer	*Butting rail specification
	ace treatment code (See Table 11.)	N: Non-butting. L: Butting specification
		*Please consult with NSK for butting rail enecification

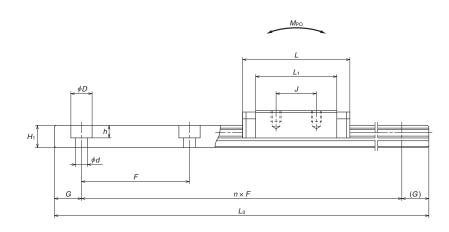

Unit: mm

Rail					Bas	sic load r	atings				Weight	
Mounting bolt	G	Max.	2)Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
hole		length	[50km]	[100km]	C 0	MRO	М	PO	М	YO	slide	
$d \times D \times h$	(reference)	$L_{\scriptscriptstyle Omax}$	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
3×5×1.6	7.5	150	725	575	1 110	5.65	2.58	16.9	2.58	16.9	11	34
3.5×6×3.2	10	600	1 580	1 260	2 350	16.7	7.20	46.0	7.20	46.0	25	55
3.5×6×4.5	10	800	3 000	2 400	4 500	36.5	17.3	110	17.3	110	40	95
3.5×6×4.5	10	800	3 000	2 400	4 500	36.5	17.3	113	17.3	113	40	95
4.5×8×4.5	15	1 000	4 350	3 450	6 350	70.5	29.3	175 180	29.3	175 180	75	140
4.5×8×4.5	15	1 200	7 600	6 050	10 400	207	59.0	360 370	59.0	360 370	150	275


²⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2). $C_{\rm so}$; the basic dynamic load rating for 50 km rated fatigue life $C_{\rm tot}$; the basic dynamic load rating for 100 km rated fatigue life 3) For fixing a rail of LE05AL, use M2.5 \times 0.45 cross-recessed pan head machine screw for precision instruments.

⁽JCIS 10-70: No.0 pan head machine screw No.3) (JCIS: Japanese Camera Industrial Standard)

LE-BL (High-load / Long) LE-UL (High-load / Long, large mounting hole)



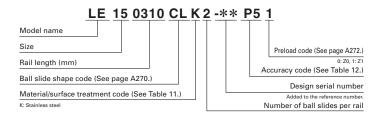
Front view

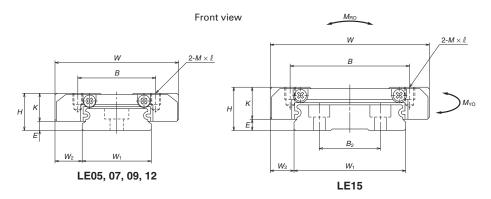
	А	ssembl	ly				В	all slide						
Model No.	Height			Width	Length	Mounting hole				Width	Height		Pitch	
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	W_1	H_1	B_2	F
LE07UL	9	2	5.5	25	42	19	19	M3×0.5×3	32.2	7	14	5.2	_	30
LE09BL LE09UL	12	4	6	30	50.4	23	24	M2.6×0.45×3 M3×0.5×3	39	8	18	7.5	_	30
LE12BL	14	4	8	40	59	28	28	M3×0.5×4	46	10	24	8.5	_	40
LE15BL	16	4	9	60	74.4	45	35	M4×0.7×4.5	57.8	12	42	9.5	23	40

Side view

Unit: mm

Rail					Bas	sic load i	atings				We	ight
Mounting bolt	G	Max.	1)Dyn	amic	Static		Static	moment	t (N·m)		Ball	Rail
hole	e length		[50km]	[100km]	C 0	M _{RO} A		PO	М	YO	slide	
$d \times D \times h$	(reference)	$L_{ m omax}$	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
3.5×6×3.2	10	600	2 180	1 730	3 700	26.4	17.3	94.5	17.3	94.5	39	55
3.5×6×4.5	10	800	4 000	3 150	6 700	54.5	37.5	206	37.5	206	58	95
4.5×8×4.5	15	1 000	5 800	4 600	9 550	106	63.5	340	63.5	340	115	140
4.5×8×4.5	15	1 200	10 300	8 200	16 000	320	135	725	135	725	235	275

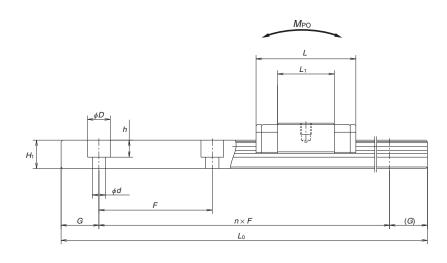

Note: 1) Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).


A279

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

LE-CL (Medium-load / Short) LE-SL (Medium-load / Short, large mounting hole)



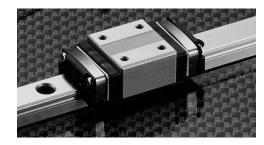
	А	ssembl	ly				В	all slide						
Model No.	Height			Width	Length		Mou	nting hole			Width	Height		Pitch
WIOGCI IVO.	Н	Ε	W 2	W	L	В	J	$M \times \text{pitch} \times \ell$	<i>L</i> ₁	К	W_1	H ₁	B_2	F
LE05CL	6.5	1.4	3.5	17	20	13	_	M2.5×0.45×2	13	5.1	10	4	_	20
LE07SL	9	2	5.5	25	22.4	19	_	M3×0.5×3	12.6	7	14	5.2	_	30
LE09CL LE09SL	12	4	6	30	26.4	21	_	M2.6×0.45×3 M3×0.5×3	15	8	18	7.5	_	30
LE12CL	14	4	8	40	30.5	28	_	M3×0.5×4	17.5	10	24	8.5	_	40
LE15CL	16	4	9	60	41.4	45	_	M4×0.7×4.5	24.8	12	42	9.5	23	40

Notes: 1) Ball slide CL and SL types have only two mounting tap holes in the center.

A281

Unit: mm

A282


Rail					Bas	sic load r	atings				Weight	
Mounting bolt	G	Max.	2)Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
hole		length	[50km]	[100km]	C_{0}	MRO	М	PO	М	YO	slide	
$d \times D \times h$	(reference)	L_{0max}	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
3×5×1.6	7.5	150	595	470	835	4.25	1.51	10.0	1.51	10.0	8	34
3.5×6×3.2	10	600	980	775	1 170	8.35	2.01	18.5	2.01	18.5	17	55
3.5×6×4.5	10	800	1 860	1 480	2 240	18.2	4.85	41.0	4.85	41.0	25	95
4.5×8×4.5	15	1 000	2 700	2 140	3 150	35.0	8.15	67.0	8.15	67.0	50	140
4.5×8×4.5	15	1 200	5 000	3 950	5 650	113	19.4	162	19.4	162	110	275

²⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

Padate back ratings earliery with 100 standards (100 14720 1), 14720 2). C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

³⁾ For fixing a rail of LE05CL, use cross-recessed pan head machine screw for precision instruments M2.5 x 0.45 (JCIS 10-70: Japan Camera Industry Association, No.0, class 3).

A-4-3.5 Miniature LH Model

1. Features

(1) High self-aligning capability (rolling direction)

Similar to a DF arrangement of angular contact bearings, Miniature LH models offer large self-aligning capability with the internal intersection of the contact lines of the balls and grooves reducing moment rigidity.

This increases the capacity to absorb errors in installation.

(2) High vertical load carrying capacity

The contact angle is set at 50 degrees, thus increasing load carrying capacity as well as rigidity in the vertical direction.

(3) High resistance against impact load

The bottom ball groove forms a Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2.

Vertical load is generally carried by the top rows at two contact points, but with this design, the bottom rows also carry load when a large impact load is applied vertically as shown in **Fig. 3**. This assures high resistance to impact load.

(4) High accuracy

As shown in **Fig. 4**, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes for easy and accurate measuring of ball grooves.

(5) High corrosion resistance

Highly corrosion-resistant martensite stainless steel is incorporated as a standard feature to provide excellent corrosion resistance.

(6) Easy to handle

Safe design includes a retainer that prevents steel balls from dropping out of the ball slide even when the slide is removed from the rail. (LH10-12)

(7) Long-term maintenance-free

Superb features of the NSK K1 lubrication unit realize long-term, maintenance-free operation.

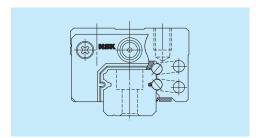


Fig. 1 LH Model

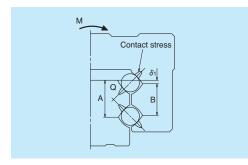


Fig. 2 Enlarged illustration of the offset Gothic arch groove

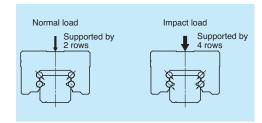


Fig. 3 When load is applied

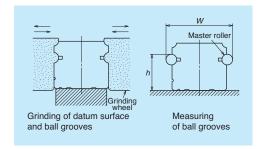
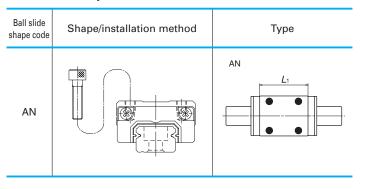



Fig. 4 Rail grinding and measuring

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide

		Table 1												
		Preloaded	assembly											
Rail length (mm)	Super	High	Precision	Normal										
over or less	precision P4 precision P5 grade P6		grade PN											
- 50	2	2	4.5	6										
50 - 80	2	3	5	6										
80 – 125	2	3.5	5.5	6.5										
125 – 200	2	4	6	7										
200 – 250	2.5	5	7	8										
250 – 315	2.5	5	8	9										
315 – 400	3	6	9	11										
400 – 500	3	6	10	12										
500 – 630	3.5	7	12	14										
630 – 800	4.5	8	14	16										

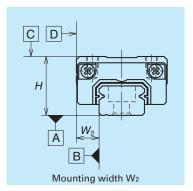
(2) Accuracy standard

The preloaded assembly has four accuracy grades; Super precision P4, High precision P5, Precision P6 and Normal PN grades.

11.3

· Tolerance of preloaded assembly

	Table 2			Unit: µm
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±20 5	±40 7	±80 15
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±10 5	±15 7	±25 10	±50 20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Shown in T a	able 1, Fig. 5	


A283 A284

(3) Combinations of accuracy and preload

Table 3

		Accuracy grade							
		Super precision	High precision	Precision grade	Normal grade				
Wit	thout NSK K1 lubrication unit	ition unit P4 P5 P6 PN							
Wit	th NSK K1 lubrication unit	K4	K5	K6	KN				
With	NSK K1 for food and medical equipment	F4	F5	F6 FN					
Prel	Fine clearance Z0	0	0	0	0				
Preload	Slight preload Z1	0	0	0	0				

(4) Assembled accuracy

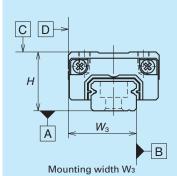


Fig. 5

(5) Preload and rigidity

We offer two levels of preload: Slight preload Z1 and Fine clearance Z0.

Preload and rigidity of preloaded assembly

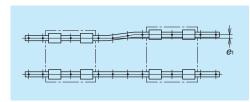
Table 4

	Dualood (NI)	Rigidity	(N/μm)
Model No.	Preload (N)	Vertical direction	Lateral direction
	Slight preload Z1	Slight preload Z1	Slight preload Z1
LH08AN	5	33	23
LH10AN	9	44	31
LH12AN	22	68	47

Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 5µm.

4. Maximum rail length

Table 5 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grades.


Table 5 Length limitations of rails

	_		Un	it: mm
Model	Size			
	Material	08	10	12
LH	Stainless steel	375	600	800

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

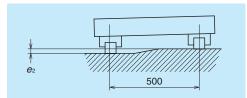
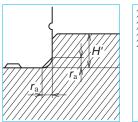



Fig. 6

Fig. 7

	Table 6			Unit: µm
Value	Preload		Model No	
value	Freitau	LH08	LH10	LH12
Permissible values for	Z0	9	12	19
parallelism error of two rails e_1	Z1	8	11	18
Permissible values for	Z0	37	5µm/500m	nm
height error of two rails e	Z1	33	0um/500m	nm

(2) Shoulder height of the mounting surface and corner radius r

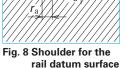


Fig. 9 Shoulder for the ball slide datum surface

		Tubic 7		Offic. IIIIII
Model No.	Corner radius	s (maximum)	Shoulde	er height
wouei no.	r _a	$r_{\rm b}$	H'	H"
LH08	0.3	0.5	1.8	3
LH10	0.3	0.5	2.1	4
LH12	0.5	0.5	2.7	4

Table 7

A285

Unit: mm

6. Lubrication accessory

Model LH12 can use drive-in grease fittings as an option.

For models LH08 to LH10, apply grease directly to the ball grooves of rail using a point nozzle.

Grease fitting

Drive-in type

Fig. 10

7. Dust-resistant components

(1) Standard specification

Under normal applications, the LH model can be used without modification thanks to its dust resistance. As standard equipment, the ball slides have an end seal on both ends and bottom seals at the bottom.

However, bottom seals are not used with LH08 and 10.

End seal Bottom seal

Fig. 11

Table 8 Seal friction per ball slide (maximum value)

			Unit: N
Model	ize 08	10	12
LH	0.5	1	1.5

(2) NSK K1[™] lubrication unit

Table 9 shows the dimensions of linear guides equipped with NSK K1 lubrication units.

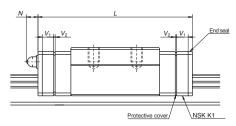


Table 9 Dimensions when equipped with NSK K1 lubrication units

	U	Init:	mm
--	---	-------	----

Model No.	Ball slide length	Ball slide shape code	Standard ball slide length	Ball slide length with two NSK K1 installed <i>L</i>	single NSK K1	COLLOR	Protrusion of grease fitting N
LH08	Standard	AN	24	31	3	0.5	_
LH10	Standard	AN	31	40	4	0.5	_
LH12	Standard	AN	45	54	4	0.5	(4)

Notes: 1) NSK K1 for food processing machinery/medical equipment are available for LH12.

(3) Caps to plug the rail mounting bolt hole

Table 10 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity		
woder wo.	secure rail	reference No.	/case		
LH12	M3	LG-CAP/M3	20		

A287 A288

²⁾ Slide length when equipped with NSK K1 = (standard ball slide length) + (V_1 thickness of single NSK K1 unit) × (number of K1 units) + (V_2 thickness of the protective cover) × 2.

8. Reference number

A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

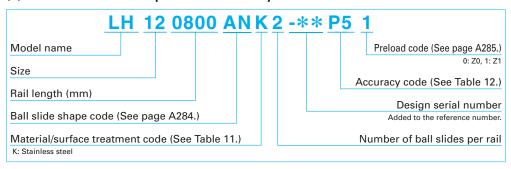
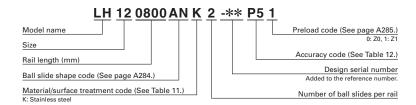
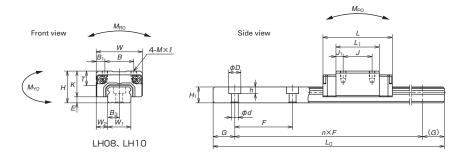


Table 11 Material/surface treatment code

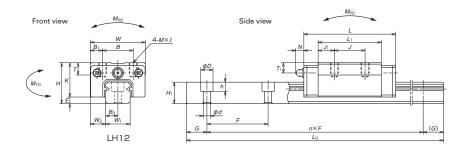
Code	Description
K	Stainless steel
Н	Stainless steel with surface treatment
Z	Other, special


Table 12 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN

Note: Refer to pages A58 and A73 for details on NSK K1 lubrication units.

A289 A290


9. Dimensions

-						5 " " "											
		As	ssemb	ly					Ball slid	de							
	∕lodel No.	Height			Width	Length	Mounting hole					Grease fitting		ıg	Width	Height	
I	nodel No.																
		Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	K	T	Hole size	T_1	N	W_1	H_1
Ī	LH08AN	11	2.1	4	16	24	10	10	M2×0.4×2.5	15	8.9	_	_	_	_	8	5.5
Ī	LH10AN	13	2.4	5	20	31	13	12	M2.6×0.45×3	20.2	10.6	6	_	_	_	10	6.5
Ī	LH12AN	20	3.2	7.5	27	45	15	15	M4×0.7×5	31	16.8	6	φ 3	5	4	12	10.5

Notes: 1) LH08 does not have a ball retainer. Note that balls will fall out when the ball slide is removed from the rail.

Unit: mm

	Rail				Basic load ratings								Weight									
Pitch	Mounting	G	Max.	2)Dynamic		Static		Static moment (N·m)				Ball	Rail									
	bolt hole		length	[50km]	[100km]	C_0 M_{PO} M_{PO} M_{YO}		M _{P0}		M _{P0}		M _{P0}		M _{PO}		M _{P0}		RO MPO		1 _{Y0}	slide	
F	$d \times D \times h$	(reference)	$L_{ m 0max}$	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)									
20	2.4×4.2×2.3	7.5	375	1 240	985	2 630	7.25	4.55	32.5	3.8	27.2	13	31									
25	3.5×6×3.5	10	600	2 250	1 790	4 500	16.2	10.5	73.0	8.8	61.0	26	44									
40	3.5×6×4.5	15	800	5 650	4 500	11 300	47.5	41.5	254	35	214	82	88									

2) Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

C₅₀; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

A291 A292

A-4-3.6 LL Model

1. Features

(1) Super light-weight

This compact guide has a single ball groove on both right and left sides (Gothic arch). Rails and ball slides are made of stainless steel plate, therefore they are lightweight.

(2) Compact

The ball groove is made outside the ball slide to reduce overall size and obtain high speed.

(3) High corrosion resistance

Highly corrosion resistant martensitic stainless steel is used as standard material.

2. Ball slide shape

Ball slide shape code	Shape/installation method
PL	

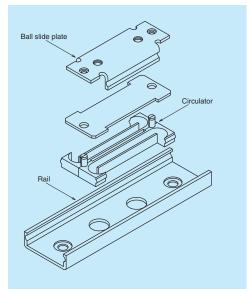


Fig. 1 LL Model structure

3. Accuracy and preload

(1) Accuracy standard

The LL Model has a Normal grade PN as the accuracy grade.

Table 1 shows the tolerance.

Table 1 Tolerance of Normal grade (PN)

	Unit: µm
Model No. Characteristic	LL15
Mounting height	±20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	20 (See Fig. 2 .)

H A B

Fig. 2 Standard LL

(2) Preload

We offer clearance for the LL Model.

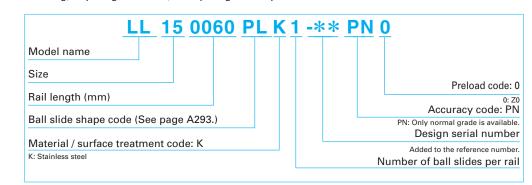
Table 2 shows the specification of clearance.

Table 2 Radial clearance

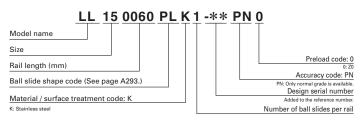
	Offic. prin
Model No.	Clearance
LL15	0 – 10

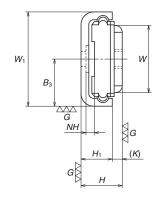
4. Maximum rail length

Table 3 Length limitation of rails


Model	Size Material			15		
LL	Stainless steel	40	60	75	90	120

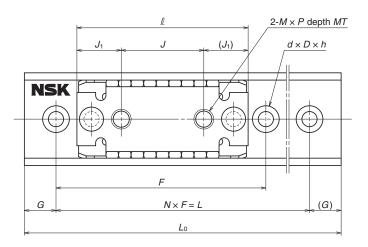
5. Reference number


A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.


Unit: um

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

6. Dimensions



	Asse	mbly	Ball slide									
Model No.			Width	Length	Mounting hole				Height	Pitch		
Model No.												
	Н	W_1	W	L	J	$M \times pitch$	MT	J_1	K	H_1	F	Ν
											30	1
											40	1
LL15	6.5	15	10.6	27	13	M3×0.5	1.2	7	1.5	5	30	2
											40	2
											50	2

Notes

- 1) The LL model does not have a ball retainer. Note that balls will fall out when the ball slide is removed from the rail.
- 2) Seals are not available. Please provide dust-prevention measures on the equipment.
- 3) Do not use an installation screw on the ball slide which exceeds dimension MT (maximum screw-in depth) in the dimension table.
- 4) To fix the rail, use M2 \times 0.4 cross recessed machine screws for precision instruments. (JCIS10-70 No.0 pan head machine screw No.1)

(JCIS: Japanese Camera Industrial Standard)

Unit: mm

Rail				Basic load ratings				Ball dia.	We	ight			
Mounting bolt			Length	5) Dynamic		Static	Static moment		ment		Ball	Rail	
hole					[50km]	[100km]	C ₀	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	D_{w}	slide	
$d \times D \times h$	NH	Вз	G	L_{o}	$C_{50}(N)$	C ₁₀₀ (N)	(N)	(N·m)	(N·m)	(N·m)		(g)	(g)
2.4×5×0.4	1.2	7.5	5 10 7.5 5 10	40 60 75 90 120	880	700	785	7	3	3	2	6	9 11 13 16 21

5) C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

A295 A296

1. RA Model A299

2. RB Model A321

3. LA Model A337

A-4-4 High Rigidity Series

A297 A298

A-4-4.1 RA Model

(7) Specification with highly dustresistant V1 seals

Specifications featuring highly dust-resistant V1 end seals with enhanced abrasion resistance are also available (RA 25-65).

1. Features

(1) Super-high load capacity

By installing rollers that are the largest possible diameter and length within the existing standard cross-section dimension in a rational layout based on our advanced analysis technology, we have realized extremely high load capacity. Super-long life is achieved and impact load can be sufficiently handled.

(2) Super-high rigidity

Using NSK's advanced analysis technology, we pursued a complete, optimal design, down to the detailed shape of roller slides and rails, thereby realizing super-high rigidity superior to that of competitor's roller guides.

(3) Super-high motion accuracy

NSK has developed its own unique method of simulating rolling element passage vibration and method of designing optimal roller slide specifications for damping roller passage vibration. These developments have dramatically enhanced roller slide motion accuracy for the RA model.

(4) Smooth motion

Installation of a retaining piece between rollers restrains roller skew peculiar to roller slides, thereby achieving smooth motion.

(5) Low friction

Using rollers for rolling elements helps minimize dynamic friction.

(6) Interchangeability

Interchangeable rails and roller slides are available. (RA25 to RA65)

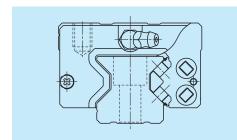


Fig. 1 RA Model

Fig. 3 Interchangeable type

2. Roller slide shape

Roller slide shape code	Shape/installation method	Type (Upper row, Rating: Lo High-load Standard	wer row, Roller slide length) Super-high-load Long
AN BN		AN	BN
AL BL		AL	BL
EM GM		EM	GM

3. Accuracy and preload

(1) Running parallelism of roller slide

Table 1

Unit: um

	Onic. μπ											
	Accuracy grade	Prelo	aded assembly	(not interchange	able)	Interchangeable type						
Rail length (mm)	or less	Ultra precision P3			Precision grade P6	High precision PH						
-	- 50	2	2	2	4	2						
50 -	- 80	2	2	3	4	3						
80 -	- 125	2	2	3	4	3						
125 -	- 200	2	2	3.5	5	3.5						
200 -	- 250	2	2.5	4.5	6	4.5						
250 -	- 315	2	2.5	5	6.5	5						
315 -	- 400	2	3	5.5	7	5.5						
400 -	- 500	2	3	6	7.5	6						
500 -	- 630	2	3.5	6.5	8.5	6.5						
630 -	- 800	2	4	7	9.5	7						
800 -	- 1 000	2.5	4.5	7.5	10	7.5						
1 000 -	- 1 250	3	5	8.5	12	8.5						
1 250 -	- 1 600	3.5	5.5	9.5	13	9.5						
1 600 -	- 2 000	4	6.5	11	14	11						
2 000 -	- 2 500	4.5	7.5	12	16	12						
2 500 -	- 3 150	5.5	8.5	13 18		13						
3 150 -	- 4 000	6	9.5	14	19	14						

A299 A300

RA Model Roller Guide

(2) Accuracy standard

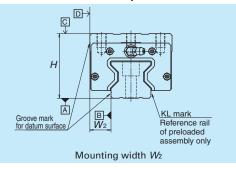
The preloaded assembly has four accuracy grades; Ultra precision P3, Super precision P4, High precision P5, and Precision P6 grades, while the interchangeable type has High precision PH grade only.

Tolerance of preloaded assembly

Table 2 Unit: μm									
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6					
Mounting height H	±8	±10	±20	±40					
Variation of <i>H</i>	3	5	7	15					
(All roller slides on a set of rails)									
Mounting width W_2 or W_3	±10	±15	±25	±50					
Variation of W_2 or W_3	3	7	10	20					
(All roller slides on reference rail)									
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 4								

• Tolerance of interchangeable type

Та	ible 3 Unit: μm
Accuracy grade Characteristics	High precision PH
Mounting height H	±20
Variation of mounting height H	15①
	25②
Mounting width W_2 or W_3	±25
Variation of mounting width W_2 or W_3	20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1 and Fig. 4


Note: 1 Variation on the same rail 2 Variation on multiple rails

(3) Combination of accuracy and preload

Table 4

				Accuracy grade		
		Ultra precision Super precision High precision Precision grade		Precision grade	High precision	
Without NSK K1 lubrication unit		P3	P4	P5	P6	PH
With NSK K1 lubrication unit		K3	K4	K5	K6	KH
	Slight preload Z1	0	0	0	0	_
Ъ	Medium preload Z3	0	0	0	0	_
oad	Interchangeable type with slight preload ZZ	_	_	_	_	0
	Interchangeable type with medium preload ZH	_	_	_	_	0

(4) Assembled accuracy

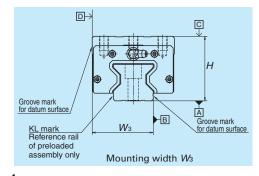


Fig. 4

NSK

(5) Preload and rigidity

Four types of preload are available: Medium preload Z3 and Slight preload Z1 for preloaded assembly, and Medium preload ZH and slight preload ZZ for Interchangeable types.

• Preload of preloaded assembly Table 5

	143.00										
	Model No.	Preloa	ad (N)								
		Slight preload (Z1)	Medium preload (Z3)								
	RA15 AN, AL, EM	520	1 030								
	RA20 AN, EM	960	1 920								
High-load	RA25 AN, AL, EM	880	2 920								
	RA30 AN, AL, EM	1 170	3 890								
	RA35 AN, AL, EM	1 600	5 330								
	RA45 AN, AL, EM	2 780	9 280								
	RA55 AN, AL, EM	3 800	12 900								
	RA65 AN, EM	6 500	21 000								
	RA15 BN, BL, GM	650	1 300								
р	RA20 BN, GM	1 200	2 400								
Super-high-load	RA25 BN, BL, GM	1 060	3 540								
igh	RA30 BN, BL, GM	1 430	4 760								
r-h	RA35 BN, BL, GM	2 020	6 740								
adr	RA45 BN, BL, GM	3 500	11 600								
S	RA55 BN, BL, GM	5 000	16 800								
	RA65 BN, GM	8 500	28 800								

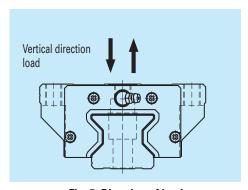
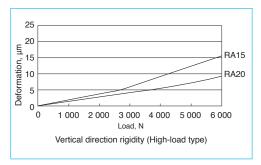
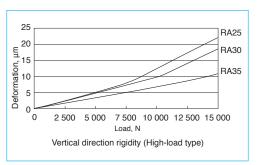




Fig. 5 Direction of load

· Rigidity of medium preload

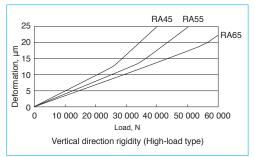
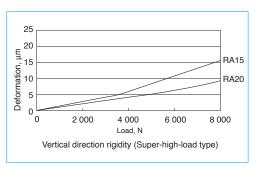
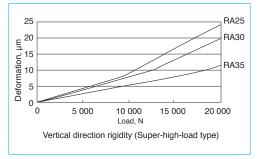




Fig. 6 Vertical direction theoretical rigidity line: High-load type (Roller slide shape: AN, AL, EM)

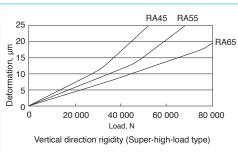


Fig. 7 Vertical direction theoretical rigidity line: Super-high-load type (Roller slide shape: BN, BL, GM)

4. Maximum rail length

Table 6 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grades.

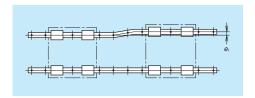

Unit: m										
Model Size	15	20	25	30	35	45	55	65		
RA	2 000	3 000	3 900	3 900	3 900	3 650	3 600	3 600		

Table 6 Langth limitation of vails

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

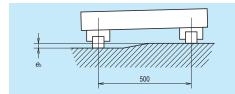


Fig. 8

Fig. 9

Table 7 Unit										
Value	Preload	Model No.								
value		RA15	RA20	RA25	RA30	RA35	RA45	RA55	RA65	
Permissible values for	Z1, ZZ	7	10	14	18	21	27	31	49	
parallelism error of two rails e1	Z3 , ZH	5	7	9	11	13	17	19	30	
Permissible values for	Z1, ZZ	290 μm / 500 mm								
height error of two rails e2	Z3 , ZH	150 μm / 500 mm								

(2) Shoulder height of the mounting surface and corner radius r

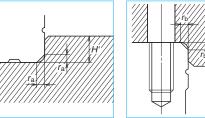


Fig. 10 Shoulder for the Fig. 11 Shoulder for the roller rail datum surface slide datum surface

		Table 8		Unit: mm
Model No.	Corner radiu	s (maximum)	Shoulde	r height
IVIOUEI IVO.	$r_{\rm a}$	$r_{\rm b}$	H'	H"
RA15	0.5	0.5	3	4
RA20	0.5	0.5	4	5
RA25	0.5	1	4	5
RA30	1	1	5	6
RA35	1	1	5	6
RA45	1.5	1	6	8
RA55	1.5	1.5	7	10
RA65	1.5	1.5	11	11

6. Lubrication components

Refer to pages A58 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 14 and Table 11 show grease fittings and tube fittings.

(2) Mounting position of lubrication accessories

- · The standard position for grease fittings is at the end face of the roller slide, but we can mount them on the side of the end cap for as an option. (Fig. 12) Please consult NSK for the installation of grease or tube fittings to the roller slide body.
- A lubrication hole can also be provided on the top of the end cap. Fig.13, Table 9 and Table 10 show the mounting position O-ring, and spacer requirements. A spacer is required for some roller slides. The spacers are available from NSK.
- Using a piping unit with thread of M6 x 1 requires a connector to connect it to a grease fitting mounting hole with M6 \times 0.75. The connectors are available from NSK.

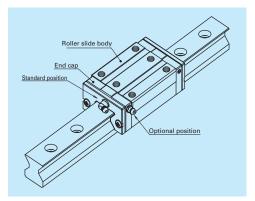


Fig. 12 Mounting position of lubrication accessories

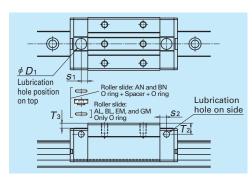


Fig.13 Top and side lubrication hole positions

Table 9 Top and side lubrication hole positions	Table 9	Top a	nd side	lubrication	hole	positions
---	---------	-------	---------	-------------	------	-----------

Office in									
Model No.	Roller slide shape code		\mathcal{S}_2	T_2	O ring (JIS)	Spacer	D_1	\mathcal{S}_1	T_3
RA15		φ 3	4	7	P5	Necessary	8.2	4.4	4.2
RA20		φ 3	4	4	P6	_	9.2	5.4	0.2
RA25		M6×0.75	6	10	P7	Necessary	10	6	4.5
RA30	AN, BN	M6×0.75	5	10	P7+P5	Necessary	10.4	6	3.5
RA35		M6×0.75	5.5	15	P7+P5	Necessary	10.4	7	7.4
RA45		Rc 1/8	7.2	20	P7+P5	Necessary	10.4	7.2	10.4
RA55		Rc 1/8	7.2	21	P7+P5	Necessary	10.4	7.2	10.4
RA65		Rc 1/8	7.2	19	P7	_	10.4	7.2	0.4

Note: Grease fittings and tube fittings cannot be mounted on the top of the end cap.

Table 10 Top and s	ide lubrication	hole	positions
--------------------	-----------------	------	-----------

Table 10 Top and side fubrication note positions Unit: r										
Model No.	Roller slide shape code	Grease fitting size	S_2	<i>T</i> ₂	O ring (JIS)	<i>D</i> ₁	S_1	Тз		
RA15	AL, BL, EM, GM	φ 3	4	3	P5	8.2	4.4	0.2		
RA20	EM, GM	φ3	4	4	P6	9.2	5.4	0.2		
RA25		M6×0.75	6	6	P7	10	6	0.5		
RA30		M6×0.75	5	7	P7	10.4	6	0.5		
RA35	AL, BL, EM, GM	M6×0.75	5.5	8	P7	10.4	7	0.4		
RA45		Rc 1/8	7.2	10	P7	10.4	7.2	0.4		
RA55		Rc 1/8	7.2	11	P7	10.4	7.2	0.4		
RA65	EM. GM	Rc 1/8	7.2	19	P7	10.4	7.2	0.4		

Note: Grease fittings and tube fittings cannot be mounted on the top of the end cap.

Drive-in type (ϕ 3) A type (M6 × 0.75 or R1/8) Tube fitting (M6 × 0.75 or R1/8) (M6 × 0.75 or R1/8) Fig. 14 Grease fitting and tube fitting

7. Dust-resistant components

(1) Standard specification

Grease fitting

The RA model is equipped with end, inner* and bottom seals to prevent foreign matter from entering the inside of the roller slide. Under normal applications, the RA model can be used without modification.

For severe usage conditions, optional rail covers** are available. Contact NSK for information on how to mount the cover.

- *) Inner seals for models RA15 and RA20 are available as options.
- **) Rail covers are available for models RA25 to RA65.

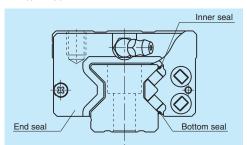
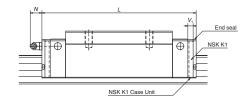


Fig. 15

		Table 11		Unit: mm
Madal	Dust-resistant	Dime	ension L	
No.	specification	Grease fitting	Tube	fitting
INO.	specification	/Drive-in type	SF type	LF type
	Standard	5	-	-
RA15	With NSK K1	10	-	-
nA IS	Double seal	8	-	_
	Protector	8	-	-
	Standard	5	_	-
RA20	With NSK K1	10	-	_
nA20	Double seal	8	-	_
	Protector	10	_	-
	Standard	5	5	5
RA25	With NSK K1	12	12	12
KA25	Double seal	10	9	9
	Protector	10	9	9
RA30	Standard	5	6	6
	With NSK K1	14	14	15
nA30	Double seal	12	12	11
	Protector	12	10	11
	Standard	5	6	6
RA35	With NSK K1	14	14	15
nA35	Double seal	12	12	11
	Protector	12	10	11
	Standard	8	13.5	17
RA45	With NSK K1	18	20	21.5
nA45	Double seal	14	16	17
	Protector	14	16	17
	Standard	8	13.5	17
RA55	With NSK K1	18	20	21.5
nAss	Double seal	14	16	17
	Protector	14	16	17
	Standard	8	13.5	17
RA65	With NSK K1	20	20	20
COAn	Double seal	14	18	17
	Protector	14	16	17

Fig. 16 Rail cover


Table 42 Coal frietian man valley alide (massimum value)

Unit:								
Model Size	15	20	25	30	35	45	55	65
RA	4	5.5	5	5	6	8	8	14

A306

(2) NSK K1[™] lubrication unit

Table 13 shows the dimensions of linear guides equipped with NSK K1 lubrication units.

Table 12	Dimensions	whon	aquinnad	with	MCK I	/1	lubrication	unito
Table 13	Dimensions	wnen	equippea	with	INSK I	XI.	lubrication	units

Unit: mm

Table to Difficultions when equipped with Nor R1 labifoldion units							
Model No.	Roller slide length	Roller slide shape code	Standard roller slide length	Roller slide length with two NSK K1 installed <i>L</i>	Thickness of single NSK K1 V_1	Protrusion of grease fitting N	
RA15	Standard	AN, AL, EM	70	79	4.5	(2)	
nAIS	Long	BN, BL, GM	85.4	94.4	4.5	(3)	
RA20	Standard	AN, EM	86.5	95.5	4.5	(2)	
nazu	Long	BN, GM	106.3	115.3	4.5	(3)	
RA25	Standard	AN, AL, EM	97.5	107.5	E	(11)	
	Long	BN, BL, GM	115.5	125.5	5		
RA30	Standard	AN, AL, EM	110.8	122.8		(11)	
nA30	Long	BN, BL, GM	135.4	147.4	6		
RA35	Standard	AN, AL, EM	123.8	136.8	6.5	(11)	
nA35	Long	BN, BL, GM	152	165	0.5		
D A 4 F	Standard	AN, AL, EM	154	168	7	(1.4)	
RA45	Long	BN, BL, GM	190	204	7	(14)	
DAFE	Standard	AN, AL, EM	184	198	7	(1.4)	
RA55	Long	BN, BL, GM	234	248	7	(14)	
DAGE	Standard	AN, EM	228.4	243.4	7 -	(4.4)	
RA65	Long	BN, GM	302.5	317.5	7.5	(14)	

Note: Slide length when equipped with NSK K1 = (standard roller slide length) + (V_1 thickness of single NSK K1 unit) × (number of K1 units) + (V_2 thickness of the protective cover) × 2.

(3) Double seal and protector

For the RA Model, double seals and protectors can be installed only before shipping from the factory.

Table 14 shows the increased thickness when end seals and protectors are installed.

	Table 14	Unit: mm
Model No.	Thickness of end seal	Thickness of protector
woder ivo.	<i>V</i> ₃	V_4
RA15	3	2.7
RA20	3	3.3
RA25	3.2	3.3
RA30	3.4	3.6
RA35	3.4	3.6
RA45	4	4.2
RA55	4	4.2
RA65	5	5.5

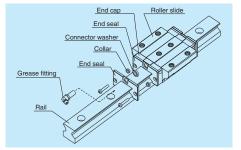


Fig. 17 Double seal

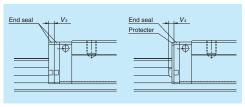


Fig. 19

End cap End seal Connector washer Collar Protecter Grease fitting

Fig. 18 Protector

(4) Rail cover

When the rail cover is used, use the cover bracket to secure the rail cover. Fig. 20 shows the dimensions for the cover bracket. The required room at the end of the rail is:

- Inside: 10.5 mm or less
- Outside: 4 mm or less (Common to the models of RA25 to RA65)
- Please confirm the interference with your machine at the stroke end.
- Machine stroke
- · Room for the end of the rail

The height of the rail with the rail cover is shown in **Table 15**.

Table 15 Height of rails equipped with rail cover

		Unit: mm
Model No.	Standard height H ₁	Cover installation
RA25	24	24.2
RA30	28	28.2
RA35	31	31.25
RA45	38	38.3
RA55	43.5	43.8
RA65	55	55.3

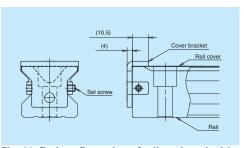


Fig. 20 End configuration of rail equipped with the rail cover

(5) Caps to plug the rail mounting bolt hole

Table 16 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
woder no.	secure rail	reference No.	/case
RA15	M4	LG-CAP/M4	20
RA20	M5	LG-CAP/M5	20
RA25	M6	LG-CAP/M6	20
RA30, RA35	M8	LG-CAP/M8	20
RA45	M12	LG-CAP/M12	20
RA55	M14	LG-CAP/M14	20
RA65	M16	LG-CAP/M16	20

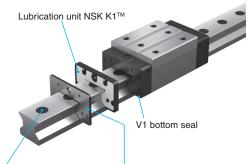
7

7.5

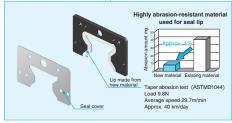
Unit: mm

(6) Specification with highly dust-resistant V1 seals and V1 bottom seals

RA25, RA30, RA35, RA45, RA55, and RA65 have specifications featuring dust-resistant V1 end seals with enhanced abrasion resistance.


Highly dust-resistant V1 seals feature new materials in a new shape for better abrasion resistance and prevent foreign matter getting into the roller slide for a long period.

RA35, RA45, RA55, and RA65 also have V1 bottom seals. In addition, outstanding lubrication effects by NSK K1 further improves the durability.


V1 bottom seals and NSK K1 can be selected individually according to the application.

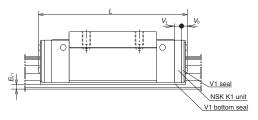
Bolt hole caps with an improved shape eliminate the buildup of foreign matter in and around the rail mounting holes and prevent foreign matter from entering the inside of the slide. Additionally, a rail cover with higher dust resistance can be selected.

See A306 for the details of the rail cover.

Highly dust-resistant V1 seal

Durability test under extreme conditions - no lubrication

The durability of the seal lip has been greatly improved by adopting new materials and optimizing the seal lip shape.


Test sample: RA35

Lubrication: No lubrication (on the seal)

Travel speed: 30 m/min Travel distance: 40 km

V1 seal Conventional end seal Slight wear

Table 17 shows dimensions for roller slides with highly dust-resistant V1 seals.

Since the sealing property (resistance to foreign matter) is affected by usage or the lubrication environment, please conduct an evaluation test for your particular application.

Roller slide Slide bottom face Standard roller Thickness of Thickness of Roller slide Model Roller slide ength equipped eight equipped with slide length V1 seal V_0 K1 case unit with V1 seal No. length shape code V1 bottom seal and NSK K1 L E_{V1} Standard AN, AL, EM 97.5 111.3 RA25 5.1 5 BN, BL, GM 115.5 129.3 Long AN, AL, EM 110.8 126.8 Standard RA30 5.4 6 BN, BL, GM 135.4 151.4 Lona AN, AL, EM 123.8 140.8 Standard RA35 min 3 7 54 6.5 BN. BL. GM 152 169 Long

173.2

209.2

203.2

253.2

251.2

325.3

Table 17

Design Precautions

Standard

Long

Standard

Long

Standard

Lona

Because the product is used under severe operating conditions that require highly dust-resistant V1 seals, please inform NSK about your service conditions using the technical data sheet on page A144.

(7) Bellows

RA45

RA55

RA65

Installation of bellows

* Fixing to the roller slide

· Remove two machine screws which secure the end seal. (For RA15, hold the end cap by hand. Otherwise, the end cap is detached from the slide, and the roller inside may spill over.)

AN, AL, EM

BN. BL. GM

AN, AL, EM

BN, BL, GM

AN, EM

BN. GM

154

190

184

234

228.4

302 5

 Insert a spacer to the securing hole of the end seal, fasten the mounting plate at the end of the bellows using a slightly longer machine screw. (For RA15, insert a flat spacer between the end seal and the mounting plate at the end of the bellows.)

* Fixing to the rail

· For fixing to the rail, make tap holes to the rail end surface. Fix the bellows mounting plate with machine screws to the rail end surface through these tap holes. NSK processes the tap holes to the rail end surface when ordered with a linear guide.

Calculating length of bellows

min 5.2

min 6.2

min 10.2

· The formulas for calculating length of bellows for the end are as follows.

6.6

6.6

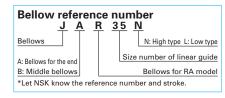
8.9

Stroke
$$St = L_{max} - L_{min}$$

Length when stretched to the maximum length

$$L_{\text{max}} = f_{\text{b}} \cdot P \times \text{Number of folds}$$

Length when contracted to the minimum length


$$L_{min} = 2.5 \times \text{Number of folds} + 3$$

Values of f_b and P are shown in the bellows dimension table. Based on these above formulas, calculate the number of folds as follows.

Number of folds =
$$\frac{St - 3}{f_b \cdot P - 2.5}$$

Round up the calculated value so that the number of folds will be n + 0.5 (n: the natural number).

For the length of a middle bellows, please ask NSK.

Dimension table of bellows **RA** model

Н

23.5

27

29

35

39

41

44

47

54

59

69

69

79

Model No.

JAR15L

JAR15N

JAR20N

JAR25L

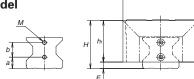
JAR25N

JAR30L

JAR30N

JAR35L

JAR35N


JAR45L

JAR45N

JAR55L

JAR55N

JAR65N

19.5

23

24

30

34

34.5

37.5

40.5

47.5

51

61

60

70

76

Ε

4

5

5

6.5

6.5

9

13

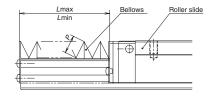


Fig. 21 Dimensions of bellows

W

33

39

43

51

61

60

66

72

82

93

113

101

121

131

30

20

30

30

1.5

1.5

1.5

1.5

Table 18 Dimensions of bellows

Unit: mm (excluding f_b) Tap (M) × depth 1.2 7 6.3 $M3 \times 5$ 10 1.3 8 1.3 8.5 9 M3 × 5 10 1.3 12 8.5 $M3 \times 5$ 14 1.4 12 1.3 11 12.5 $M4 \times 6$ 15 1.4 15 1.4 11 15 $M4 \times 6$ 20 1.5 20 1.5 14 18 $M5 \times 8$

15

21

22

26

 $M5 \times 8$

M6 × 10

89 Note: f_b is a dimensionless number

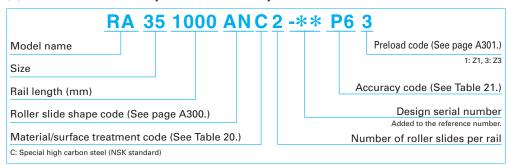
8. Dynamic friction force

- Dynamic friction force indications per roller slide are shown in Table 19.
- In assuming actual usage conditions, the dynamic friction force of the standard product is the value when the dust-resistant specification of the slide is standard (with two end seals, inner seal and bottom seal) and standard grease (AS2 grease) is packed.
- However, since the inner seal of RA15 and RA20 is optional, the inner seal is not attached to the standard dust-resistant specification.
- · When using options, the dynamic friction force of each option (or, in the case of highly dustresistant V1 seals, the difference from standard end seals) is added to that of the standard product.
- · Dynamic friction force varies with grease.

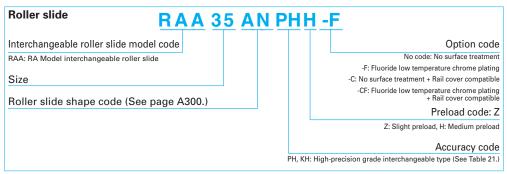
Unit: N

Model.	Roller slid	de		rd products vith AS2 grease)	Of V1	Of V1 bottom	Of NSK
No.	Rating	Shape code		Portion from standard seals	seals	seals	K1 units
RA15	High-load type	AN, AL, EM	21	3			3
nA15	Super-high-load type	BN, BL, GM	24	3		_	3
RA20	High-load type	AN, EM	22	3.5			3
nA20	Super-high-load type	BN, GM	28	3.5			_ 3
RA25	High-load type	AN, AL, EM	27	5	6		4
nA25	Super-high-load type	BN, BL, GM	34	0	6		4
RA30	High-load type	AN, AL, EM	33	5	8		4
nA30	Super-high-load type	BN, BL, GM	42	٥	8	_	4
RA35	High-load type	AN, AL, EM	42	6	10	17	5
	Super-high-load type	BN, BL, GM	53	0		21	5
RA45	High-load type	AN, AL, EM	56	8	15	21	7
NA45	Super-high-load type	BN, BL, GM	69	8	15	26	/
DAFE	High-load type	AN, AL, EM	80	0	20	25	8
RA55	Super-high-load type	BN, BL, GM	95	8	20	32	8
RA65	High-load type	AN, EM	120	14	25	31	8
NAUS	Super-high-load type	BN, GM	138	14	20	41	°

Notes: 1) Values in the columns to the right of "For standard products" show the increase in dynamic friction force when two of the components listed are mounted on a slide.


2) These are indication values. Please use them as a reference.

9. Reference number


A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for interchangeable type

R1A35 10	00 L C N -** PH Z
Interchangeable rail model code	Preload code: Z
R1A: RA Model interchangeable rail	Z: Common for slight and medium preload (See page A301.)
Size	Accuracy code
D 114 (1 /)	PH: High-precision grade interchangeable type
Rail length (mm)	Design serial number
Rail shape code: L	Added to the reference number.
L: Standard	*Butting rail specification
Material/surface treatment code (See Ta	ble 20.) N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

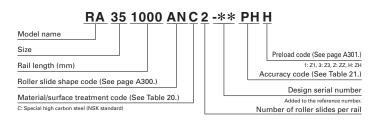
When interchangeable rails and slides are assembled, reference number coding is the same as that for preloaded assemblies. However, only preload codes Z (slight preload) and H (medium preload) may be used (Refer to Page A301.)

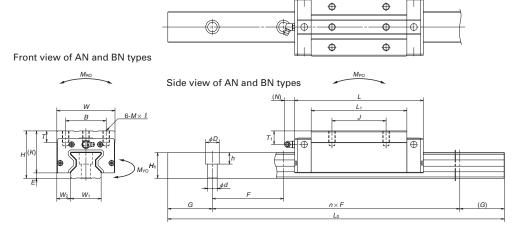
Click!Speedy™ NSK Linear Guide Quick Delivery System uses a new numbering system. For details, please refer to the Click!Speedy general catalog CAT. No. E3191.

Table 20 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Р	Special high carbon steel with V1 seal
R	Special high carbon steel with surface treatment and V1 seal
Z	Other, special

Note: P and R are not available for interchangeable slides and rails.


Table 21 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	K3
Super precision grade	P4	K4
High precision grade	P5	K5
Precision grade	P6	K6
High precision grade (Interchangeable type)	PH	КН

Note: Refer to pages A58 for details on NSK K1 lubrication units.

A313 A314

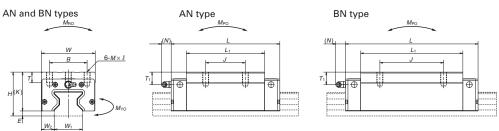
10. Dimensions RA-AN (High-load / Standard) RA-BN (Super-high-load / Long)

Top view of AN and BN types

	A:	ssemb	oly					Rolle	r slide							
Model No.	Height			Width	Length	Length Mounting hole						Grease	fittin	g	Width	Height
iviodei No.	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	T ₁	N	W_1	H ₁
RA15AN RA15BN	28	4	9.5	34	70 85.4	26	26	M4×0.7×6	44.8 60.2	24	8	φ3	8	3	15	16.3
RA20AN RA20BN	30	5	12	44	86.5 106.3	32	36 50	M5×0.8×6	57.5 77.3	25	12	φ 3	4	3	20	20.8
RA25AN RA25BN	40	5	12.5	48	97.5 115.5	35	35 50	M6×1×9	65.5 83.5	35	12	M6×0.75	10	11	23	24
RA30AN RA30BN	45	6.5	16	60	110.8 135.4	40	40 60	M8×1.25×11	74 98.6	38.5	14	M6×0.75	10	11	28	28
RA35AN RA35BN	55	6.5	18	70	123.8 152	50	50 72	M8×1.25×12	83.2 111.4	48.5	15	M6×0.75	15	11	34	31
RA45AN RA45BN	70	8	20.5	86	154 190	60	60 80	M10×1.5×17	105.4 141.4	62	17	Rc1/8	20	14	45	38
RA55AN RA55BN	80	9	23.5	100	184 234	75	75 95	M12×1.75×18	128 178	71	18	Rc1/8	21	14	53	43.5
RA65AN RA65BN	90	13	31.5	126	228.4 302.5	76	70 120	M16×2×20	155.4 229.5	77	22	Rc1/8	19	14	63	55

Notes: 1) Select either the standard dimension for pitch F as shown without parentheses or the semi-standard dimension as shown inside parentheses. If not specified, the standard dimension for F will be applied.

Reference number for roller slide of interchangeable type

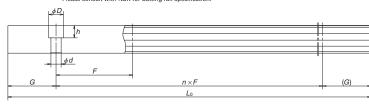

Roller slide

Interchangeable roller slide model code
RAA: RA Model interchangeable roller slide
Size

Roller slide shape code (See page A300.)

Option code

No code: No surface treatment
-F: Fluoride low temperature plating
-C: No surface treatment
-F: Fluoride low temperature plating
-C: No surface treatment
-F: Fluoride low temperature plating
-C: No surface treatment
-F: Fluoride low temperature plating
-F: Flu

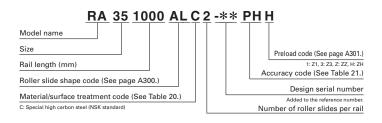


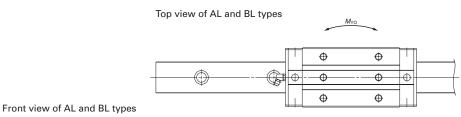
Reference number for rail of interchangeable type Rail R1A35 1000 L C N -** PH Z

Interchangeable rail model code
Ritk: RA Model interchangeable rail
Size
Rith: RA Model interchangeable rail
Size
Rail length (mm)
Rail shape code: L
L: Standard
Material/surface treatment code (See Table 20.)

Preload code: Z
2: Common for slight and medium proload (See A201.)
R-H: High-precision grade interchangeable type
Design serial number
Added to the reference number.
*Butting rail specification
N: Non-butting. L: Butting specification
*Please consult with NRK for hutting is pecification
*Please consult with NRK for hutting is pecification

Unit: mm


				Basic load ratings									
	G	Maximum	3)Dyn	amic	Static		Static	moment	(N·m)		Roller	Rail	
bolt hole		length	[50km]	[100km]	C 0	M_{RO} M_{PO}		М	YO	slide			
$d \times D \times h$	(reference)	L_{0max}	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)	
4.5×7.5×5.3	20	2 000	12 600 16 000	10 300 13 000	27 500 37 000	260 350	210 375	1 320 2 130	210 375			1.6	
6×9.5×8.5	20	3 000	23 600 29 500	19 200 24 000	52 500 70 000	665 890	505 900	3 100 5 000	505 900				
7×11×9	20	3 900	36 000 43 500	29 200 35 400	72 700 92 900	970 1 240	760 1 240	4 850 7 200	760 1 240	4 850 7 200	0.60 0.91	3.4	
9×14×12	20	3 900	47 800 58 500	38 900 47 600	93 500 121 000	1 670 2 170	1 140 1 950	7 100 11 500	1 140 1 950	7 100 11 500	1.0 1.3	4.9	
9×14×12	20	3 900	65 500 82 900	53 300 67 400	129 000 175 000	2 810 3 810	1 800 3 250	11 000 17 800	1 800 3 250	11 000 17 800	1.6 2.1	6.8	
14×20×17	22.5	3 650	114 000 143 000	92 800 116 000	229 000 305 000	6 180 8 240	4 080 7 150	24 000 39 000	4 080 7 150			10.9	
16×23×20	30	3 600	159 000 207 000	129 000 168 000	330 000 462 000	10 200 14 300	7 060 13 600	41 000 72 000	7 060 13 600			14.6	
18×26×22	35	3 600	259 000 355 000	210 000 288 000	504 000 756 000	19 200 28 700	12 700 28 600	78 500	12 700	78 500	9.3	22.0	
	bolt hole $d \times D \times h$ $4.5 \times 7.5 \times 5.3$ $6 \times 9.5 \times 8.5$ $7 \times 11 \times 9$ $9 \times 14 \times 12$ $9 \times 14 \times 12$ $14 \times 20 \times 17$ $16 \times 23 \times 20$	both hole $d \times D \times h$ reference $4.5 \times 7.5 \times 5.3$ 20 $6 \times 9.5 \times 8.5$ 20 $7 \times 11 \times 9$ 20 $9 \times 14 \times 12$ 20 $9 \times 14 \times 12$ 20 $14 \times 20 \times 17$ 22.5 $16 \times 23 \times 20$ 30	both hole depth d	bolt hole length (50km) (50km)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						

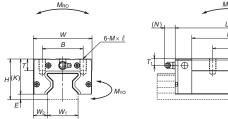

²⁾ The interchangeable type is available for models RA25 to RA65.

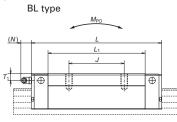
 C_{50} , the basic dynamic load rating for 100 km rated fatigue life

³⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2). C_{so} ; the basic dynamic load rating for 50 km rated fatigue life

RA-AL (High-load / Standard) RA-BL (Super-high-load / Long)

Side view of AL and BL types φd (G)

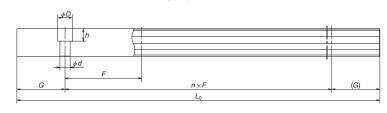

	A	ssemb	oly		Roller slide											
Model No.	Height			Width	Length	Mounting hole						Grease	fittin	ig	Width	Height
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> ₁	N	W_1	H ₁
RA15AL RA15BL	24	4	9.5	34	70 85.4	26	26	M4×0.7×5.5	44.8 60.2	20	8	φ3	4	3	15	16.3
RA25AL RA25BL	36	5	12.5	48	97.5 115.5	35	35 50	M6×1×8	65.5 83.5	31	12	M6×0.75	6	11	23	24
RA30AL RA30BL	42	6.5	16	60	110.8 135.4	40	40 60	M8×1.25×11	74 98.6	35.5	14	M6×0.75	7	11	28	28
RA35AL RA35BL	48	6.5	18	70	123.8 152	50	50 72	M8×1.25×12	83.2 111.4	41.5	15	M6×0.75	8	11	34	31
RA45AL RA45BL	60	8	20.5	86	154 190	60	60 80	M10×1.5×16	105.4 141.4	52	17	Rc1/8	10	14	45	38
RA55AL RA55BL	70	9	23.5	100	184 234	75	75 95	M12×1.75×18	128 178	61	18	Rc1/8	11	14	53	43.5


Notes: 1) Select either the standard dimension for pitch F as shown without parentheses or the semi-standard dimension as shown inside parentheses. If not specified, the standard dimension for F will be applied.

Reference number for roller slide of interchangeable type

RAA 35 AL PH H -F Roller slide Interchangeable roller slide model code
RAA: RA Model interchangeable roller slide Option code -F: Fluoride low temperature chrome plating
-C: No surface treatment + Rail cover compatible
-CF: Fluoride low temperature chrome plating
+ Rail cover compatible Roller slide shape code (See page A300.) Preload code: Z Accuracy code PH, KH: High-precision grade interchangeable type (See Table 21.)

AL type



Reference number for rail of interchangeable type R1A35 1000 L C N -** PH Z

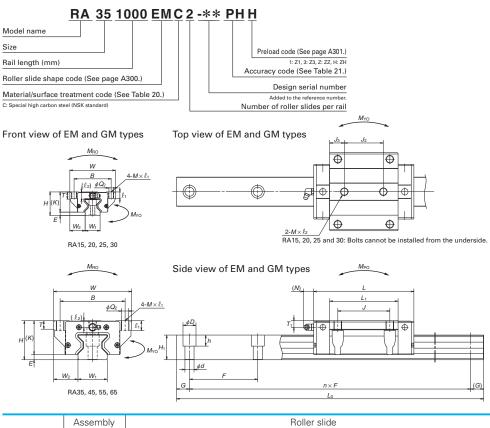
Interchangeable rail model code Preload code: Z Z: Common for slight and medium preload (See A301.) Accuracy code R1A: RA Model interchangeable rai Size PH: High-precision grade interchangeable type. Rail length (mm) Design serial number Rail shape code: L Added to the reference number. *Butting rail specification N: Non-butting. L: Butting specification Material/surface treatment code (See Table 20.) *Please consult with NSK for butting rail specification

AL and BL types

Unit: mm

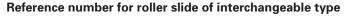
					vve	ight						
unting			3)Dyna	amic	Static		Static	moment	(N·m)		Roller	Rail
t hole		length	[50km]	[100km]	C 0	M _{RO}	М	PO	М	ΥO	slide	
$D \times h$ (re	eference)	$L_{\scriptscriptstyle 0max}$	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
7.5×5.3 2	20	2 000	12 600 16 000	10 300 13 000	27 500 37 000	260 350	210 375	1 320 2 130	210 375	1 320 2 130	0.17 0.25	1.6
11×9 2	20	3 900	36 000 43 500	29 200 35 400	72 700 92 900	970 1 240	760 1 240	4 850 7 200	760 1 240	4 850 7 200	0.45 0.80	3.4
14×12 2	20	3 900	47 800 58 500	38 900 47 600	93 500 121 000	1 670 2 170	1 140 1 950	7 100 11 500	1 140 1 950	7 100 11 500	0.85 1.1	4.9
14×12	20	3 900	65 500 82 900	53 300 67 400	129 000 175 000	2 810 3 810	1 800 3 250	11 000 17 800	1 800 3 250	11 000 17 800	1.2 1.7	6.8
20×17 2	22.5	3 650	114 000 143 000	92 800 116 000	229 000 305 000	6 180 8 240	4 080 7 150	24 000 39 000	4 080 7 150	24 000 39 000	2.5 3.4	10.9
23×20 3	30	3 600	159 000 207 000	129 000 168 000	330 000 462 000	10 200 14 300	7 060 13 600	41 000 72 000	7 060 13 600	41 000 72 000	4.1 5.7	14.6
	t hole $D \times h$ in 7.5×5.3 2 11 × 9 2 4 × 12 2 2 0 × 17 2	Thole D×h reference 7.5x5.3 20 11x9 20 4x12 20 4x12 20 20x17 22.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	thole length $C_{50}(N)$ $C_{50}(N)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							

2) The interchangeable type is available for models RA25 to RA55.

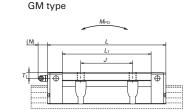

3) Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life


A317

RA-EM (High-load / Standard) RA-GM (Super-high-load / Long)



	As	seml	bly	Roller slide												
Model No.	Height			Width	Length			Ν	Nounting hole					Grease fitting		
		Ε	W_2	W	L	$B \mid J \mid J_2 \mid$		J_2	$M \times \text{pitch} \times \ell_1(\ell_2)$	Q_2	L ₁	Κ	Т	Hole size	<i>T</i> ₁	N
RA15EM RA15GM	24	4	16	47	70 85.4	38	30	26	M5×0.8×8.5 (6.5)	4.4	44.8 60.2	20	8	φ 3	4	3
RA20EM RA20GM	30	5	21.5	63	86.5 106.3	53	40	35	M6×1×9.5 (8)	5.3	57.5 77.3	25	10	\$ 3	4	3
RA25EM RA25GM	36	5	23.5	70	97.5 115.5	57	45	40	M8×1.25×10 (11)	6.8	65.5 83.5	31	11	M6×0.75	6	11
RA30EM RA30GM	42	6.5	31	90	110.8 135.4	72	52	44	M10×1.5×12 (12.5)	8.6	74 98.6	35.5	11	M6×0.75	7	11
RA35EM RA35GM	48	6.5	33	100	123.8 152	82	62	52	M10×1.5×13 (7)	8.6	83.2 111.4	41.5	12	M6×0.75	8	11
RA45EM RA45GM	60	8	37.5	120	154 190	100	80	60	M12×1.75×15 (10.5)	10.5	105.4 141.4	52	13	Rc1/8	10	14
RA55EM RA55GM	70	9	43.5	140	184 234	116	95	70	M14×2×18 (13)	12.5	128 178	61	15	Rc1/8	11	14
RA65EM RA65GM	90	13	53.5	170	228.4 302.5	142	110	82	M16×2×24 (18.5)	14.6	155.4 229.5	77	22	Rc1/8	19	14

Notes: 1) Select either the standard dimension for pitch F as shown without parentheses or the semi-standard dimension as shown inside parentheses. If not specified, the standard dimension for F will be applied.

EM type

Reference number for rail of interchangeable type

Rail

R1A35 1000 L C N -** PH Z

Interchangeable rail model code
R1A: RA Model interchangeable rail
Size

Rail length (mm)

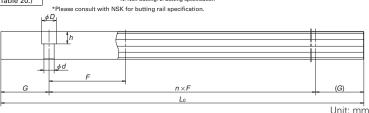
Rail shape code: L

L: Standard

Material/surface treatment code (See Table 20.)

R1A: RA Model interchangeable rail
Size

Preload code: Z


2: Common for slight and medium preload (See A301)
Accuracy code
PH: High-precision grade interchangeable type.
Design serial number

*Butting rail specification
N: Non-butting. L: Butting specification

*Please consult with NSK for butting: Resification

EM and GM types

														01	III. IIIIIII
			Rail					Basic loa	d ratin	gs				We	ight
Width	Height	Pitch	Mounting			3)Dyn	amic	Static	5	Static n	nomer	nt (N·n	า)	Roller	Rail
			bolt hole	length		[50km]	[100km]	C 0	MRO	М	PO	M	YO	slide	
W_1	H ₁	F	$d \times D \times h$	(reference)	$L_{\scriptscriptstyle 0max}$	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	16.3	60 (30)	4.5×7.5×5.3	20	2 000	12 600 16 000	10 300 13 000	27 500 37 000	260 350						1.6
20	20.8	60 (30)	6×9.5×8.5	20	3 000	23 600 29 500	19 200 24 000	52 500 70 000	665 890	505 900	3 100 5 000				2.6
23	24	30 (60)	7×11×9	20	3 900	36 000 43 500	29 200 35 400	72 700 92 900	970 1 240			760 1 240			3.4
28	28	40 (80)	9×14×12	20	3 900	47 800 58 500	38 900 47 600	93 500 121 000	1 670 2 170	1 140 1 950		1 140 1 950	7 100 11 500		4.9
34	31	40 (80)	9×14×12	20	3 900	65 500 82 900	53 300 67 400	129 000 175 000	2 810 3 810			1 800 3 250	11 000 17 800		6.8
45	38	52.5 (105)	14×20×17	22.5	3 650	114 000 143 000	92 800 116 000	229 000 305 000	6 180 8 240		24 000 39 000		24 000 39 000	3.2 4.3	10.9
53	43.5	60 (120)	16×23×20	30	3 600	159 000 207 000	129 000 168 000		10 200 14 300				41 000 72 000		14.6
63	55	75 (150)	18×26×22	35	3 600	259 000 355 000	210 000 288 000	504 000 756 000							22.0

²⁾ The interchangeable type is available for models RA25 to RA65.

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

A319

³⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

A-4-4.2 RB Model

1. Features

(1) Super-low type

With low mounting height, the RB model is effective for compact machine design.

(2) Super-high load capacity

The RB model can contribute to lower center of gravity of machines, while maintaining the load capacity of the RA model.

(3) Super-high rigidity

Using NSK's advanced analysis technology, we pursued a complete, optimal design, down to the detailed shape of roller slides and rails, thereby realizing super-high rigidity superior to that of competitor's roller guides.

(4) Super-high motion accuracy

NSK has developed its own unique method of simulating rolling element passage vibration and method of designing optimal roller slide specifications for damping roller passage vibration. These developments have dramatically enhanced roller slide motion accuracy for the RB model.

(5) Smooth motion

Installation of a retaining piece between rollers restrains roller skew peculiar to roller slides, thereby achieving smooth motion.

(6) Low friction

Using rollers for rolling elements helps minimize dynamic friction.

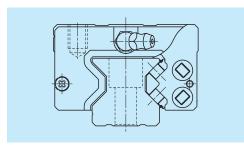


Fig. 1 RB Model

Fig. 2 Analysis example

2. Roller slide shape

Roller slide shape code	Shape/installation method	Type (Upper row, Rating: Lo High-load Standard	wer row, Roller slide length) Super-high-load Long
AL TL BL UL		AL·TL (excluding RB55AL) RB55AL	BL (excluding RB55 and RB65) L1 UL RB55BL · RB65BL L1
EM GM		EM L ₁	GM

3. Accuracy and preload

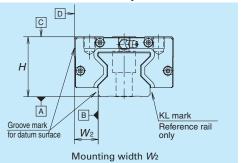
(1) Running parallelism of roller slide

Table 1

Unit: µm

de	Preloaded assembly	(not interchangeable	e)
Ultra precision P3	Super precision P4	High precision P5	Precision grade P6
· ·		.	, and the second
2	2	2	4
2	2	3	4
2	2	3	4
2	2	3.5	5
2	2.5	4.5	6
2	2.5	5	6.5
2	3	5.5	7
2	3	6	7.5
2	3.5	6.5	8.5
2	4	7	9.5
2.5	4.5	7.5	10
3	5	8.5	12
3.5	5.5	9.5	13
4	6.5	11	14
4.5	7.5	12	16
5.5	8.5	13	18
6	9.5	14	19
	Ultra precision P3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4.5 5.5	Ultra precision P3 Super precision P4 2 3 3 2 2 3.5 2 3 3 2 4 4 2.5 4.5 3 5 3 5 3.5 5.5 4 6.5 4 6.5 4.5 7.5 5.5 8.5	Ultra precision P3 Super precision P4 High precision P5 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 3 5 5 5 2 2 3 5 5 5 2 3 5 5 6 5 2 3 6 6 5 7 7 7 5 7 5 7 8 5 8 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 6 5 8 7 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 8

A321 A322


(2) Accuracy standard

The preloaded assembly has four accuracy grades; Ultra precision P3, Super precision P4, High precision P5, and Precision P6 grades.

Tolerance of preloaded assembly

Tolerance of preloaded assembly	Table	Unit: µm			
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	
Mounting height <i>H</i>	±8	±10	±20	±40	
Variation of <i>H</i>	3	5	7	15	
(All roller slides on a set of rails)					
Mounting width W_2 or W_3	±10	±15	±25	±50	
Variation of W_2 or W_3	3	7	10	20	
(All roller slides on reference rail)					
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 4				

(3) Assembled accuracy

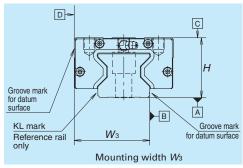


Fig. 3

(4) Preload and rigidity

One type of preload is available: Medium preload Z3 for preloaded assembly.

Table 3

Model No.		Model No.	Preload (N)
			Medium preload (Z3)
	RB30	AL, EM	3 890
ad	RB35	AL, EM	5 330
High-load	RB45	AL, EM	9 280
Hig	RB55	AL, TL, EM	12 900
	RB65	AL, EM	21 000
ad	RB30	BL, GM	4 760
h-lc	RB35	BL, GM	6 740
hig	RB45	BL, GM	11 600
Super-high-load	RB55	BL, UL, GM	16 800
Sul	RB65	BL, UL, GM	28 800

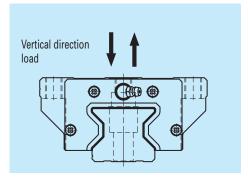
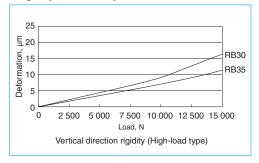



Fig. 4 Direction of load

· Rigidity of medium preload

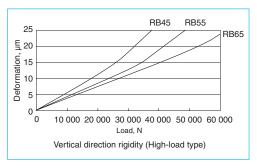
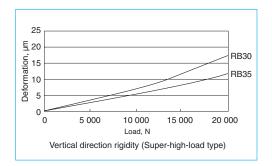



Fig. 5 Vertical direction theoretical rigidity line: High-load type (Roller slide shape: AL, TL, EM)

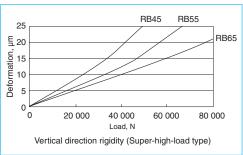


Fig. 6 Vertical direction theoretical rigidity line: Super-high-load type (Roller slide shape: BL, UL, GM)

A323 A324

4. Maximum rail length

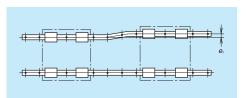

Table 4 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grades.

Table 4 Length limitation of rails							
Model Size	30	35	45	55	65		
RB	3 900	3 900	3 650	3 600	3 600		

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

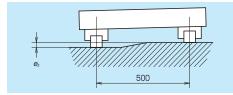
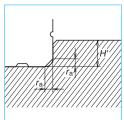



Fig. 7

Fig. 8

		Table 5			Unit: µm
Value			Model No.		
Value	RB30	RB35	RB45	RB55	RB65
Permissible values for parallelism error of two rails e_1	11	13	17	19	30
Permissible values for height error of two rails e_2	150 μm / 500 mm				

(2) Shoulder height of the mounting surface and corner radius r

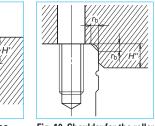


Fig. 9 Shoulder for the Fig. 10 Shoulder for the roller slide datum surface rail datum surface

lable 6 Unit: i						
Model No.	Corner radius	s (maximum)	Shoulder height			
wouei no.	r _a	$r_{\scriptscriptstyle \mathrm{b}}$	H′	H″		
RB30	1	1	5	6		
RB35	1	1	5	6		
RB45	1.5	1	6	8		
RB55	1.5	1.5	7	10		
RB65	1.5	1.5	8	11		

6. Lubrication components

Refer to pages A58 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 13 and Table 8 show grease fittings and tube fittings.

(2) Mounting position of lubrication accessories

- · The standard position for grease fittings is at the end face of the roller slide, but we can mount them on the side of the end cap for as an option. (Fig. 11) Please consult NSK for the installation of grease or tube fittings to the roller slide body.
- · A lubrication hole can also be provided on the top of the end cap. Fig.12 and Table 7 show the mounting position.
- Using a piping unit with thread of M6 x 1 requires a connector to connect it to a grease fitting mounting hole with M6 \times 0.75. The connectors are available from NSK.

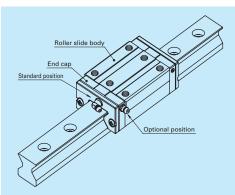


Fig. 11 Mounting position of lubrication accessories

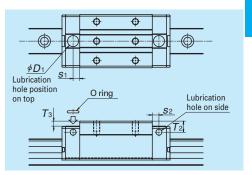
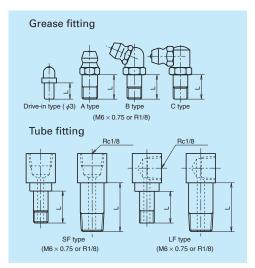


Fig.12 Top and side lubrication hole positions


Table 7 Top and side lubrication hole positions

Unit:	mm
_	

Model No.	Grease fitting size	S_2	T ₂	O ring (JIS)	D ₁	S_1	<i>T</i> ₃
RB30	M6×0.75	5	6.5	P7	10.4	6	0.5
RB35	M6×0.75	5.5	6.5	P7	10.4	7	0.4
RB45	M6×0.75	7.2	6.5	P7	10.4	7.2	0.4
RB55	M6×0.75	7.2	8	P7	10.4	7.2	0.4
RB65	M6×0.75	7.2	10	P7	10.4	7.2	0.4

Note: Grease fittings and tube fittings cannot be mounted on the top of the end cap.

A325 A326

Fig. 13	Grease	fitting	and	tube	fitting
---------	--------	---------	-----	------	---------

7. Dust-resistant components

(1) Standard specification

The RB model is equipped with end, inner and bottom seals to prevent foreign matter from entering the inside of the roller slide. Under normal applications, the RB model can be used without modification.

		Table 8		Unit: mm				
Model Dust-resistant Dimension L								
		Grease fitting	Tube	fitting				
No.	specification	/Drive-in type	SF type	LF type				
	Standard	5	_	_				
RB30	With NSK K1	10	-	_				
NBSU	Double seal	8	_	_				
	Protector	8	_	_				
	Standard	5	5	5				
RB35	With NSK K1	14	15	16				
прээ	Double seal	12	12	12				
	Protector	12	12	12				
	Standard	5	5	5				
RB45	With NSK K1	14	15	16				
11043	Double seal	12	12	12				
	Protector	12	12	12				
	Standard	8	13.5	17				
RB55	With NSK K1	18	20	21.5				
проо	Double seal	14	16	17				
	Protector	14	16	17				
	Standard	8	13.5	17				
RB65	With NSK K1	20	20	20				
11000	Double seal	14	18	17				
	Protector	14	16	17				

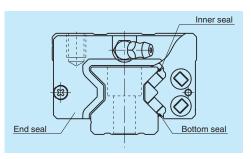


Fig. 14

Table 9 S	eal friction	per roller	slide (ı	maximum	value)	Unit: N

					O i i i i
Model Size	30	35	45	55	65
RB	5	6	8	8	14
					1

(2) NSK K1[™] lubrication unit

Table 10 shows the dimensions of linear guides equipped with NSK K1 lubrication units.

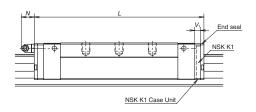


Table 10 Dimensions when equipped with NSK K1 lubrication units

Unit: mm

Model No.	Roller slide length	Roller slide model	Standard roller slide length	Roller slide length with two NSK K1 installed <i>L</i>	Thickness of single NSK K1	Protrusion of grease fitting N
RB30	Standard	AL, EM	110.8	122.8	6	(11)
ND30	Long	BL, GM	135.4	147.4	0	(11)
RB35	Standard	AL, EM	123.8	136.8	6.5	(11)
ND35	Long	BL, GM	152	165	0.5	(11)
RB45	Standard	AL, EM	154	168	7	(14)
KB45	Long	BL, GM	190	204	/	(14)
RB55	Standard	AL, TL, EM	184	198	7	(14)
0000	Long	BL, UL, GM	234	248	/	(14)
DDGE	Standard	AL, EM	228.4	243.4	7.5	(14)
RB65	Long	BL, UL, GM	302.5	317.5	7.5	(14)

Note: Slide length when equipped with NSK K1 = (standard roller slide length) + (V_1 thickness of single NSK K1 unit) × (number of K1 units) + (V_2 thickness of the protective cover) × 2.

(3) Double seal and protector

For the RB Model, double seals and protectors can be installed only before shipping from the factory.

Table 11 shows the increased thickness when end seals and protectors are installed.

	Table 11	Unit: mm
Model No.	Thickness of end seal V_3	Thickness of protector V_4
RB30	3.4	3.6
RB35	3.4	3.6
RB45	4	4.2
RB55	4	4.2
RB65	5	5.5

A327 A328

End cap End seal

Fig. 15 Double seal

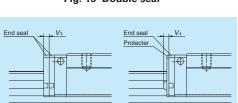


Fig. 17

(4) Caps to plug the rail mounting bolt hole

Table 12 Caps to plug rail bolt hole

Model No.	Bolt to secure rail	Cap reference No.	Quantity /case
RB30, RB35	M8	LG-CAP/M8	20
RB45	M12	LG-CAP/M12	20
RB55	M14	LG-CAP/M14	20
RB65	M16	LG-CAP/M16	20

(5) Bellows

Consult NSK when attaching bellows.

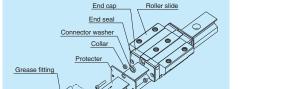


Fig. 16 Protector

Rail

8. Dynamic friction force

- Dynamic friction force indications per roller slide are shown in Table 13.
- These values are assumed under actual conditions with standard specifications (two end seals, inner seal and bottom seal equipped) packed with standard grease (NSK Grease AS2)
 Dynamic friction force varies with grease.

Table 13 Dynamic friction force

Unit: N

Model No.	High-load type	Super-high-load type			
RB30	33	42			
RB35	42	53			
RB45	56	69			
RB55	80	95			
RB65	120	138			

Note: Values in Table 13 are indications.

Please refer to them.

9. Reference number

A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

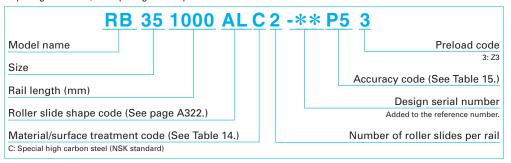


Table 14 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Table 15 Accuracy code

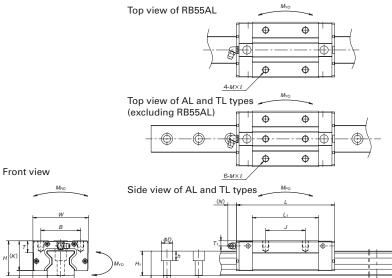
Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	K3
Super precision grade	P4	K4
High precision grade	P5	K5
Precision grade	P6	K6

Note: Refer to pages A58 for details on NSK K1 lubrication units.

A331 A332

10. Dimensions RB-AL-TL (High-load / Standard) RB-BL-UL (Super-high-load / Long)

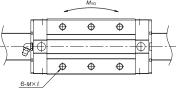
RB 35 1000 AL C 2 -** P5 3

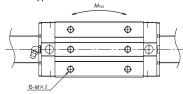

Model name
Size
Rail length (mm)
Roller slide shape code (See page A322.)

Material/surface treatment code (See Table 14.)
C: Special high carbon steel (NSK standard)

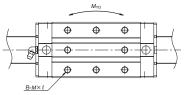
RB 35 1000 AL C 2 -** P5 3

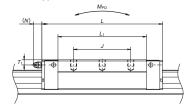
Preload code
3: 23


Accuracy code (See Table 15.)
Design serial number
Added to the reference number.
Number of roller slides per rail


Ī		As	sem	bly						Roller slide	Э						
	lodel No.	Height			Width	Length	Mounting hole			ing hole				Grease	fitting	g	Width
IV	lodel IVo.								Number								
		Н	Ε	W_2	W	L	В	J	of holes	$M \times pitch \times \ell$	L ₁	Κ	T	Hole size	T_1	Ν	W_1
-	RB30AL RB30BL	38	6.5	16	60	110.8 135.4	40	40 60	6 8	M8×1.25×7	74 98.6	31.5	14	φ3	5	2.6	28
	RB35AL RB35BL	44	6.5	18	70	123.8 152	50	50 72	6 8	M8×1.25×8	83.2 111.4	37.5	15	M6×0.75	6.5	11	34
-	RB45AL RB45BL	52	8	20.5	86	154 190	60	60 80	6 8	M10×1.5×10	105.4 141.4	44	17	M6×0.75	6.5	14	45
_	RB55AL					184	65	75	4		128						
	RB55TL RB55BL	63	9	23.5	100		75 65		6	M12×1.75×12		54	18	Rc1/8	8.5	14	53
_	RB55UL					234	75	95			178						
-	RB65AL					228.4		70			155.4						
	RB65BL RB65UL	75	10	31.5	126	302.5	76	110 120	6	M16×2×16	229.5	65	22	Rc1/8	10	14	63

Notes: 1) Select either the standard dimension for pitch F as shown without parentheses or the semi-standard dimension as shown inside parentheses. If not specified, the standard dimension for F will be applied.




Top view of UL type

Top view of BL type (excluding RB55 and RB65)

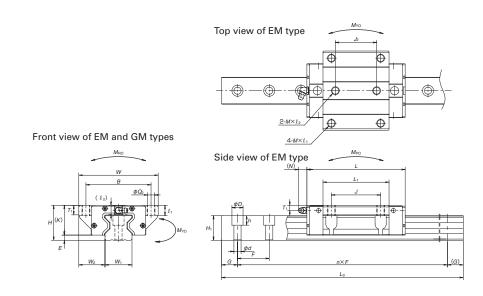
Side view of BL type

Unit: mm

	F	Rail				Basic load ratings								
Height	Pitch			2)Dyn	²⁾ Dynamic Static Static moment (N·m)							Roller	Rail	
		bolt hole		length	[50km]	[100km]	C_0	M _{RO}	\ \	1 _{P0}	٨	1 _{Y0}	slide	
H_1	F	$d \times D \times h$	(reference)	L_{0max}	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
28	40 (80)	9×14×12	20	3 900	47 800 58 500	38 900 47 600	93 500 121 000	1 670 2 170	1 140 1 950	7 100 11 500		7 100 11 500	-	4.9
31	40 (80)	9×14×12	20	3 900	65 500 82 900		129 000 175 000	2 810 3 810	1 800 3 250	11 000 17 800		11 000 17 800		6.8
38	52.5 (105)	14×20×17	22.5	3 650	114 000 143 000	92 800 116 000	229 000 305 000	6 180 8 240	4 080 7 150	24 000 39 000		24 000 39 000	-	10.9
43.5	60	16×23×20	20	3 600	159 000	129 000	330 000	10 200	7 060	41 000	7 060	41 000	3.4	14.6
43.0	(120)	10 ~ 23 ~ 20	30	3 000	207 000	168 000	462 000	14 300	13 600	72 000	13 600	72 000	4.7	14.0
	75				259 000	210 000	504 000	19 200	12 700	78 500	12 700	78 500	7.2	
52	(150)	18×26×22	35	3 600	355 000	288 000	756 000	28 700	28 600	153 000	28 600	153 000	9.5	20.5

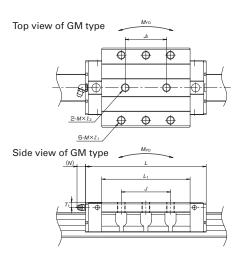
²⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2). $C_{\rm so}$, the basic dynamic load rating for 50 km rated fatigue life $C_{\rm 100}$; the basic dynamic load rating for 100 km rated fatigue life

A333


RB-EM (High-load / Standard) RB-GM (Super-high-load / Long)

RB 35 1000 EM C 2 -** P5 3

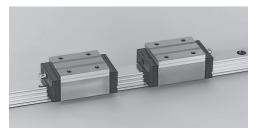
Model name
Size
Rail length (mm)
Roller slide shape code (See page A322.)


Material/surface treatment code (See Table 14.)
C: Special high carbon steel (NSK standard)

Preload code
3: Z3
Accuracy code (See Table 15.)
Design serial number
Added to the reference number.
Number of roller slides per rail

	A:	ssem	nbly							Roller	slide							
Model No. Height Width Length Mounting hole Grease					Grease	fittin	Width											
iviodei ivo.	Н	Ε	W_2	W	L	В	J		Number of holes	$M \times \text{nitch} \times \ell_*(\ell_*)$	Q	L ₁	К	Т	Hole size	<i>T</i> ₁	Ν	W_1
RB30EM RB30GM	38	6.5	31	90	110.8 135.4	72	52	44	6 8	M10×1.5×12 (8.5)	8.6	74 98.6	31.5	11	φ3	5	2.6	28
RB35EM RB35GM	44	6.5	33	100	123.8 152	82	62	52	6 8	M10×1.5×13 (11.5)	8.6	83.2 111.4	37.5	12	M6×0.75	6.5	11	34
RB45EM RB45GM	52	8	37.5	120	154 190	100	80	60	6 8	M12×1.75×15 (12.5)	10.5	105.4 141.4	44	13	M6×0.75	6.5	14	45
RB55EM RB55GM	63	9	43.5	140	184 234	116	95	70	6 8	M14×2×18 (18)	12.5	128 178	54	15	Rc1/8	8.5	14	53
RB65EM RB65GM	75	10	53.5	170	228.4 302.5	142	110	82	6 8	M16×2×24 (21)	14.6	155.4 229.5	65	15	Rc1/8	10	14	63

Notes: 1) Select either the standard dimension for pitch F as shown without parentheses or the semi-standard dimension as shown inside parentheses. If not specified, the standard dimension for F will be applied.


Unit: mm

	R	ail				Basic load ratings								
Height	Pitch	Mounting	G	Maximum	2)Dyn	amic	Static		Statio	moment	t (N·m)		Roller	Rail
		bolt hole		length	[50km]	[100km]	C_0	M _{RO}	٨	1 _{P0}	M _{YO}		slide	
H_1	F	d× D× h	(reference)	L_{0max}	C ₅₀ (N)	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
28	40	9×14×12	20	3900	47 800			1 670	1 140	7 100				4.9
	(80)				58 500	47 600	121 000	2 170	1 950	11 500	1 950	11 500	1.5	
31	40	9×14×12	20	3900	65 500	53 300		2 810	1 800	11 000		11 000		6.8
01	(80)	0/14/12	20	0000	82 900	67 400	175 000	3 810	3 250	17 800	3 250	17 800	2.0	0.0
38	52.5	14×20×17	22 5	2650	114 000	92 800	229 000	6 180	4 080	24 000	4 080	24 000	2.5	10.9
30	(105)	14 ^ 20 ^ 17	22.5	3030	143 000	116 000	305 000	8 240	7 150	39 000	7 150	39 000	3.4	10.9
40 E	60	16×23×20	20	3600	159 000	129 000	330 000	10 200	7 060	41 000	7 060	41 000	4.7	14.6
43.5	(120)	16 ^ 23 ^ 20	30	3600	207 000	168 000	462 000	14 300	13 600	72 000	13 600	72 000	6.6	14.0
52	75	18×26×22	35	3600		210 000					12 700	78 500		20.5
52	(150)	10/20/22	33	3000	355 000	288 000	756 000	28 700	28 600	153 000	28 600	153 000	13.2	20.5

2) Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2). C_{50} , the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

A335 A336

A-4-4.3 LA Model

1. Features

(1) High rigidity and high load carrying capacity

A set of three ball grooves is made on both sides of ball slide and a rail. This contributes to increased rigidity and load carrying capacity. The top and bottom groove are formed in the circular arc with a closer radius of ball, which ensures great rigidity and load carrying capacity. With the Gothic arch center groove, rigidity and load carrying capacity are further increased.

(2) Moderate friction

A well-balanced combination of 2-point contacts at the top and bottom grooves and 4 points contact at the center groove provides moderate friction while ensuring rigidity by appropriate preload.

(3) Four-way equal load distribution

The contact angle of balls is set at 45 degrees in all grooves, thereby dispersing the load equally to four rows irrespective of load direction. This realizes equal rigidity and load carrying capacity in vertical and lateral directions and provides well-balanced design.

(4) Strong against shock load

Load from any direction, vertical and lateral, is received by four ball rows at all times. Since the LA model receives load on more ball rows than other linear guides, it is stronger against shock loads.

(5) High accuracy

As shown in **Fig. 4**, fixing the measuring rollers is easy thanks to the Gothic arch groove of the central ball groove. This allows accurate measuring of ball grooves for highly precise and stable manufacturing.

(6) Dust-resistant design

The rail's cross section is designed to be as simple as possible, thereby improving sealing efficiency combined with the enhanced sealing. In addition, optional inner seals are available.

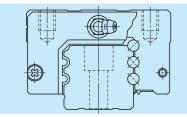


Fig. 1 LA Model

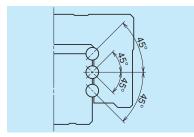


Fig. 2 Super rigidity design

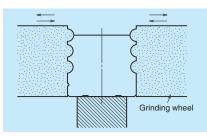


Fig. 3 Rail grinding

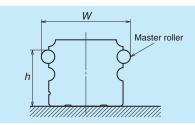


Fig. 4 Measuring groove accuracy

2. Ball slide shape

Ball slide shape code	Shape/installation		High-load	Lower row, Ball slide length) Super-high-load
snape code	method		Standard	Long
AN BN		AN	L ₁	BN <u>L</u> 1
AL BL		AL	L ₁	BL <u>L</u> 1
EL GL		EL	L ₁	GL L1
FL HL		FL	Lı	HL L1

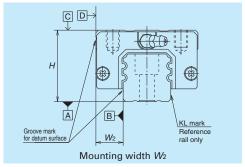
3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1

Unit: um

nit: µm
ide P6


A337 A338

(2) Accuracy standard

The LA Model has four accuracy grades: Ultra precision P3, Super precision P4, High precision P5, and Precision grade P6.

	Table	2		Unit: µm
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±8 3	±10 5	±20 7	±40 15
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±10 3	±15 7	±25 10	±50 20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Shown in Tabl	e 1 and Fig. 5	

(3) Assembled accuracy

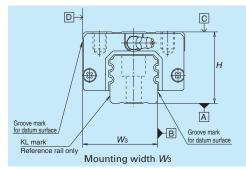


Fig. 5

4. Preload and rigidity

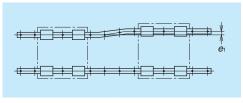
Table 3 shows preload and rigidity for the LA Model.

The LA Model has two types of preload specifications: Medium preload Z3 and Heavy preload Z4.

Table 3

	N4I - I NI -	Preloa	ad (N)	Rigidity (N/µm)		
	Model No.	Medium preload Z3	Heavy preload Z4	Medium preload Z3	Heavy preload Z4	
	LA25 AL, AN, EL, FL	1 670	2 110	475	550	
-	LA30 AL, AN, EL, FL	2 450	3 150	705	835	
-loac	LA35 AL, AN, EL, FL	3 450	4 300	825	970	
High-load	LA45 AL, AN, EL, FL	5 050	6 350	1 100	1 240	
	LA55 AL, AN, EL, FL	8 100	10 200	1 400	1 540	
	LA65 AN, EL, FL	13 800	18 800	1 730	2 030	
	LA25 BL, BN, GL, HL	2 260	2 840	700	820	
oad	LA30 BL, BN, GL, HL	3 250	4 050	1 000	1 180	
l-dbi	LA35 BL, BN, GL, HL	4 450	5 650	1 200	1 400	
er-hi	LA45 BL, BN, GL, HL	6 150	7 750	1 450	1 640	
Super-high-load	LA55 BL, BN, GL, HL	9 550	12 100	1 840	2 020	
,,	LA65 BN, GL, HL	18 000	24 400	2 450	2 840	

4. Maximum rail length


Table 4 shows the limitations of rail length. However, the limitations vary by accuracy grades.

Unit: mn									
Model Size	25	30	35	45	55	65			
LA	3 960	4 000	4 000	3 990	3 960	3 900			

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

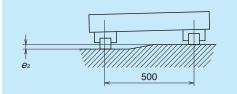


Fig. 6

Fig. 7

			Table 5				Unit: µm
Value	Preload	Model No.					
value	Freibau	LA25	LA30	LA35	LA45	LA55	LA65
Permissible values for	Z3	15	17	20	25	30	40
parallelism error of two rails e_1	Z4	13	15	17	20	25	30
Permissible values for	70.74	105 /500					
height error of two rails e_2 Z3, Z4 185 μ m/500 mm							

(2) Shoulder height of the mounting surface and corner radius r

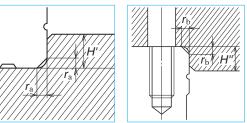


Fig. 8 Shoulder for the rail datum surface

	r _b
	/rs*/H"/
Fig. 9 S	Shoulder for the ball

slide datum surface

			Unit: mm		
Model No.	Corner radiu	s (maximum)	Shoulder height		
Model No.	r _a	$r_{\rm b}$	H'	H"	
LA25	0.5	0.5	5	5	
_LA30	0.5	0.5	6	6	
LA35	0.5	0.5	6	6	
LA45	0.7	0.7	8	8	
LA55	0.7	0.7	10	10	
LA65	1	1	11	11	

6. Lubrication components

Refer to pages A58 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 10 and Table 7 show grease fittings and tube fittings.

(2) Mounting position of lubrication accessories

- The standard position for grease fittings is at the end face of the ball slide, but we can mount them on the side of the end cap as an option. (Fig. 11)
- Please consult NSK for the installation of grease or tube fittings to the ball slide body.
- Using a piping unit with thread of M6 x 1 requires a connector to connect to a grease fitting mounting hole with M6 x 0.75. The connector is available from NSK.

		Table 7	ι	Jnit: mm		
Model	Dust-resistant	Dimension L				
No.	specification	Grease fitting		fitting		
140.	Specification	Grouse many	SF type	LF type		
	Standard	5	5	5		
LA25	With NSK K1	14	12	12		
LAZS	Double seal	10	9	9		
	Protector	10	9	9		
	Standard	5	6	6		
LA30	With NSK K1	14	12	13		
LASU	Double seal	12	10	11		
	Protector	12	11	11		
	Standard	5	6	6		
LA35	With NSK K1	14	12	13		
LASS	Double seal	12	10	11		
	Protector	12	11	11		
	Standard	8	13.5	17		
LA45	With NSK K1	18	22	21.5		
LA45	Double seal	14	18	17		
	Protector	14	16	17		
	Standard	8	13.5	17		
LA55	With NSK K1	18	22	21.5		
LASS	Double seal	14	18	17		
	Protector	14	16	17		
	Standard	8	13.5	17		
LA65	With NSK K1	22	24	25.5		
LAGS	Double seal	16	20	19		
	Protector	16	16	17		

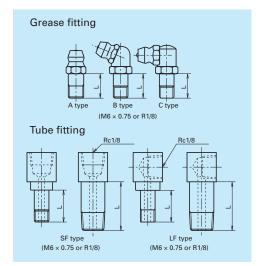


Fig. 10 Grease fitting and tube fitting

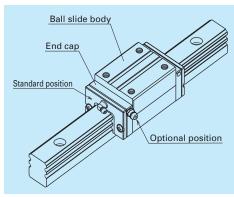


Fig. 11 Mounting position of lubrication accessories

7. Dust-resistant components

(1) Standard Specification

Under normal applications, the LA model can be used without modification thanks to its dust resistance. As standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.

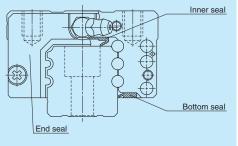


Fig. 12

Table 8 Seal friction per ball slide (maximum value)								
Model Size	25	30	35	45	55	65		
LA	11	11	12	17	17	23		

(2) NSK K1™ lubrication unit

Table 9 shows the dimensions of linear guides equipped with NSK K1 lubrication units.

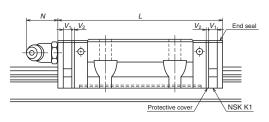


Table 9 Dimensions when equipped with NSK K1 lubrication units

Ш	n	it٠	m	m

Model No.	Ball slide length	Ball slide shape code	Standard ball slide length	Ball slide length with two NSK K1 installed L	Thickness of single NSK K1	Protective cover thickness V ₂	Protrusion of grease fitting N
LA25	Standard	AL, AN, EL, FL	79.8	91.8	5.0	1.0	(14)
LAZS	Long	BL, BN, GL, HL	107.8	119.8	5.0	1.0	(14)
LA30	Standard	AL, AN, EL, FL	100.2	113.2	5.5	1.0	(4.4)
LASU	Long	BL, BN, GL, HL	126.2	139.2	5.5	1.0	(14)
LA35	Standard	AL, AN, EL, FL	110.6	123.6	5.5	5 1.0	(14)
LASS	Long	BL, BN, GL, HL	144.6	157.6	5.5	1.0	(14)
LA45	Standard	AL, AN, EL, FL	141.4	156.4	6.5	1.0	(15)
LA45	Long	BL, BN, GL, HL	173.4	188.4	0.5	1.0	(15)
LA55	Standard	AL, AN, EL, FL	165.4	180.4	6.5	1.0	(15)
LASS	Long	BL, BN, GL, HL	203.4	218.4	0.5	1.0	(15)
LA65	Standard	AN, EL, FL	196.2	214.2	0.0	1.0	/16)
LA65	Long	BN, GL, HL	256.2	274.2	8.0	1.0	(16)

Note: Slide length when equipped with NSK K1 = (standard ball slide length) + (V_1 thickness of single NSK K1 unit) × (number of K1 units) + (V_2 thickness of the protective cover) × 2.

(3) Double seal and protector

For the LA Model double seals and protectors can be installed only before shipping from the factory. Please consult with NSK when the double seal and the protectors are required.

Table 10 shows the increased thickness of V₃ and V4 when end seals and protectors are installed (Fig. 15).

Table 10

Unit: mm

Model No.	Thickness	Thickness
woder No.	of end seal: V ₃	of protector: V4
LA25	3.2	3.6
LA30	4.4	4.2
LA35	4.4	4.2
LA45	5.5	4.9
LA55	5.5	4.9
LA65	6.5	5.5

(4) Caps to plug the rail mounting bolt hole Table 11 Caps to plug rail bolt hole

	Bolt to Cap		Quantity
Model No.	secure rail reference No.		/case
LA25	M6	LG-CAP/M6	20
LA30, LA35	M8	LG-CAP/M8	20
LA45	M12	LG-CAP/M12	20
LA55	M14	LG-CAP/M14	20
LA65	M16	LG-CAP/M16	20

Ball slide End cap End seal Connector washe Collar

Fig. 13 Double seal

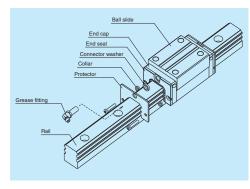


Fig. 14 Protector

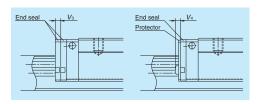


Fig. 15

(5) Bellows

Make tap holes to the rail end face to fix the bellows mounting plate.

NSK processes tap holes to the rail end face when ordered with a linear guide.

Dimension tables for bellows LA Model

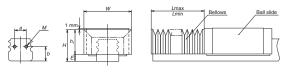


Fig. 16 Dimensions of bellows

Bellows reference number A A 30 L 08 Bellows Number of BL (fold number) A: Bellows for the ends N: High type L: Low type B: Middle bellows Size number of linear guide Bellows for LA model

Table 12 Dimensions of bellows

Unit: mm

Model No.	Н	h ₁	Ε	W	Р	а	b	Length of BL	Tap (M) × depth
JAA25L	35	29.5	5.5	55	12	12	13.8	17	M3 × 5
JAA25N	39	33.5	5.5	61	15	12	13.8	17	M3 × 5
JAA30L	41	33.5	7.5	60	12	14	17.5	17	M4 × 6
JAA30N	44	36.5	7.5	66	15	14	17.5	17	M4 × 6
JAA35L	47	39.5	7.5	72	15	15	18.8	17	M4 × 6
JAA35N	54	46.5	7.5	82	20	15	18.8	17	M4 × 6
JAA45L	59	49	10	93	20	25	22.5	17	M5 × 8
JAA45N	69	59	10	113	30	25	22.5	17	M5 × 8
JAA55L	69	57	12	101	20	35	27.1	17	M5 × 8
JAA55N	79	67	12	121	30	35	27.1	17	M5 × 8
JAA65N	89	75	14	131	30	40	33.3	17	M6 × 12

Table 13 Numbers of folds (BL) and length of bellows

Unit: mm

Tuno	Model No.	Length of BL	2	4	6	8	10	12	14	16	18	20
Type	iviouei ivo.	Lmin	34	68	102	136	170	204	238	272	306	340
		Stroke	134	268	402	536	670	804	938	1 072	1 206	1 340
Low type	JAA25L	Lmax	168	336	504	672	840	1 008	1 176	1 344	1 512	1 680
I Carla Access	14.40511	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
High type	JAA25N	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
Lauratuma	14 4 201	Stroke	134	268	402	536	670	804	938	1 072	1 206	1 340
Low type	JAA30L	Lmax	168	336	504	672	840	1 008	1 176	1 344	1 512	1 680
Lliede ture e	14 4 2 0 1	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
High type	JAA30N	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
Lauratuma	JAA35L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
Low type		Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
Llieb tues	JAA35N	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
High type		Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
1	JAA45L	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
Low type		Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
I Carla Arma	JAA45N	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
High type		Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200
1	e JAA55L	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
Low type		Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
I Carla Access	14 4 5 5 1	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
High type	JAA55N	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200
Low/high	IA A GENI*	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
type	JAA65N*	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200

^{*} Bellows for LA65 is for both low and high types.

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of the even number BL on both sides, then by dividing the sum by 2.

A343

8. Reference number

A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.



Table 14 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Table 15 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1			
Ultra precision grade	P3	K3			
Super precision grade	P4	K4			
High precision grade	P5	K5			
Precision grade	P6	K6			

Note: Refer to pages A58 for details on NSK K1 lubrication units.

A345 A346

9. Dimensions

Model name

Rail length (mm)

Ball slide shape code (See page A338.)

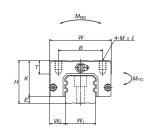
Material/surface treatment (See Table 14.)

LA-AL (High-load / Standard) LA-BL (Super-high-load / Long)

LA 35 0840 AL C 2 -** P6 3

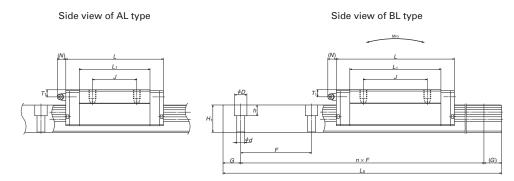
Accuracy code (See Table 15.)

Design serial number


Added to the reference number.

Number of ball slides per rail

Preload code (See page A339.)


3: Z3, 4: Z4

Front view of AL and BL types

	A	ssemb	oly		Ball slide											
Model No.	Height			Width	Length	Mounting hole						Grease fitting		g	Width	Height
	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> ₁	N	W_1	H_1
LA25AL					79.8		35		58							
LA25BL	36	5.5	12.5	48	107.8	35	50	M6×1×7	86	30.5	8	M6×0.75	6	11	23	22
LA30AL					100.2		40		72							
LA30BL	42	7.5	16	60	126.2	40	60	M8×1.25×10	98	34.5	11	M6×0.75	6.5	11	28	28
LA35AL					110.6		50		80							
LA35BL	48	7.5	18	70	144.6	50	72	M8×1.25×10	114	40.5	15	M6×0.75	8	11	34	30.8
LA45AL					141.4		60		105							
LA45BL	60	10	20.5	86	173.4	60	80	M10×1.5×16	137	50	17	Rc1/8	10	13	45	36
LA55AL					165.4		75		126							
LA55BL	70	12	23.5	100	203.4	75	95	M12×1.75×16	164	58	18	Rc1/8	11	13	53	43.2

Notes: 1) The LA model does not have a ball retainer. Note that balls will fall out when the ball slide is removed from the rail.

Unit: mm

												OII	III. IIIIIII								
Rail				Basic load ratings									ight								
Pitch	Mounting	G	Max.	2)Dyn	amic	Static	Static moment (N·m)					Ball	Rail								
	bolt hole		length	[50km] [100km]		C 0	M _{RO}	М	PO	M _{YO}		slide									
F	$d \times D \times h$	(reference)	$L_{ m 0max}$	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)								
60 7×11×9	20	20	3 960	30 000	23 900	50 000	290	410	2 490	410	2 490	0.5	3.7								
	20	0 000	40 500	32 500	77 000	445	935	5 000	935	5 000	0.8	0.7									
80		20	20	20	4 000	47 000	37 000	77 500	535	820	4 800	820	4 800	0.8	5.8						
80 9×14×12	20	4 000	58 000	46 000	105 000	725	1 470	8 050	1 470	8 050	1.2	5.6									
80	9×14×12	20	20	20	4 000	61 500	49 000	98 000	845	1 130	6 750	1 130	6 750	1.3	7.7						
	00 9×14×12				4 000	80 500	64 000	143 000	1 240	2 330	12 500	2 330	12 500	1.6	7.7						
4.05		22.5	22.5	22.5	22.5	0.000	91 000	72 000	148 000	1 840	2 210	12 900	2 210	12 900	2.5	12.0					
105 14×20×17	22.5					22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	3 990	111 000	88 000	197 000	2 460	3 850	20 600
120 16×2	10.00.00		0.000	139 000	111 000	215 000	3 150	3 800	22 000	3 800	22 000	3.9									
	16×23×20	30	3 960	172 000	137 000	292 000	4 250	6 800	36 000	6 800	36 000	5.1	17.2								

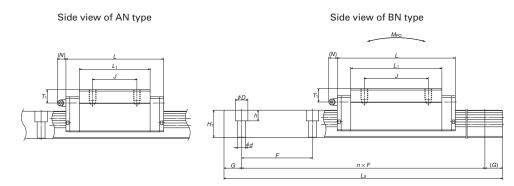
²⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

LA-AN (High-load / Standard) LA-BN (Super-high-load / Long)

LA 35 0840 ANC 2 -** P6 3 Model name Size Rail length (mm) Ball slide shape code (See page A338.) Material/surface treatment (See Table 14.) Preload code (See page A339.) Accuracy code (See Table 15.) Design serial number Added to the reference number.


Mno W 4-M×l

Front view of AN and BN types

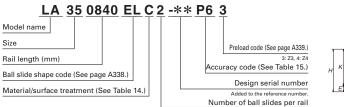
	As	ssemb	ly					Ball slid	le							
Model No.	Height			Width	Length		Mour	ting hole				Grease	fitting)	Width	Height
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> ₁	N	$W_{\scriptscriptstyle 1}$	H ₁
LA25AN	40	5.5	12.5	48	79.8	35	35	M6×1×10	58	34.5	12	M6×0.75	10	11	23	22
LA25BN	40	5.5	12.5	48	107.8	35	50	IVIOXIXIU	86		12	IVIOXU.75	10		23	22
LA30AN	45	7.5	16	60	100.2	40	40	M8×1.25×11	72	37.5	14	M6×0.75	9.5	11	28	28
LA30BN	45	7.5	10	60	126.2	40	60	IVI8X1.25X11	98		14	IVI0XU.75	9.5	' '	28	28
LA35AN		7.5	40	70	110.6	F0	50	MO 4.05.40	80		4.5	MO 0.75	45	4.4	0.4	00.0
LA35BN	55	7.5	18	70	144.6	50	72	M8×1.25×12	114	47.5	15	M6×0.75	15	11	34	30.8
LA45AN	7.0	10	00.1		141.4	0.0	60	140 45 40	105		4.7	D 1/0	00			
LA45BN	70	10	20.5	86	173.4	60	80	M10×1.5×16	137	60	17	Rc1/8	20	13	45	36
LA55AN					165.4		75		126			5				
LA55BN	80	12	23.5	100	203.4	75	95	M12×1.75×18	164	68	18	Rc1/8	21	13	53	43.2
LA65AN					196.2		70		147							
LA65BN	90	14	31.5	126	256.2	76	120	M16×2×19	207	76	22	Rc1/8	19	13	63	55

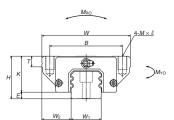
Number of ball slides per rail

Notes: 1) The LA model does not have a ball retainer. Note that balls will fall out when the ball slide is removed from the rail.

	1 1 1	
ı	Init:	mm

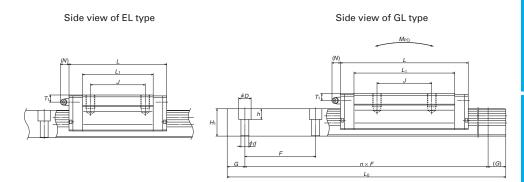
												UI	iit: mm
Rail						Basic lo	ad ratin	gs				We	ight
Pitch	Mounting	G	Max.	2)Dyn	amic	Static		Static ı	momen	t (N·m)		Ball	Rail
	bolt hole		length	[50km]	[100km]	C 0	M_{RO}	М	PO	М	YO	slide	
F	$d \times D \times h$	(reference)	$L_{ m 0max}$	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	7×11×9	20	3 960	30 000	23 900	50 000	290	410	2 490	410	2 490	0.6	3.7
				40 500	32 500	77 000	445	935	5 000	935	5 000	0.9	
80	9×14×12	20	4 000	47 000	37 000	77 500	535	820	4 800	820	4 800	0.9	5.8
	OXTIXIZ	20	1 000	58 000	46 000	105 000	725	1 470	8 050	1 470	8 050	1.3	0.0
00	0.44.40	00	4 000	61 500	49 000	98 000	845	1 130	6 750	1 130	6 750	1.5	7.7
80	9×14×12	20	4 000	80 500	64 000	143 000	1 240	2 330	12 500	2 330	12 500	2.1	7.7
105	14×20×17	22.5	3 990	91 000	72 000	148 000	1 840	2 210	12 900	2 210	12 900	3.0	12.0
	14/20/17	22.0	3 330	111 000	88 000	197 000	2 460	3 850	20 600	3 850	20 600	3.9	12.0
120	16×23×20	30	3 960	139 000	111 000	215 000	3 150	3 800	22 000	3 800	22 000	4.7	17.2
120	10x23x20	30	3 900	172 000	137 000	292 000	4 250	6 800	36 000	6 800	36 000	6.1	17.2
150	18×26×22	35	3 900	260 000	206 000	420 000	7 300	9 050	51 000	9 050	51 000	7.7	25.9
150	18×26×22	35	3 900	340 000	269 000	615 000	10 700	18 700	95 000	18 700	95 000	10.8	25.9


²⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).


 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

LA-EL (High-load / Standard) LA-GL (Super-high-load / Long)

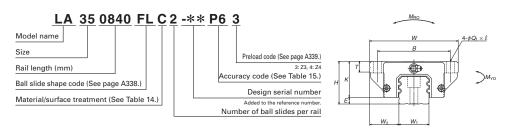

Front view of EL and GL types

	A	ssemb	ılv					Ball slic	le							
Model No.	Height	I		Width	Length		Mour	nting hole				Grease	fittin	g	Width	Height
Wiodol IVo.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> ₁	N	$W_{\scriptscriptstyle 1}$	H_1
LA25EL					79.8				58							
LA25GL	36	5.5	23.5	70	107.8	57	45	M8×1.25×12	86	30.5	11	M6×0.75	6	11	23	22
LA30EL					100.2	70			72			140 0 75				0.0
LA30GL	42	7.5	31	90	126.2	72	52	M10×1.5×16	98	34.5	11	M6×0.75	6.5	11	28	28
LA35EL					110.6				80							
LA35GL	48	7.5	33	100	144.6	82	62	M10×1.5×15	114	40.5	12	M6×0.75	8	11	34	30.8
LA45EL					141.4				105							
LA45GL	60	10	37.5	120	173.4	100	80	M12×1.75×18	137	50	13	Rc1/8	10	13	45	36
LA55EL					165.4				126							
LA55GL	70	12	43.5	140	203.4	116	95	M14×2×21	164	58	15	Rc1/8	11	13	53	43.2
LA65EL					196.2				147							
LA65GL	90	14	53.5	170	256.2	142	110	M16×2×24	207	76	22	Rc1/8	19	13	63	55

Notes: 1) The LA model does not have a ball retainer. Note that balls will fall out when the ball slide is removed from the rail.

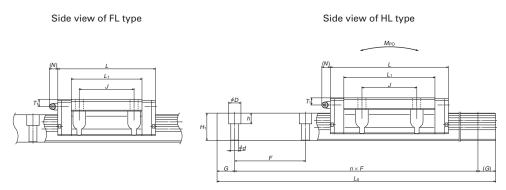
Unit: mm

Rail						Basic lo	ad ratin					We	ight
Pitch	Mounting	G	Max.	2)Dyn		Static		Static	momen	t (N·m)		Ball	Rail
	bolt hole		length	[50km]	[100km]	C_{0}	M_{RO}	М	PO	M	Yo	slide	
F	$d \times D \times h$	(reference)	$L_{ m 0max}$	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	7×11×9	20	3 960	30 000	23 900	50 000	290	410	2 490	410	2 490	0.8	3.7
	771170			40 500	32 500	77 000	445	935	5 000	935	5 000	1.1	0.7
80	9×14×12	20	4 000	47 000	37 000	77 500	535	820	4 800	820	4 800	1.3	5.8
80	9214212	20	4 000	58 000	46 000	105 000	725	1 470	8 050	1 470	8 050	1.8	5.0
80	9×14×12	20	4 000	61 500	49 000	98 000	845	1 130	6 750	1 130	6 750	1.9	7.7
80	9x14x12	20	4 000	80 500	64 000	143 000	1 240	2 330	12 500	2 330	12 500	2.6	7.7
105	14×20×17	22.5	3 990	91 000	72 000	148 000	1 840	2 210	12 900	2 210	12 900	3.3	12.0
105	14820817	22.5	3 990	111 000	88 000	197 000	2 460	3 850	20 600	3 850	20 600	4.3	12.0
100	16×23×20	30	3 960	139 000	111 000	215 000	3 150	3 800	22 000	3 800	22 000	5.5	17.2
120	16×23×20	30	3 960	172 000	137 000	292 000	4 250	6 800	36 000	6 800	36 000	7.2	17.2
150	18×26×22	25	3 900	260 000	206 000	420 000	7 300	9 050	51 000	9 050	51 000	11.0	25.9
150	10XZ0XZZ	35	3 900	340 000	269 000	615 000	10 700	18 700	95 000	18 700	95 000	15.5	25.9


²⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life


LA-FL (High-load / Standard) LA-HL (Super-high-load / Long)

Front view of FL and HL types

	A	ssemb	ly					Ball slid	le							
Model No.	Height			Width	Length		Mour	nting hole				Grease	fittin	g	Width	Height
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	L ₁	К	Т	Hole size	<i>T</i> ₁	Ν	W_1	H_1
LA25FL LA25HL	36	5.5	23.5	70	79.8 107.8	57	45	7×10	58 86	30.5	11	M6×0.75	6	11	23	22
LA30FL LA30HL	42	7.5	31	90	100.2 126.2	72	52	9×12	72 98	34.5	11	M6×0.75	6.5	11	28	28
LA35FL LA35HL	48	7.5	33	100	110.6 144.6	82	62	9×13	80 114	40.5	12	M6×0.75	8	11	34	30.8
LA45FL LA45HL	60	10	37.5	120	141.4 173.4	100	80	11×15	105 137	50	13	Rc1/8	10	13	45	36
LA55FL LA55HL	70	12	43.5	140	165.4 203.4	116	95	14×18	126 164	58	15	Rc1/8	11	13	53	43.2
LA65FL LA65HL	90	14	53.5	170	196.2 256.2	142	110	16×23	147 207	76	22	Rc1/8	19	13	63	55

Notes: 1) The LA model does not have a ball retainer. Note that balls will fall out when the ball slide is removed from the rail.

Unit: mm

									Un	ıt: mm			
Rail						Basic lo	ad ratin	gs				We	ight
Pitch	Mounting	G	Max.	2)Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
	bolt hole		length	[50km]	[100km]	C_0	M_{RO}	М	PO	M	1,0	slide	
F	$d \times D \times h$	(reference)	$L_{ m 0max}$	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
60	7×11×9	20	3 960	30 000	23 900	50 000	290	410					3.7
				40 500	32 500	77 000	445	935	5 000	935	5 000	1.1	
80	9×14×12	20	4 000	47 000	37 000	77 500	535	820	4 800	820	4 800	1.3	5.8
				58 000	46 000	105 000	725	1 470	8 050	1 470	8 050	1.8	
				61 500	49 000	98 000	845	1 130	6 750	1 130	6 750	1.9	
80	9×14×12	20	4 000	80 500	64 000	143 000	1 240	2 330	12 500	2 330	12 500	2.6	7.7
105	14×20×17	22.5	3 990	91 000	72 000	148 000	1 840	2 210	12 900	2 210	12 900	3.3	12.0
100	14/20/17	22.0	0 000	111 000	88 000	197 000	2 460	3 850	20 600	3 850	20 600	4.3	12.0
120	16×23×20	30	3 960	139 000	111 000	215 000	3 150	3 800	22 000	3 800	22 000	5.5	17.2
120	10×23×20	30	3 900	172 000	137 000	292 000	4 250	6 800	36 000	6 800	36 000	7.2	17.2
150	10: .00: .00	٥٦	2.000	260 000	206 000	420 000	7 300	9 050	51 000	9 050	51 000	11.0	25.0
150	18×26×22	35	3 900	340 000	269 000	615 000	10 700	18 700	95 000	18 700	95 000	15.5	25.9

²⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life

 C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

1. HA Model

A357

2. HS Model

A371

A-4-5 High-Accuracy Series

A355

A MODE

A-4-5.1 HA Model

1. Features

(1) High motion accuracy

High motion accuracy is achieved in both narrow and wide ranges by the adoption of ultra-long ball slides and the optimum design of the ball recirculation component.

(2) Ball passage vibration reduced to one-third of our conventional models

Our extensive performance tests show ball passage vibration has been reduced to one-third of our conventional models, dramatically improving straightness in table units.

(3) Installation of rail with greater accuracy

Increased counterbore depth of the rail mounting hole reduces rail deflection, which is caused by bolt tightening when fixing the rail to the mounting base to 50% or less. This feature restrains the pitching motion of ball slide whose frequency matches the mounting hole pitch.

In addition, the length of mounting hole pitch has been reduced by one-half of conventional models, so the rail can be more accurately installed in position.

(4) High rigidity and load capacity with lower friction

High rigidity, high load capacity and low friction are achieved by increasing the number of balls.

(5) Compact design

Reduced body size enables more compact machinery.

(6) Four-way equal load distribution

Contact angle is set at 45 degrees in all grooves, dispersing the load to four ball rows irrespective of load direction. This realizes equal rigidity and load carrying capacity in vertical and lateral directions and provides well-balanced design.

(7) Strong against shock load

Load from any direction, vertical and lateral,

is received by four ball rows at all times. Since the HA model receives load on more ball rows than other linear guides, it is stronger against shock loads.

(8) High accuracy at manufacturing

Fixing the measuring rollers to the ball grooves is easy thanks to the Gothic arch groove. Ball-groove measuring is accurate and simple. This allows for highly precise and stable manufacturing.

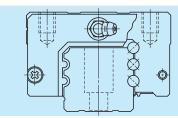


Fig. 1 HA Model

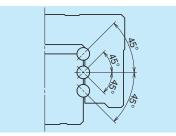


Fig. 2 Super rigidity design

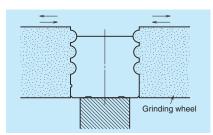


Fig. 3 Rail grinding

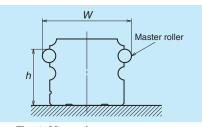


Fig. 4 Measuring groove accuracy

Measurement results of ball passage vibration

Ball passage vibration can translate into posture changes in the ball slide which result from ball passage (circulation). In the HA Model, this vibration has been substantially reduced to one-third of conventional models.

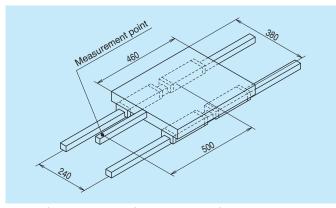


Fig. 5 Schematic view of measurement of ball passage vibration

HA Model

Model No.: HA30 Preload: Z3

Table dimensions: 460 mm imes 380 mm

Conventional Model

Model No.: LA30 Preload: Z3

Table dimensions: 460 mm × 380 mm

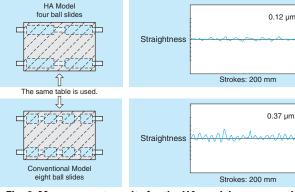
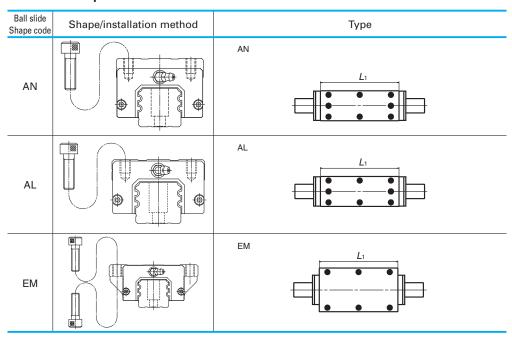



Fig. 6 Measurement results for the HA model vs. conventional model

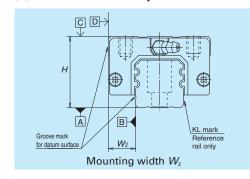
A357

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide

	Table 1 Unit: μm										
Ac	curacy grade		Preloaded assembly	,							
Rail length(n	or less	Ultra precision P3	Super precision P4	High precision P5							
-	- 200	2	2	3.5							
200 -	- 250	2	2.5	4.5							
250 -	- 315	2	2.5	5							
315 -	- 400	2	3	5.5							
400 -	- 500	2	3	6							
500 -	- 630	2	3.5	6.5							
630 -	- 800	2	4	7							
800 -	- 1 000	2.5	4.5	7.5							
1 000 -	- 1 250	3	5	8.5							
1 250 -	- 1 600	3.5	5.5	9.5							
1 600 -	- 2 000	4	6.5	11							
2 000 -	- 2 500	4.5	7.5	12							
2 500 -	- 3 150	5.5	8.5	13							
3 150 -	- 4 000	6	9.5	14							


NSK

(2) Accuracy standard

Three accuracy grades are available: Ultra precision P3, Super precision P4 and High precision P5.

	Table 2		Unit: µm
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±8 3	±10 5	±20 7
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±10 3	±15 7	±25 10
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Refer to Table 1 and Fig . 7	'

(3) Assembled accuracy

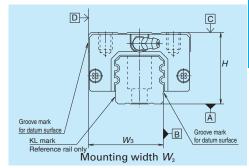


Fig. 7

(4) Preload and rigidity

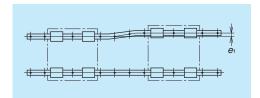
Slight preload Z1 and Medium preload Z3 are available, which can be selected for specific applications.

Table 3

Model No.	Prelo	ad (N)	Rigidity (N/μm)				
iviodei ivo.	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)			
HA25	735	2 990	635	1 030			
HA30	1 030	4 400	880	1 270			
HA35	1 470	6 100	1 030	1 620			
HA45	1 960	8 150	1 230	2 060			
HA55	3 150	13 100	1 520	2 450			

4. Maximum rail length

Table 4 shows the limitations of rail length.

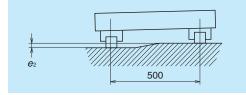

However, the limitations vary by accuracy grades.

Tab	Unit: mm				
Model Size	25	30	35	45	55
HA	3 960	4 000	4 000	3 990	3 960

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error



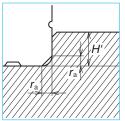

Fig. 8

Fig. 9

Table 5

						Onit: μm				
Value	Preload			Model No.						
value	rieloau	HA25	HA30	HA35	HA45	HA55				
Permissible values for	Z1	20	20	23	26	34				
parallelism error of two rails e_1	Z3	15	14	17	19	25				
Permissible values for 74.70										
height error of two rails e_2	Z1,Z3	250 μm/500 mm								

(2) Shoulder height of the mounting surface and corner radius r

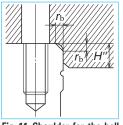


Fig. 10 Shoulder for the rail datum surface

Fig. 11 Shoulder for the ball slide datum surface

		Table 6								
Model No.	Corner radius	er height								
iviouei ivo.	r _a	$r_{\rm b}$	H'	H"						
HA25	0.5	0.5	5	5						
HA30	0.5	0.5	6	6						
HA35	0.5	0.5	6	6						
HA45	0.7	0.7	8	8						
HA55	0.7	0.7	10	10						

6. Lubrication components

Refer to pages A58 and D13 for linear guide lubrication.

(1) Types of lubrication accessories

Fig. 12 and Table 7 show grease fittings and

We provide lubrication accessories with an extended thread body length (L) for the addition of dust-resistant accessories such as NSK K1 lubrication units, double seals and protectors.

We provide suitable lubrication accesories for special dust-resistant requirements upon request.

NSK can also provide extended length threads for ease of replenishment.

Please contact NSK if stainless lubrication accessories are required.

(2) Mounting position of lubrication accessories

The standard position for grease fittings is at the end face of the ball slide, but we can mount them on the side of the end cap as an option. (Fig. 13)

Please consult NSK for the installation of grease or tube fittings to the ball slide body.

Using a piping unit with thread of $M6 \times 1$, requires a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

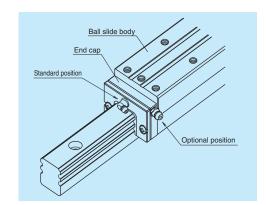


Fig. 13 Mounting position of lubrication accessories

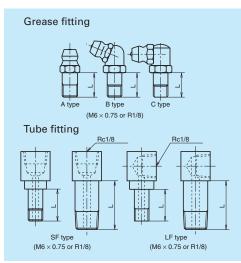


Fig. 12 Grease fitting and tube fitting

		Table 7		Unit: mm		
Model	Dust-resistant	Dime	ension L			
No.	specification	Grease fitting	Tube	fitting		
INO.	specification	Grease fitting	SF type	LF type		
	Standard	5	5	5		
HA25	With NSK K1	14	12	12		
HAZS	Double seal	10	9	9		
	Protector	10	9	9		
	Standard	5	6	6		
HA30	With NSK K1	14	12	13		
пАЗО	Double seal	12	10	11		
	Protector	12	11	11		
	Standard	5	6	6		
HA35	With NSK K1	14	12	13		
HA35	Double seal	12	10	11		
	Protector	12	11	11		
	Standard	8	13.5	17		
HA45	With NSK K1	18	22	21.5		
HA45	Double seal	14	18	17		
	Protector	14	16	17		
	Standard	8	13.5	17		
HA55	With NSK K1	18	22	21.5		
пАээ	Double seal	14	18	17		

Protector

7. Dust-resistant components

(1) Standard Specification

Under normal applications, the HA model can be used without modification thanks to its dust resistance. As standard equipment, the ball slides have an end seal on both ends, bottom seals at the bottom, and an inner seal in inside.

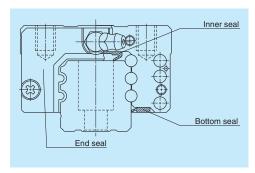


Fig. 14

Table 8 Seal friction per ball slide (maximum value)

					Unit: N
Model Size	25	30	35	45	55
HA	17	17	19	21	22

(2) NSK K1[™] lubrication unit

Table 9 shows the dimensions of linear guides equipped with NSK K1 lubrication units.

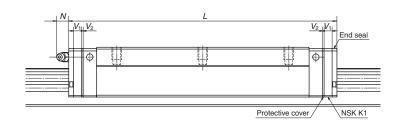


Table 9 Dimensions when equipped with NSK K1 lubrication units

	0 2	o oquippo	Offic. Illiii			
Model No.	Ball slide shape code	Standard ball slide length	Ball slide length with two NSK K1 installed L	Thickness of single NSK K1	Protective cover thickness V ₂	Protrusion of grease fitting N
HA25	AN, EM	147.8	159.8	5.0	1.0	(14)
HA30	AN, EM	177.2	190.2	5.5	1.0	(14)
HA35	AN, AL, EM	203.6	216.6	5.5	1.0	(14)
HA45	AN, AL, EM	233.4	248.4	6.5	1.0	(15)
HA55	AN,AL, EM	284.4	299.4	6.5	1.0	(15)

Note: Slide length when equipped with NSK K1 = (standard ball slide length) + (V_1 thickness of single NSK K1 unit) \times (number of K1 units) + (V_2 thickness of the protective cover) \times 2.

(3) Double seal and protector

For the HA Model, double seals and protectors can be installed only before shipping from the factory. Please consult with NSK when double seals or protectors are required.

Table 10 shows the increased thickness of V₃, and V4 when the end seal and the protector are installed.

Table 10	Unit: mm
Thickness	Thickness
of end seal: $V_{\scriptscriptstyle 3}$	of protector: V ₄
3.2	3.6
4.4	4.2
4.4	4.2
5.5	4.9
5.5	4.9
	Thickness of end seal: V ₃ 3.2 4.4 4.4 5.5

(4) Caps to plug the rail mounting bolt hole

Table 11 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
	secure rail	reference No.	/case
HA25	M6	LG-CAP/M6	20
HA30, HA35	M8	LG-CAP/M8	20
HA45	M12	LG-CAP/M12	20
HA55	M14	LG-CAP/M14	20

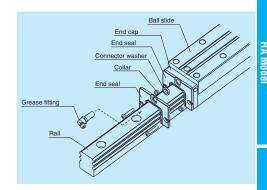


Fig. 15 Double seal

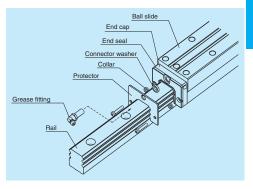


Fig. 16 Protector

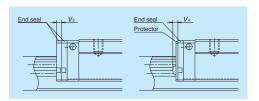


Fig. 17

A363 A364

Unit: mm

8. Reference number

A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

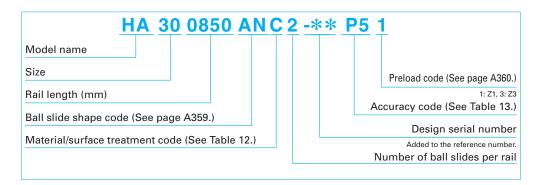
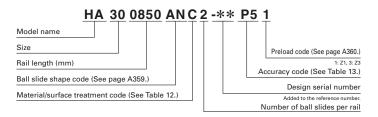
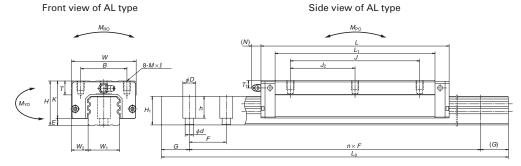


Table 12 Material/surface treatment code

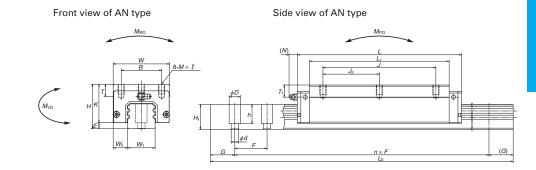
Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special


Table 13 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	K3
Super precision grade	P4	K4
High precision grade	P5	K5

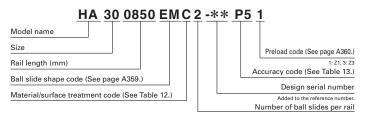
Note: Refer to page A58 for details on NSK K1 lubrication units.

A365 A366

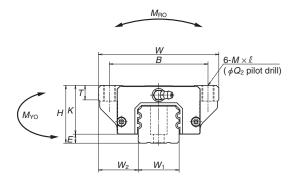

9. Dimensions HA-AN HA-AL

	A:	ssemb	oly		Ball slide											R	ail
Model No.	Height			Width	Length		М	ounti	ing hole				Grease	fittin	g	Width	Height
Model No.																	
	Н	Ε	W_2	W	L	В	J	J_2	$M \times \text{pitch} \times \ell$	L_1	Κ	Τ	Hole size	T_1	Ν	W_1	H_1
HA25AN	40	5.5	12.5	48	147.8	35	100	50	M6×1.0×10	126	34.5	12	M6×0.75	10	11	23	22
HA30AN	45	7.5	16	60	177.2	40	120	60	M8×1.25×11	149	37.5	14	M6×0.75	9.5	11	28	28
HA35AN	55	7.5	18	70	203.6	50	140	70	M8×1.25×12	173	47.5	15	M6×0.75	15	11	34	30.8
HA35AL	48	7.5	10	70	203.0	50	140	/0	M8×1.25×10	1/3	40.5	15	1010×0.75	8	11	34	30.0
HA45AN	70	10	20 E	86	233.4	60	160	80	M10×1.5×16	197	60	17	D = 1 /O	20	13	45	36
HA45AL	60	10	20.5	80	233.4	60	160	80	IVI I UX I .5X I 6	197	50	17	Rc1/8	10	13	45	36
HA55AN	80	12	23.5	100	284.4	75	206	102	M12×1.75×18	245	68	18	Rc1/8	21	13	53	43.2
HA55AL	70	12	23.5	100	204.4	75	200	103	M12×1.75×16	245	58	18	NC1/8	11	13	53	43.2

Notes: 1) The HA model does not have a ball retainer. Note that balls will fall out when the ball slide is removed from the rail.

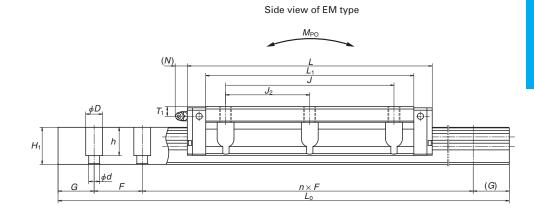

Unit: mm

	Rail					Basic lo	ad ratin	gs				We	ight
Pitch	Mounting	G	Maximum	²)Dyn	amic	Static	Static moment (N·m)						Rail
	bolt hole		length	[50km]	[100km]	C_0	M_{RO}	М	PO	M	140	slide	
F	$d \times D \times h$	(reference)	L_{0max}	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
30	7×11×16.5	20	3 960	54 000	43 000	115 000	670	2 060	10 100	2 060	10 100	1.2	3.7
40	9×14×21	20	4 000	79 500	63 500	166 000	1 140	3 550	17 400	3 550	17 400	1.8	5.8
40	9×14×23.5	20	4 000	111 000	88 000	226 000	1 950	E 650	27 100	E 650	27 100	3.0	7.7
40	37.14723.3	20	4 000	111 000	00 000	220 000	1 330	5 050	27 100	0 000	27 100	2.6	7.7
52.5	14×20×27	22.5	3 990	147 000	117 000	295 000	3 700	0 150	40 500	0 150	40 500	6.0	12.0
52.5	14X2UX27	22.5	3 990	147 000	117 000	295 000	3 700	8 450	40 500	8 450	40 500	5.0	12.0
60	16×23×32.5	30	3 960	232 000	184 000	445 000	6 500	15 400	75 000	15 400	75 000	9.4	17.2
00	10x23X32.5	30	3 900	232 000	104 000	440 000	0 300	15 400	75 000	15 400	75 000	7.8	17.2


A367 A368

²⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2). C_{∞} ; the basic dynamic load rating for 50 km rated fatigue life C_{∞} ; the basic dynamic load rating for 100 km rated fatigue life

HA-EM



Front view of EM type

	Д	ssem	nbly		Ball slide									R	Rail			
Model No.	Height			Width	Length			М	ounting hole					Grease	fittin	g	Width	Height
iviodei No.	Н	Ε	W_2	W	L	В	$egin{array}{ c c c c c c c c c c c c c c c c c c c$							$W_{\scriptscriptstyle 1}$	H ₁			
HA25EM	36	5.5	23.5	70	147.8	57	100	50	M8×1.25×10	6.8	126	30.5	11	M6×0.75	6	11	23	22
HA30EM	42	7.5	31	90	177.2	72	120	60	M10×1.5×12	8.6	149	34.5	11	M6×0.75	6.5	11	28	28
HA35EM	48	7.5	33	100	203.6	82	140	70	M10×1.5×13	8.6	173	40.5	12	M6×0.75	8	11	34	30.8
HA45EM	60	10	37.5	120	233.4	100	160	80	M12×1.75×15	10.5	197	50	13	Rc1/8	10	13	45	36
HA55EM	70	12	43.5	140	284.4	116	206	103	M14×2×18	12.5	245	58	15	Rc1/8	11	13	53	43.2

Notes: 1) The HA model does not have a ball retainer. Note that balls will fall out when the ball slide is removed from the rail.

Unit: mm

	Rail				Basic load ratings								
Pitch	Mounting	G	Maximum	2)Dyn	amic	Static		Static	momen	t (N·m)		Ball	Rail
	bolt hole		length	[50km]	[100km]	C 0	M _{RO}	М	PO	M	1,0	slide	
F	$d \times D \times h$	(reference)	L_{0max}	C ₅₀ (N)	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
30	7×11×16.5	20	3 960	54 000	43 000	115 000	670	2 060	10 100	2 060	10 100	1.6	3.7
40	9×14×21	20	4 000	79 500	63 500	166 000	1 140	3 550	17 400	3 550	17 400	2.6	5.8
40	9×14×23.5	20	4 000	111 000	88 000	226 000	1 950	5 650	27 100	5 650	27 100	3.8	7.7
52.5	14×20×27	22.5	3 990	147 000	117 000	295 000	3 700	8 450	40 500	8 450	40 500	6.6	12.0
60	16×23×32.5	30	3 960	232 000	184 000	445 000	6 500	15 400	75 000	15 400	75 000	11	17.2

²⁾ Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

 C_{50} ; the basic dynamic load rating for 50 km rated fatigue life C_{100} ; the basic dynamic load rating for 100 km rated fatigue life

A369 A370

A-4-5.2 HS Model

1. Features

(1) High motion accuracy

High motion accuracy is achieved in both narrow and wide ranges by adopting ultralong ball slides and optimum design features for the ball recirculation component.

(2) Ball passage vibration reduced to one-third of our conventional models

Tests show ball passage vibration has been reduced to one-third of our conventional models, dramatically improving straightness in table units.

(3) Installation of rail with greater accuracy

Increased counterbore depth of the rail mounting hole reduces rail deflection, which is caused by bolt tightening when fixing the rail to the mounting base, to 50% or less. This feature restrains the pitching motion of ball slide whose frequency matches to the mounting hole pitch.

In addition, the mounting hole pitch has been reduced by one-half of the conventional models, so the rail can be more accurately installed in position.

(4) High rigidity and load capacity with lower friction

High rigidity, high load capacity and low friction are achieved by increasing the number of balls.

(5) Compact design

Reduced body size enables more compact machinery.

(6) High vertical load carrying capacity

The contact angle is set at 50 degrees, thus increasing load carrying capacity as well as rigidity in the vertical direction.

(7) High resistance against impact load

The bottom ball groove forms a Gothic arch and the center of the top and bottom grooves are offset as shown in **Fig. 2**.

Vertical load is generally carried by the top rows at two contact points, but with this design, the bottom rows also carry load when a large impact load is applied vertically as shown in Fig. 3. This assures high resistance to impact load.

(8) High accuracy at manufacturing

As showing in **Fig. 4**, fixing the measuring rollers to the ball groove is easy thanks to the Gothic arch groove. This makes for easy and accurate measuring of ball grooves.

(9) Improve rating life dramatically

A new ball groove geometry is introduced utilizing NSK's state-of-the-art tribological and analytical technologies. Rating life is dramatically increased due to the optimized distribution of contact surface pressures.

Load rating capacity is 1.3 times higher than conventional products and life is doubled*1. *1: Representative values.

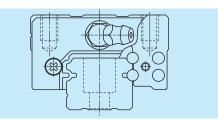


Fig. 1 HS Model

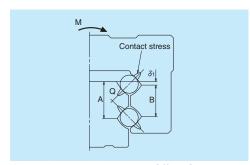


Fig. 2 Enlarged illustration: Offset Gothic arch

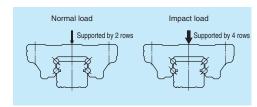


Fig. 3 When load is applied

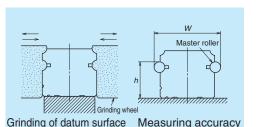


Fig. 4 Rail-grinding and measuring

and ball grooves

and ball grooves

HS Model

Model No.: HS30

Model No.: LS30

Preload: 71

Table dimensions: 460 mm × 380 mm

Table dimensions: 460 mm × 380 mm

Conventional Model

Preload: Z1

Measurement results of ball passage vibration

Ball passage vibration can translate into posture changes in the ball slide which result from ball passage (circulation). In the HS Model, this vibration has been substantially reduced to one-third of conventional models.

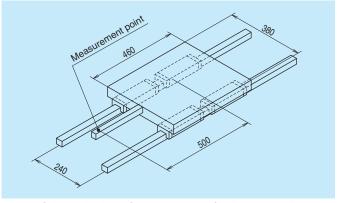


Fig. 5 Schematic view of measurement of ball passage vibration

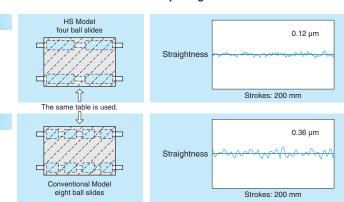
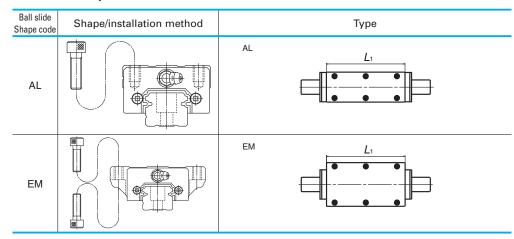



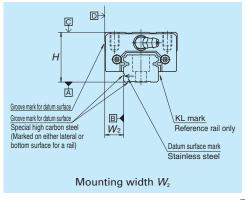
Fig. 6 Measurement results for the HS model vs. conventional model

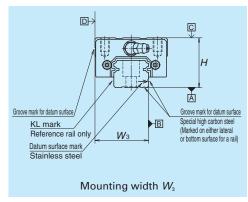
A371

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide


Table 1 Unit: µm					
Accuracy grade		Preloaded assembly	,		
Rail length(mm) over or less	. Ultra precision P3	Super precision P4	High precision P5		
- 200	2	2	3.5		
200 – 250	2	2.5	4.5		
250 – 315	2	2.5	5		
315 – 400	2	3	5.5		
400 - 500	2	3	6		
500 - 630	2	3.5	6.5		
630 - 800	2	4	7		
800 – 1 000	2.5	4.5	7.5		
1 000 – 1 250	3	5	8.5		
1 250 – 1 600	3.5	5.5	9.5		
1 600 – 2 000	4	6.5	11		
2 000 – 2 500	4.5	7.5	12		
2 500 – 3 150	5.5	8.5	13		
3 150 – 4 000	6	9.5	14		


(2) Accuracy Standard

Three accuracy grades are available: Ultra precision P3, Super precision P4 and High precision P5.

Table 2 High precision P5 Accuracy grade Ultra Super Characteristics precision P3 precision P4 Mounting height H ±8 3 ±10 ±20 Variation of H 7 5 (All ball slides on a set of rails) Mounting width W_2 or W_3 ±10 ±15 ±25 Variation of W_2 or W_3 10 (All ball slides on reference rail) Running parallelism of surface C to surface A Running parallelism of surface D to surface B Refer to Table 1 and Fig. 7

(3) Assembled accuracy

30

4 000 (3 500)

Fig. 7

(4) Preload and rigidity

Slight preload Z1 and Medium preload Z3 are available, which can be selected for specific applications.

Table 3						
	Prolo	Preload (N)		Rigidity (N/µm)		
Model No.	1 1610	au (IV)	Vertical	direction	Lateral o	direction
	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)
HS15	98	785	260	530	173	355
HS20	147	1 030	305	600	212	415
HS25	245	1 620	385	735	263	505
HS30	390	2 550	505	965	345	665
HS35	590	3 550	610	1 140	415	780

4. Maximum rail length

Size

Model

HS

15

2 000 (1 300)

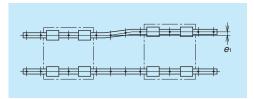
Table 4 shows the limitation. The dimension in parenthesis is for stainless steel products. However, the limitations vary by accuracy grades.

Table 4 Length limitation of rails

25

3 960 (3 500)

Unit: mm 35 4 000 (3 500)

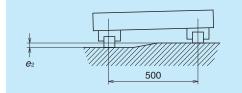

Note: Rails can be butted if user requirements exceed the rail length shown in the table. Please consult NSK.

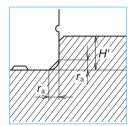
3 960 (3 500)

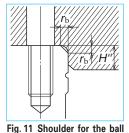
A373

5. Installation

(1) Permissible values of mounting error




Fig. 8


Fig. 9

lable 5 Unit: μm						
Value	Preload	Model No.				
value	rieloau	HS15	HS20	HS25	HS30	HS35
Permissible values for	Z1	18	20	26	31	37
parallelism error of two rails e_1	Z3	12	14	18	22	26
Permissible values for	71 70	222				
height error of two rails e2	Z1, Z3	330 μm/500 mm				

Table 5

(2) Shoulder height of the mounting surface and corner radius r

slide datum surface

Fig. 10 Shoulder for the rail datum surface

Table 6

				Unit: mm
Model No.	Corner radius	s (maximum)	Shoulde	r height
wouer ivo.	$r_{\rm a}$	$r_{\rm b}$	H'	H"
HS15	0.5	0.5	4	4
HS20	0.5	0.5	4.5	5
HS25	0.5	0.5	5	5
HS30	0.5	0.5	6	6
HS35	0.5	0.5	6	6

6. Lubrication components

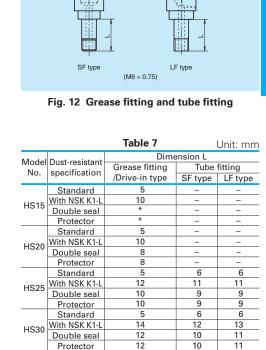
Refer to pages A58 and D13 for linear guide lubrication.

(1) Types of lubrication accessories

Fig. 12 and Table 7 show grease fittings and

We provide lubrication accessories with an extended thread body length (L) for the addition of dust-resistant accessories such as NSK K1-L lubrication units, double seals and protectors.

NSK can also provide extended length threads for ease of replenishment.


Please contact NSK if stainless lubrication accessories are required.

(2) Mounting position of lubrication accessories

The standard position for grease fittings is at the end face of the ball slide, but we can mount them on the side of the end cap as an option. (Fig. 13)

Please consult NSK for the installation of grease or tube fittings to the ball slide body.

Using a piping unit with thread of $M6 \times 1$ requires a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

B type

 $(M6 \times 0.75)$

Grease fitting

Drive-in type (\$\phi 3) A type

Tube fitting

12 *) A connector is required for this model. Please contact NSK.

14

12

6

13

11

12

10

10

Standard

With NSK K1-L

Double seal

Protector

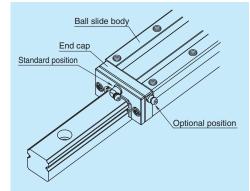


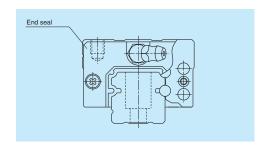
Fig. 13 Mounting position of lubrication accessories

A375 A376

7. Dust-resistant components

(1) Standard Specification

Under normal applications, the HS model can be used without modification thanks to its dust resistance. These ball slides come standard with an end seal on both ends.



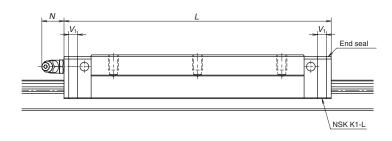

Fig. 14

Table 8 Seal friction per ball slide (maximum): end seal only

					Unit: N
Model Size	15	20	25	30	35
HS	3	3	3	3	4

(2) NSK K1-L[™] lubrication unit

Refer to Table 9 for dimensions of linear guides equipped with NSK K1-L lubrication units.

			lubrication units

	\mathbf{n}	i÷۰	m	m
u		н.		

Model No.	Ball slide shape code	Standard ball slide length	Ball slide length with two NSK K1-L units <i>L</i>	Thickness of single NSK K1-L unit V ₁	Protrusion of grease fitting N
HS15	AL, EM	106	115.6	4.8	(5)
HS20	AL, EM	119.7	130.3	5.3	(14)
HS25	AL, EM	148	158.6	5.3	(14)
HS30	AL, EM	176.1	188.1	6	(14)
HS35	AL, EM	203.6	216.6	6.5	(14)

Note: Slide length when equipped with NSK K1-L = (standard ball slide length) + (V_1 thickness of single NSK K1-L unit) × (number of K1-L units).

(3) Double seal and protector

For the HS Model, double seals and protectors can be installed only before shipping from the factory. Please consult with NSK when double seals or protectors are required.

Table 10 shows the increased thickness of V_3 and V4 when the end seal and the protector are installed.

	Table 10	Unit: mm
Model No.	Thickness	Thickness
wiodei ivo.	of end seal: V ₃	of protector: V ₄
HS15	2.8	3
HS20	2.5	2.7
HS25	2.8	3.2
HS30	3.6	4.2
HS35	3.6	4.2

(4) Caps to plug the rail mounting bolt hole

Table 11 Caps to plug rail bolt hole

Bolt to	Сар	Quantity
secure rail	reference No.	/case
M3	LG-CAP/M3	20
M4	LG-CAP/M4	20
M5	LG-CAP/M5	20
M6	LG-CAP/M6	20
M8	LG-CAP/M8	20
	M3 M4 M5 M6	secure rail reference No. M3 LG-CAP/M3 M4 LG-CAP/M4 M5 LG-CAP/M5 M6 LG-CAP/M6

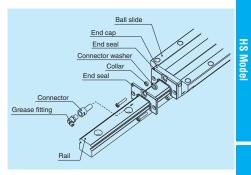


Fig. 15 Double seal

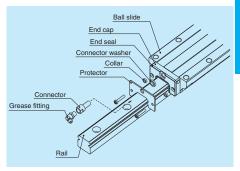


Fig. 16 Protector

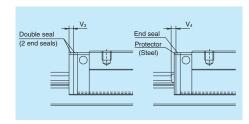


Fig. 17

A377

8. Reference number

A reference number (designation) is set and indicated on the specification drawing for an individual NSK linear guide when its specifications are finalized.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

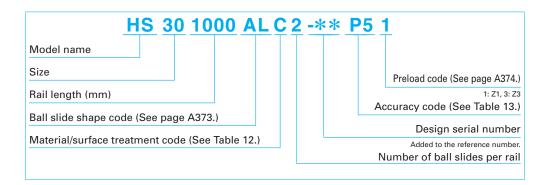
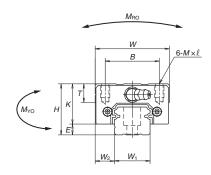


Table 12 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

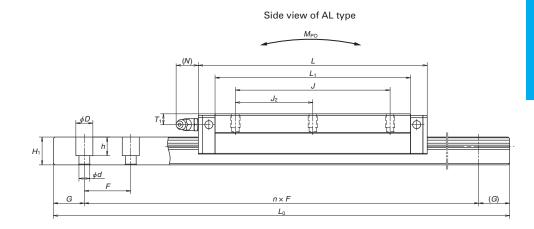
Table 13 Accuracy code

Accuracy	Standard (Without NSK K1-L)	With NSK K1-L
Ultra precision grade	P3	L3
Super precision grade	P4	L4
High precision grade	P5	L5


Note: Refer to page A58 for details on NSK K1-L lubrication units.

A379 A380

9. Dimensions HS-AL


HS 30 1000 AL C 2 -** P5 1 Model name Size Rail length (mm) Ball slide shape code (See page A373.) Material/surface treatment code (See Table 12.) Preload code (See page A374.) 1:21, 3:23 Accuracy code (See Table 13.) Design serial number. Added to the reference number. Number of ball slides per rail

Front view of AL types

	A	ssemb	oly						Ball slic	de							
Model No.	Height			Width	Length	gth Mounting hole							Grease	fittin	g	Width	Height
	$H \mid E \mid W_2 \mid W \mid L \mid B \mid J \mid J_2 \mid M \times pitch \times \ell$		L ₁	K	Т	Hole size	T_1	Ν	W_1	H ₁							
HS15AL	24	4.6	9.5	34	106	26	60	30	M4×0.7×6	89.2	19.4	10	ø 3	6	3	15	12.5
HS20AL	28	6	11	42	119.7	32	80	40	M5×0.8×7	102.5	22	12	M6×0.75	5.5	11	20	15.5
HS25AL	33	7	12.5	48	148	35	100	50	M6×1×9	126.4	26	12	M6×0.75	7	11	23	18
HS30AL	42	9	16	60	176.1	40	120	60	M8×1.25×12	150.7	33	13	M6×0.75	8	11	28	23
HS35AL	48	10.5	18	70	203.6	50	140	70	M8×1.25×12	175.6	37.5	14	M6×0.75	8.5	11	34	27.5

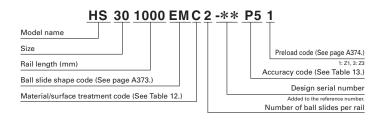
Notes: 1) The HS model does not have a ball retainer. Note that balls will fall out when the ball slide is removed from the rail.

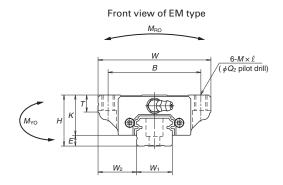
Unit: mm

Rail				Basic load ratings								We	ight
Pitch	Mounting	G	Max. length	3)Dyn	amic	Static		Static	Static moment (N·m)			Ball	Rail
	bolt hole		L _{0max} .	[50km]	[100km]	C 0	M _{RO}	M _{PO}		M	1,0	slide	
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
30	*4.5×7.5×8.5 3.5×6×8.5	20	2 000 (1 300)	20 500	16 300	40 000	199	395	1 990	335	1 670	0.34	1.4
30	6×9.5×10.5	20	3 960 (3 500)	27 300	21 600	52 000	350	590	2 930	495	2 460	0.52	2.3
30	7×11×12	20	3 960 (3 500)	44 500	35 000	78 000	605	1 090	5 450	910	4 600	0.85	3.1
40	7×11×16	20	4 000 (3 500)	68 000	54 000	127 000	1 190	2 120	10 600	1 780	8 850	1.7	4.8
40	9×14×20	20	4 000 (3 500)	94 500	75 000	172 000	1 980	3 350	16 600	2 820	13 900	2.5	7.0

3) Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

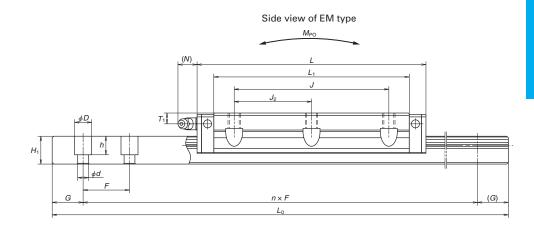
 C_{soi} the basic dynamic load rating for 50 km rated fatigue life C_{loo} ; the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.


(3.5 \times 6 \times 8.5). A381


²⁾ The external appearance of stainless steel ball slides differs slightly from that of carbon steel ball slides.

⁴⁾ Parenthesized dimensions are applicable to stainless steel products.

^{*)} Standard rail mounting bolt hole for HS15 is specified as hole for M4 (4.5 × 7.5 × 8.5). Please contact us to request a different hole for M3 (3.5 × 6 × 8.5).


HS-EM

	А	ssem	ıbly						Ball sl	lide								
Model No.	Height			Width	Length			М	ounting hole					Grease	fittir	ng	Width	Height
IVIOGEI INO:	Н	Ε	W_2	W	L	В	J	J_2	$M \times \text{pitch} \times \ell$	Q_2	L ₁	Κ	Т	Hole size	<i>T</i> ₁	N	W_1	H ₁
HS15EM	24	4.6	18.5	52	106	41	60	30	M5×0.8×7	4.4	89.2	19.4	8	φ3	6	3	15	12.5
HS20EM	28	6	19.5	59	119.7	49	80	40	M6×1×9 (M6×1×9.5)	5.3	102.5	22	10	M6×0.75	5.5	11	20	15.5
HS25EM	33	7	25	73	148	60	100	50	M8×1.25×10 (M8×1.25×11.5)	6.8	126.4	26	11 (12)	M6×0.75	7	11	23	18
HS30EM	42	9	31	90	176.1	72	120	60	M10×1.5×12 (M10×1.5×14.5)	8.6	150.7		11	M6×0.75		11	28	23
HS35EM	48	10.5	33	100	203.6	82	140	70	M10×1.5×13 (M10×1.5×14.5)	8.6	175.6	37.5	12 (15)	M6×0.75	8.5	11	34	27.5

Notes: 1) The HS model does not have a ball retainer. Note that balls will fall out when the ball slide is removed from the rail.

Unit: mm

Rail				Basic load ratings								We	ight
Pitch	Mounting	G	Max.	3)Dyn	amic	Static		Static	Static moment (N·m)			Ball	Rail
	bolt hole		length $L_{\tiny 0max}$.	[50km]	[100km]	C 0	MRO	M_{PO}		M	1,0	slide	ĺ
F	$d \times D \times h$	(reference)	() for stainless	$C_{50}(N)$	$C_{100}(N)$	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
30	*4.5×7.5×8.5 3.5×6×8.5	20	2 000 (1 300)	20 500	16 300	40 000	199	395	1 990	335	1 670	0.45	1.4
30	6×9.5×10.5	20	3 960 (3 500)	27 300	21 600	52 000	350	590	2 930	495	2 460	0.67	2.3
30	7×11×12	20	3 960 (3 500)	44 500	35 000	78 000	605	1 090	5 450	910	4 600	1.3	3.1
40	7×11×16	20	4 000 (3 500)	68 000	54 000	127 000	1 190	2 120	10 600	1 780	8 850	2.4	4.8
40	9×14×20	20	4 000 (3 500)	94 500	75 000	172 000	1 980	3 350	16 600	2 820	13 900	3.4	7.0

3) Basic load ratings comply with ISO standards (ISO 14728-1, 14728-2).

C_{soi}, the basic dynamic load rating for 50 km rated fatigue life C_{soi}, the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

A383 A384

²⁾ The external appearance of stainless steel ball slides differs slightly from that of carbon steel ball slides.

⁴⁾ Parenthesized dimensions are applicable to stainless steel products.

^{*)} Standard rail mounting bolt hole for HS15 is specified as hole for M4 (4.5 × 7.5 × 8.5). Please contact us to request a different hole for M3 $(3.5 \times 6 \times 8.5)$

A-5 Other Linear Rolling Guide Products

A-5-1 Linear Rolling Bushing

1. Features

(1) Low friction

Low friction owes to its design: Balls come into point contacts with raceway surface: the balls smoothly re-circulate. There is very little stick slip.

(2) Low noise

Noise level is low due to the ball retainer which is made of a synthetic resin.

(3) High precision

Due to NSK's superb quality control, precision is quaranteed.

(4) Dust resistance

Models with seals are available. These seals feature low friction and high durability thanks to a highly effective double-lip system.

(5) Superb durability

The material of outer sleeve is vacuum degassed, highly pure, and is heat-treated with good expertise.

2. Models

There are two models

(1) LB model (standard) (Fig. 1)

This model is the most commonly used, and is the only model that comes with a seal and in super precision grade.

Fig. 1 LB model (standard)

(2) LB-T model (adjustable clearance) (Fig. 2)

LB-T linear rolling bushings feature a cut on the outer sleeve in the axial direction. When used with a housing with an adjustable inner diameter, they allow for the clearance between the linear shaft and inscribed circle (an imaginary circle connecting the tops of the balls) to be adjusted in minute increments.

Fig. 2 LB-T model (adjustable clearance)

3. Accuracy

(1) Accuracy grades

- LB model (standard)············High precision grade S and super precision grade SP are available.
- LB-T model (adjustable clearance) ·····High precision grade S is available.

(2) Tolerance of rolling linear bushing, linear shaft, and housing

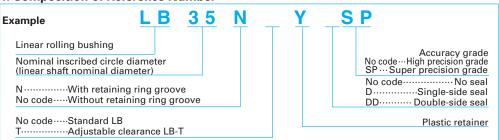
Table 1 Tolerance for inscribed circle of the linear rolling bushing and shaft diameter

Ilnit: ur

NSK

	Nominal dimension/			ed circle dia	ameter*1	Toleranc	e/width <i>B</i>		lot distance ng rings <i>B</i> n	Red	ommend shaft di		nce/
/shaft diameter (mm)		High precision Super		Super high grad				High precision grade S SP Super high precision grade S		High pr			h precision le SP
over	or less	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower
2.5	6									-6	-14	-4	-9
6	10	0	-8	0	-5					-6	-15	-4	-10
10	18					0	-120	+240	-240	-6	-17	-4	-12
18	30	0	-10	0	-6					-6	-19	-4	-13
30	50	0	-12	0	-8					-7	-23	-5	-16

Table 2 Tolerance of linear rolling bush outside diameter and housing inside diameter


Unit: µm

A386

Nominal o	limension/	Tole	rance/outsi	de diamete	r D*1	Eccentricity*2	To	olerance/ho	using inside diameter		
	eter/housing meter (mm)		ecision de S	Super high grad		Super high precision grade SP	High pr grad		Super high grad		
over	or less	upper	lower	upper	lower	Maximum	upper	lower	upper	lower	
2.5	6						+12	0	+8	0	
6	10	0	-10	0	-7	8	+15	0	+9	0	
10	18						+18	0	+11	0	
18	30	0	-12	0	-8	9	+21	0	+13	0	
30	50	0	-14	0	-9	10	+25	0	+16	0	

^{*1)} For adjustable clearance types, figures indicate tolerances before the cut is made.

4. Composition of Reference Number

A385

^{*2)} Eccentricity means the run-out of offset between the centers of outer sleeve diameter and inscribed circle diameter.

5. Lubrication and Friction

(1) Grease lubrication

1 Supply at initial stage

At time of delivery, the linear rolling bushing has a coat of rust preventive agent. Wipe it off with clean kerosene or organic solvent. Dry with an air blower, etc., then apply grease.

Lithium soap based grease with consistency levels of 2 are generally used (e.g. NSK Grease LR3, PS2, and AS2).

2 Replenishment

- · Sealed linear rolling bushings are designed to be disposable. Therefore, replenishing grease is considered to be not required. However, if replenishment becomes necessary due to a dirty environment or wear of the seal, remove the linear bushing from the shaft and replenish lubricant in the same manner as the initial lubricating.
- For items without seals, wipe off old grease from the linear shaft, and apply new grease.
- Intervals of replenishment are every 100 km in a dirty environment, 500 km in a slightly dirty environment, 1 000 km or no replenishing for a normal environment.

(2) Oil lubrication

It is not necessary to wash off the rust preventive agent applied before delivery.

Use an oil of ISO viscosity grade VG15-100. Drip the oil on the linear shaft by an oil supply system.

Temperature to use

-30°C to 50°C Viscosity VG15 - 46 50°C to 80°C Viscosity VG46 - 100

Lubricant is removed by the seal if the linear ball bearing has a seal. Therefore, the drip method cannot be used except for single-seal types.

(3) Friction coefficient

The linear rolling bushing has a small dynamic friction coefficient. This contributes to low power loss and temperature rise.

According to Fig. 3, the dynamic friction coefficient is merely 0.001-0.004. Also, at the speed of under 60 m/min, there is no danger of the temperature rising. Friction force can be obtained by the following formula.

$$F = \mu \cdot P \dots (1)$$

In this formula:

F: Friction force (N)

P: Load (vertical load to the shaft center line) (N)

 μ : Friction coefficient (dynamic or static)

For a sealed type, a seal resistance of 0.3 to 2.40 N is added to the above.

Fig. 3 Dynamic friction coefficient of linear rolling bushing

6. Range of Conditions to Use

Generally, use under the following conditions.

Please consult NSK when values exceed the ranges aiven below.

Temperature: - 30°C to 80°C

Speed: Up to 120 m/min

(excluding oscillation and short strokes)

7. Preload and Rigidity

The linear rolling bushing is normally used without applying preload. If high positioning accuracy is required, set the clearance between the linear rolling bush and the shaft at the range of 0 to 5 µm. Slight preload is a general rule (1% of basic dynamic load rating C -- see the dimension table).

The dimension table shows theoretical rigidity K when clearance with the shaft is zero, and a load of 0.1 C is applied to the summit of the ball.

Rigidity K_N , when load is not 0.1C, is obtained by the following formula.

$$K_N = K (P/0.1C)^{1/3} \cdots (2)$$

In this formula:

K: Rigidity value in the dimension table (N/µm)

P: Radial load (N)

When the load is applied between the ball rows, the load becomes 1.122 times for 4 ball rows; 0.959 times for 5 ball rows; 0.98 times for 6 ball rows.

8. Basic Load Rating and Rated Life

(1) Basic dynamic load rating

Basic dynamic load rating C is a radial load which allows 90% of a group of linear rolling bush to run a distance of 50 km without suffering damage when they are moved individually.

There is a relationship as below between C and the

$$L = 50 \text{ f}_{L^3}$$
 (3)

In this formula:

L: Rated life (km)

P: Radial load (N)

 f_{\perp} : Life factor (Refer to Fig. 4)

This formula is used provided that the shaft hardness is HRC58 or higher. Rated life is shorter if the shaft is softer. In this case, find the hardness factor f_H from Fig. 5, and multiply the value.

Life in time can be obtained by the following formula, substituting given stroke length, cycle numbers, and running distance:

$$L_h = (L/1.2 \cdot S \cdot n) \times 10^4 \cdot \dots (7)$$

In this formula:

Lh: Life hours (h)

L: Rated life (km)

S: Stroke (mm)

n: Cycles per minute (cpm)

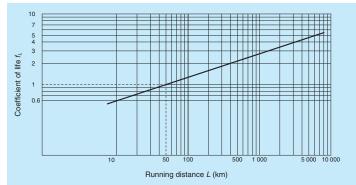


Fig. 4 Relationship between life factor and running distance

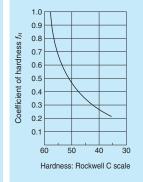


Fig. 5 Hardness factor

(2) Basic static load rating

It is a load that the total permanent deformation of outer sleeve, ball, and shaft at the contact point becomes 0.01% of the ball diameter when this load is applied to the rolling bushing. It is understood in general that this is the applicable load limit which causes this permanent deformation without hampering operation.

(3) Calculation example

What is the appropriate rolling bushing size if required life is 5 000 hours?

Conditions are:

- Three linear rolling bushings are installed in two parallel shafts, and support a reciprocating table.
- Load 450 N is equally distributed to the three bushings.
- The table is required to reciprocate on the shafts at 200 times per minute at a stroke of 70 mm.
- · Hardness of the shaft: HRC 55

$$450/3 = 150 (N)$$

· Load per linear rolling bushing is:

From Formula (7), the required life when indicated in distance is:

$$L = 5 \times 10^{3} \times 1.2 \times 70 \times 200/10^{4} = 8.4 \times 10^{3}$$
 (km)

From Fig. 4 and Fig. 5, Life factor $f_L = 5.6$ Hardness factor $f_H = 0.65$ Therefore, from Formula (6),

$$C = P \times f_1 / f_H$$

$$=150 \times 5.6/0.65 = 1292$$
 (N)

Based on the above, select linear rolling bushing LB30NY with shaft diameter of 30 mm, basic dynamic load rating of 1 400 N.

(4) Compensating load rating by ball row position

Load rating of the linear rolling bushing changes by the position of the ball circuit rows.

Permissible load is larger when it is applied to the middle of the ball circuit rows than when it is applied directly above the ball row (**Fig. 6**).

(Radial clearance set at zero in this case.)

Load ratings in the dimension tables are in case "A" when applied directly above the ball circuit row. If used as in case "B," the load rating becomes larger (refer to Fig. 6).

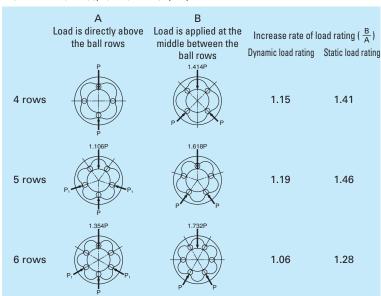


Fig. 6 Increasing rate of load rating by position of ball row (B/A)

9. Shaft Specifications

Harden the shaft surface where the balls run with heat treatment to provide the following values.

- Surface hardness: HRC58 or over
- Depth of core hardness at HRC50 or higher Depth for LB3; 0.3 mm or deeper Depth for LB50; 1.2 mm or deeper

Roughness of the surface should be:

• For SP grade, and "clearance for fit" with the ball bushing less than 5 µm -

Less than 0.8 S

 \bullet For SP grade with "clearance" of more than 5 $\mu m,$ and for S grade -

Less than 1.2 S

Bending should be:

- LB3 -- 15 μm/100 mm
- LB50 -- 100 um/1 000 mm

An appropriate clearance for normal use conditions can be obtained when the tolerance in shaft diameter remains within the recommended range (refer to **Table 1** on page A386). For operations which require particular accuracy, select the shaft diameter which creates a clearance in the range of 0 to 0.005 (mm) for example, when assembled with the rolling bushing.

10. Dust resistance

Select a linear rolling bushing with seals to prevent moisture or foreign matter floating in the air from entering.

11. Installation

(1) Combination of shaft and linear rolling bushing

When the linear rolling bushing is installed in a linear motion table for its reciprocating movement, it is necessary to prevent the table from rotating. In general, for this reason, two shafts installed with two linear rolling bushings on each are used.

Fig. 7 is an installation example.

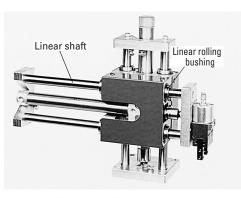


Fig. 7 Installation example

(2) Installation of linear rolling bushing 1) Installation of standard type

Fig. 8 shows a method using a retainer ring. Linear rolling bushings can also be secured to the housing using a stop plate and/or screw.

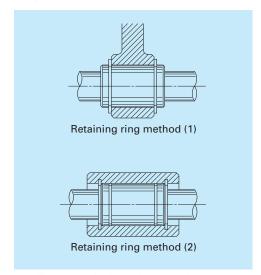


Fig. 8 Installation using retaining rings

- a) Housing inside diameter should be of a recommended value (Table 2, page A386). The entire rolling bushing contracts and gives excessive preload if the inside diameter is small or the roundness or cylindricity is excessive. This may result in an unexpected failure.
- b) To install linear rolling bushing, use a tool (Fig. 9) and squeeze it in, or use a holder and lightly pound it.

A389 A390

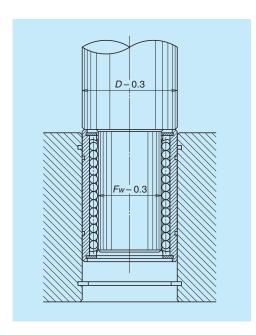
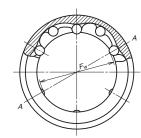


Fig. 9 Tool to install a linear rolling bushing

2) Installation of adjustable clearance type

Use a housing which can adjust the inside diameter of the rolling bushing. This way, the clearance between the rolling bushing and the linear shaft can be easily adjusted. Arrange the cut-open section of the rolling bushing at a 90-degree angle to the housing's cut-open section. This is the most effective way to evenly distribute deformation toward circumferential direction.


The tolerance of shaft diameter of the adjustable clearance type should be within the recommended range (refer to **Table 1** on page A386). As a general rule, set the preload at slight or light volume. (Do not provide excessive preload.) Use a dial gauge to measure and adjust clearance. However, here is an easy method to adjust.

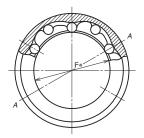

First, loosen the housing until shaft turns freely. Then narrow the clearance gradually. Stop at the point when the shaft rotation becomes heavy. This creates a clearance zero or light preload.

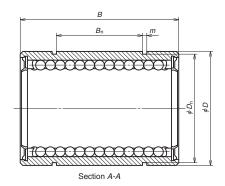
(3) Precautions for installing a shaft in the linear rolling bushing

- To install two shafts parallel to each other, first install one shaft accurately. Use this as a reference, and install the other parallel to the first shaft. This makes installation easy.
- Do not incline the shaft when inserting it into the linear rolling bushing. Do not force it to enter by twisting. This deforms the retainer, and causes the balls to fall out.
- Do not use the shaft for rotating movement after inserting the shaft to the linear rolling bushing.
 The balls slip and damage the shaft.
- Do not twist the shaft after it is inserted to the linear rolling bushing. The pressure scars the shaft.

12. Dimension tables Model LB (standard), no seal

Unit: mm

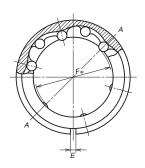

											Offic. Iffiff
MadalNa	Inscribed	Outside	Length		ning ring g		Stiffness*1	Number		Basic dynamic	Basic static
Model No.	circle	diameter		Distance	Width	Bottom		of ball	(kg)	load rating	load rating
	diameter					diameter	(N/µm)	circuits	(Reference only)		C_0
	F _w	D	В	B₁	m	D_n				(N)	(N)
LB3Y	3	7	10	_	_	_	3	4	0.0016	20	39
LB4Y	4	8	12	_	_	_	4.5	4	0.0022	29	59
LB6NY	6	12	19	11	1.15	11.5	7	4	0.0074	74	147
LB8ANY*2	8	15	17	9	1.15	14.3	5.5	4	0.0094	78	118
LB8NY	8	15	24	15	1.15	14.3	9.5	4	0.014	118	226
LB10NY	10	19	29	19	1.35	18	12	4	0.025	206	355
LB12NY	12	21	30	20	1.35	20	13	4	0.028	265	500
LB13NY	13	23	32	20	1.35	22	13	4	0.040	294	510
LB16NY	16	28	37	23	1.65	26.6	14	4	0.063	440	635
LB20NY	20	32	42	27	1.65	30.3	19	5	0.088	610	1 010
LB25NY	25	40	59	37	1.9	38	35	6	0.267	1 000	1 960
LB30NY	30	45	64	40	1.9	42.5	41	6	0.305	1 400	2 500
LB35NY	35	52	70	45	2.2	49	48	6	0.440	1 510	2 800
LB40NY	40	60	80	56	2.2	57	54	6	0.520	2 230	4 000
LB50NY	50	80	100	68	2.7	76.5	69	6	1.770	4 100	7 100

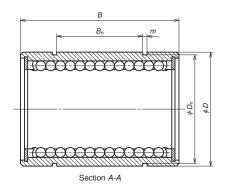

^{*1):} Refer to Section (7).

A391 A392

^{*2):} Semi-standard item of which length B is shorter than standard.

Model LB (standard), with seal




Unit: mm

	Inscribed	Outside	Length	, , , , , , , , , , , , , , , , , , , ,				Weight	Basic dynamic	Basic static
*Model No.	circle	diameter		Distance	Width	Bottom	of ball	(kg)	load rating	load rating
	diameter					diameter	circuits	(Reference only)		C_0
	F _w	D	В	B₁	m	D _n			(N)	(N)
LB6NYDD	6	12	19	11	1.15	11.5	4	0.0074	74	147
LB8ANYDD	8	15	17	9	1.15	14.3	4	0.0094	78	118
LB8NYDD	8	15	24	15	1.15	14.3	4	0.014	118	226
LB10NYDD	10	19	29	19	1.35	18	4	0.025	206	355
LB12NYDD	12	21	30	20	1.35	20	4	0.028	265	500
LB13NYDD	13	23	32	20	1.35	22	4	0.040	294	510
LB16NYDD	16	28	37	23	1.65	26.6	4	0.063	440	635
LB20NYDD	20	32	42	27	1.65	30.3	5	0.088	610	1 010
LB25NYDD	25	40	59	37	1.9	38	6	0.267	1 000	1 960
LB30NYDD	30	45	64	40	1.9	42.5	6	0.305	1 400	2 500
LB35NYDD	35	52	70	45	2.2	49	6	0.440	1 510	2 800
LB40NYDD	40	60	80	56	2.2	57	6	0.520	2 230	4 000
LB50NYDD	50	80	100	68	2.7	76.5	6	1.770	4 100	7 100

^{*)} Single-seal type is indicated as LB-D.

Model LB-T (Adjustable clearance)

Unit: mm

	Inscribed	Outside	Length	Opening	Retai	ning ring g	roove	Number	Weight	Basic dynamic	Basic static
Model No.	circle	diameter		width	Distance	Width	Bottom	of ball	(kg)	load rating	load rating
	diameter						diameter	circuits	(Reference only)	С	C_0
	Fw	D	В	Ε	B₁	m	D_n			(N)	(N)
LB6NTY	6	12	19	0.8	11	1.15	11.5	4	0.0073	74	147
LB8ANTY	8	15	17	1	9	1.15	14.3	4	0.0093	78	118
LB8NTY	8	15	24	1	15	1.15	14.3	4	0.014	118	226
LB10NTY	10	19	29	1.5	19	1.35	18	4	0.025	206	355
LB12NTY	12	21	30	1.5	20	1.35	20	4	0.028	265	500
LB13NTY	13	23	32	1.5	20	1.35	22	4	0.040	294	510
LB16NTY	16	28	37	1.5	23	1.65	26.6	4	0.062	440	635
LB20NTY	20	32	42	2	27	1.65	30.3	5	0.087	610	1 010
LB25NTY	25	40	59	2	37	1.9	38	6	0.265	1 000	1 960
LB30NTY	30	45	64	2	40	1.9	42.5	6	0.302	1 400	2 500
LB35NTY	35	52	70	3	45	2.2	49	6	0.44	1 510	2 800
LB40NTY	40	60	80	3	56	2.2	57	6	0.52	2 230	4 000
LB50NTY	50	80	100	3	68	2.7	76.5	6	1.75	4 100	7 100

A393

A-5-2 Roller Pack

1. Structure

A roller pack comprises a main body which supports load from the guide way block via two rows of rollers, an end cap which changes the direction of the re-circulation of rollers at the end of the main body, and a side plate which guides the rollers (Fig. 1). Roller packs are a type of linear rolling guide, where rollers are allowed to re-circulate infinitely.

There is a plate spring attached to a side of roller pack to prevent the roller pack from falling out when it is turned upside down after assembly.

Another component of the roller pack is the spring pin. A spring pin is on the top surface of the roller pack, and makes installation of the wedge block and fitting plate easier.

A wedge block is a unit to provide preload (Fig. 3) to roller pack; a fitting plate (Fig. 2), functioning like a pivot, adjusts misalignment of roller pack automatically. The wedge on the wedge block moves up and down to apply preload by turning the adjustment screw.

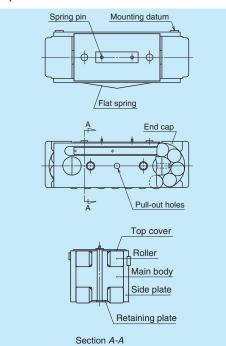


Fig. 1 Roller pack

Photo 1 Roller pack

Photo 2 Wedge block

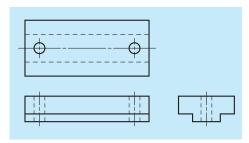


Fig. 2 Fitting plate

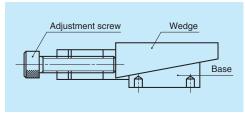


Fig. 3 Wedge block

2. Features

Roller packs have two remarkable characteristics other linear roller guide bearings do not have.

(1) No roller skewing

If the roller is long relative to its diameter, the roller inclines during operation. This phenomenon is called skewing. Skewing causes problems such as sudden rise in friction force. However, a short roller lacks large load carrying capacity. The roller introduced here solved the skewing problem, yet has a large load carrying capacity:

short rollers are combined into double rows.

(2) Load is applied equally.

This is due to a "fitting plate," a result of a "changed way of conceiving." Installation is quite easy: Merely place the fitting plate through the two holes to spring pins. The stop pins are inserted to holes on the top surface of the roller pack. The contact area between the fitting plate and the main body is made small. This way, self-alignment is automatically accomplished by elastic contact of both parts.

This distributes an equal load to the rollers, far extending the life, compared to conventional roller linear guides.

Roller packs also allow for easy application of preload by the wedge block, installation to vertical shafts, and reduced noise levels.

3. Accuracy

The height tolerance of roller pack is 10 µm. Roller packs are grouped into by size for every 2 µm (coded by A to E) before delivery (Table 1).

Table 1 Height Classification

		Unit: µn
Cat	egory	Code
over +3	or less +5	А
+1	+3	В
-1	+1	С
-3	-1	D
-5	-3	E

4. Rigidity

Fig. 4 shows the relationship between load and deformation. This includes deformation caused by contact between: the rollers and main body; the rollers and guide way surface; the main body and fitting plate.

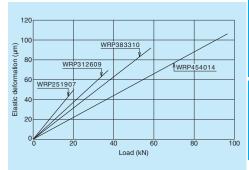


Fig. 4 Elastic deformation of the roller pack

5. Preload

Fig. 5 shows conversions of tightening torque of the wedge block adjustment screw into preload volume. Use a dial gauge for accurate measurement.

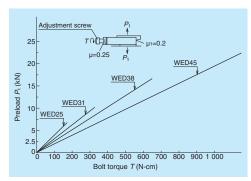


Fig. 5 Tightening torque of the adjustment screw, and preload volume

A395 A396

6. Friction and Lubrication

(1) Lubricants and volume

Mineral oils are commonly used. Since a roller pack is used under a relatively heavy load, the oil should, ideally, have high viscosity and provide a strong film. Select from JIS viscosity 32-150.

Criteria of oil supply per roller pack Q (cc/h) can be calculated by the following formula.

$$Q \ge S \times 1/4 \cdot \cdots (1)$$

In this formula, S (stroke) is shown in meters. The oil volume, when the stroke is 1 m, per roller pack is more than 0.25 (cc/h). It is more desirable to supply a small amount of oil at short intervals than supplying a large amount at one time. In case of grease lubrication, use a grease of consistency 2. Albania EP2 is widely used.

(2) Friction coefficient

Starting friction coefficient is significantly small at under 0.005.

(3) Seal

It is necessary to install a wiper seal to the guide way surface to prevent foreign matter (swarf from cutting, and other dust) from entering the roller pack to enjoy the full benefit of the designed life. The material of the seal should have strong resistance to oil and wear. Felt and synthetic rubber (acrylonitril butadiene rubber) are some suitable materials. Fig. 6 shows a general method to install seals.

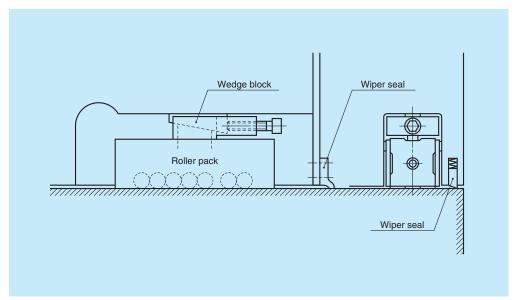


Fig. 6 Installation of seal

7. Installation

(1) Installation and applying preload

As shown in Fig. 7, a fitting plate is installed on the roller pack which receives load, and a wedge block is installed on the roller pack which receives no load, but is only used for preload. All components should be secured with a stop pin, facing toward the direction of movement. To cut costs for processing, it is recommended to divide the pocket (which contains roller pack) into some blocks and secure them with bolts (Fig. 7). Preload is provided by the wedge block. Estimate the actual load beforehand, so the preload shall not be lost when a load is applied. A load variation equivalent to up to two times of the preload volume can be absorbed in this case.

(Take into consideration the rated life in determining preload volume.)

(2) Accuracy of way block

The following is the ideal accuracy specification and installation accuracy of way block as a guide surface.

Hardness by heat treatment

: More than HRC58 hardened depth
2 mm or more

Surface roughness

: Less than 1.6 S

Parallelism as a single unit: Less than 0.010 mm per meter

Parallelism after installation

: Less than 0.020 mm per meter

Please consult NSK when using cast iron or cast steel quide faces.

(3) Pocket accuracy

Accuracy of the pocket in which the roller pack is mounted should satisfy the following conditions.

Pocket width

: Roller pack width + 0.10 to 0.20 mm Parallelism of the pocket side faces to the guide way face

: Less than 0.010 mm per 100 mm.

Parallelism of the fitting plate (pocket bottom) mounting surface to the guide way face and parallelism of the wedge block mounting surface to the guide way surface:

: Less than 0.040 mm per 100 mm.

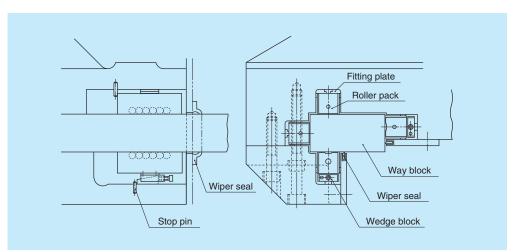


Fig. 7 Design of the roller pack pocket (example)

A397 A398

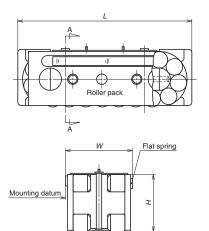
8. Rated life

Rated life L (km) is shown in the following formula. In this formula:

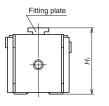
$$L = 50 \left(\frac{C}{f_w \cdot F_c} \right)^{\frac{10}{3}} \dots$$
 (2)

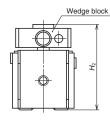
- C: Basic dynamic load rating (N)
- $f_{\rm w}$: Load factors. 1.0 to 1.2 at time of smooth
- F_c : Calculated load (N) applied to the roller pack

9. Disassembly


Remove the roller pack preloaded by the wedge block in the following manner.

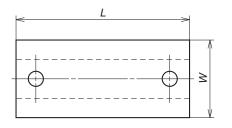
- · Loosen the adjust screw of the wedge block. Lightly tap the wedge. In case of light preload, the wedge loosens, and the roller pack can be pulled out.
- When pulling, put the bolt in the tap hole at the end of the end cap, and tug the bolt.
- In case of heavy load, the roller pack can not be pulled out by the above method. Hook a tool to the pull-out hole (Fig. 1) on the side plate of the roller pack, and pull out the roller pack.

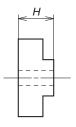



10. Dimension Tables

Roller pack: Model WRP

Section A-A

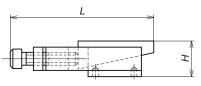

									Unit: mm
Model No.	Width	Height ±0.005 <i>H</i>	Length	Applicable fitting plate reference No.	Assembled height	Applicable wedge reference No.	Assembled height H_2	Basic dynamic load rating C (N)	Basic static load rating C_0 (N)
WRP 251907	25	19	65.5	WFT 25	24	WED 25	31 (30.4 – 31.6)	31 000	40 500
WRP 312609	31	26	85	WFT 31	31	WED 31	40 (39.4 – 40.6)	57 000	73 000
WRP 383310	38.1	33.31	104.4	WFT 38	38.91	WED 38	50.8 (50 – 51.5)	91 000	113 000
WRP 454014	45	40	138	WFT 45	45	WED 45	60 (59.2 – 60.8)	151 000	191 000


Note: Numbers in parentheses in column H_2 show the adjustable height range of the wedge block.

A399 A400

Fitting plate: Model WFT





Unit: mm

Model No.	Width <i>W</i>	Height (±0.01) <i>H</i>	Length <i>L</i>	Applicable roller pack
WFT 25	10	5	20	WRP 251907
WFT 31	12	5	26	WRP 312609
WFT 38	12.8	5.6	29	WRP 383310
WFT 45	16	5	40	WRP 454014

Wedge block: Model WED

Unit: mm

Model No.	Width <i>W</i>	Height <i>H</i>	Length <i>L</i>	Applicable roller pack
WED 25	23	12 (11.5 – 12.5)	47	WRP 251907
WED 31	28	14 (13.5 – 14.5)	63	WRP 312609
WED 38	35	17.47 (16.9 – 18.1)	76	WRP 383310
WED 45	40	20 (19.2 – 20.8)	95	WRP 454014

Note: Numbers in parentheses in column H_2 show the adjustable height range of the wedge block.

A401 A402

B-1 Selection Guide for NSK Ball Screw

1. Features of NSK Ball Screws B1

2. Structure of a Ball Screw..... B3

2.1 Ball Recirculation System B4
2.2 Preload System B5
3. Ball Screw Models B7
3.1 Ball Screw Classification B7
3.2 Product Externals B9
4. Procedures to Select Ball
Screw B17
4.1 Flow Chart for Selection ··· B17
4.2 Accuracy Grades B19
4.3 Axial Play B20
4.4 Screw Shaft Diameter, Lead,
and Stroke B21
4.5 Manufacturing Capability for
Screw Shaft B25
4.6 Outside Shapes of Ball Nuts
B26
4.7 Shaft End Configuration B27
5. When Placing Orders B31
5.1 When Ordering Standard
Ball Screws B31
5.2 When Ordering Made-to-

Order Ball Screws..... B33

Ball Screws

B-2	Technical Des	cription
	of Ball Screw	s .

B37
B37
t
B40
B41
у .
SK
B43
B44
B44
D44
D46
B46
at
B46
ed
B47
ew
B47
B 50
d
B51
B 53
B53
B 53
B 55
B 55
B 56
B56 B56
B56
B56 B56 w
B56 B56 W B57 B62
B56 B56 W B57 B62
B56 W B57 B62 B62
B56 W B57 B62 B62 B63
B56 W B57 B62 B62

B-3	Ball	Screw	Dime	nsion
	Tabl	es		

9. Lubrication of Ball Screws... B67

Screws ----- B68 11. Rust Prevention and Surface Treatment of Ball Screws... B69 12. Ball Screw Specifications for Special Environments B70 12.1 Cleanroom Environments ----- B70 12.2 Measures for Use Under

Vacuum B70 13. Noise and Vibration B71 13.1 Consideration of Noise

..... B71 13.2 Consideration of Ball Screw Support System B72

Machinery..... **B79**

Assembly **B83**

Screws----- B85 15.4 Machining after Delivery .. B85 15.5 "NSK K1™" Lubrication

Unit B85 15.6 Intermediate support ... B85

15.7 Shaft End Strength B85 16. Shaft End Machining...... B86

Exercise **B87**

Services ----- **B102** 20. Precautions When Handling Ball Screws----- B103

18. References..... **B101**

17. Ball Screw Selection

19. Guide to Technical

15.1 Safety System **B83** 15.2 Design Precautions for

14. Installation of Ball Screws B73 14.1 Installation Procedure for **High Accuracy Applications** (Machine Tools, etc.).... B74

14.2 Installation Procedure for General Industrial

15. Precautions for Designing Ball Screws----- B83

15.3 Effective Stroke of Ball

10. Dust Prevention for Ball

1		mension Tables and Reference	
		ımbers for Standard Ball Screv	
	1.1	Compact FA Model	B107
	1.2	High-Speed SS (HSS) Model	B147
	1.3	Finished Shaft End	
		MA Model, Miniature, Fine Lead	B159
		FA Model for Small Equipment	
		SA Model for Machine Tools	B217
	1.4	Finished Shaft End	
		Stainless Steel KA Model	B273
	15	Blank Shaft End	
	1.0	MS Model, Miniature, Fine Lead-	R301
		FS Model for Small Equipment	
		SS Model for Machine Tools	
	16	Ball Screws for Transfer Equip	
	1.0	ball Screws for Transfer Equip	
	4 7	Accessories ·····	
_			
2	. Dir	mension Tables and Reference Nu	mbers
		Ball Screws With Standard Nuts	
		End Deflector Recirculation	
		SRC Recirculation	
		Tube Recirculation	
	2.4	Deflector(Bridge) Recirculation	n
	2.5	High-speed Low-noise Deflect	
		Recirculation	
	2.6	End Cap Recirculation	B491
3	. Dir	mension Tables and Reference Nu	mbers
	for	Application-Oriented Ball Screws	;
	3.1	HMD Model for High-Speed Machine Tools	B501
		HMS Model for High-Speed Machine Tools	
		HMC Model for High-Speed Machine Tools	
		BSL Model for Miniature Lathes	
		For High-Load Drives	
	3	.5.1 HTF-SRC Model	R519
	3	.5.2 HTF-SRD Model ·····	B523
	3	.5.3 HTF Model	B527
		For Contaminated Environme	
	3.0	.6.1 VSS Model	BE42
		.6.2 Ball Screws with X1 Seals for Contam	
	3	Environments and Grease Retention -	
	27	Twin-Drive Ball Screws	
		For High Precision Machine To	
		.8.1 Hollow Shaft Ball Screws	
		.8.2 Nut-Cooled Ball Screws	
		Rotary Nut Ball Screws	
	3.1	0 Σ Model for Robots	B571
		1 Equipped with "NSK K1™" Lubrication Unit	
	3.1	2 Special Ball Screws	B589

nished Shaft End	
ainless Steel KA Model······B273	
ank Shaft End	
Model, Miniature, Fine Lead. B301	
Model for Small Equipment - B309	
Model for Machine Tools B321	
II Screws for Transfer Equipment	
B349	
cessoriesB389	
sion Tables and Reference Numbers	
II Screws With Standard Nuts	D
d Deflector Recirculation B431	P
C RecirculationB437	

B-1 Selection Guide for NSK Ball Screw

B-1-1 Features of NSK Ball Screws

(1) Quick delivery

Standard ball screws are for short lead times.

- Precision ball screws with finished shaft ends
 Compact FA model, MA model, FA model, SA model, KA model
- Precision ball screws with blank shaft ends
 MS model, FS model, SS model, HSS model
- Ball screws for transfer equipment with finished shaft ends

VFA model, RMA model

 Ball screws for transfer equipment with blank shaft ends

RMS model, R model

(2) Competitive prices

NSK reduces cost by well-planned mass production of standardized items. We rank the best in the world production of ordered items. We are able to offer our products at competitive prices by producing similar items in the same production group.

(3) Unparalleled accuracy

NSK utilizes its unique grinding technique and measuring equipment for top-notch precision.

(4) Superb durability

NSK uses thoroughly purified alloy steel for superb durability.

(5) No backlash, and unparalleled rigidity

NSK ball screws use Gothic arch grooves as shown in Fig. 1.1 to minimize the clearance between the balls and grooves. Further, an application of preload makes no backlash possible. As providing controlled preload is easy, appropriate rigidity is obtained.

As the Gothic arch also minimizes the clearance between the balls and the grooves, the backlash is minimized without applying preload.

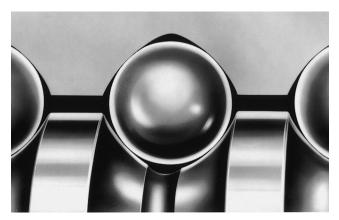


Fig. 1.1 Ball groove profile of NSK ball screw

(6) Smooth movement assures high efficiency

NSK uses a gothic-arch design for the ball grooves. This design prevents the balls from slightly wedging into the grooves of the ball nut and screw shaft and causing small vibrations. This phenomenon is common with the circular-arc design used by other manufacturers. The gothic arch, along with the low friction inherent in a ball screw, results in a smooth and highly efficient conversion of motion as shown in Fig. 1.2.

(7) Enhanced support units

Utilizing bearing technology, NSK produces high quality support units (for light load small equipment and heavy load machine tools) exclusively for ball screws. These units are standardized.

NSK also offers quality-assured accessories such as lock nuts to tighten bearings, travel stoppers to prevent overrun, and sealing units to cool hollow shaft ball screws.

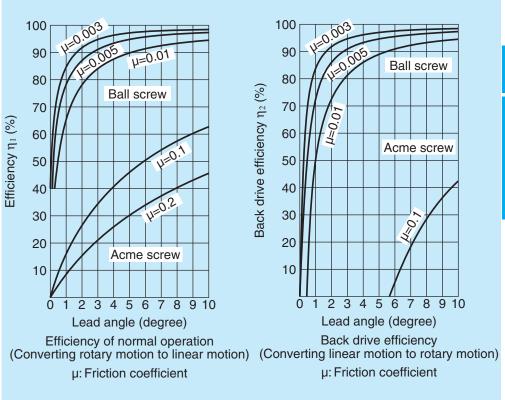
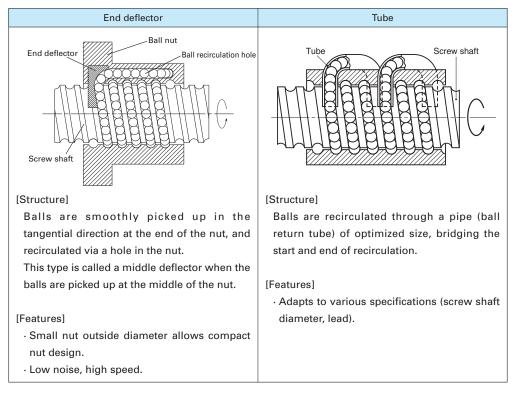


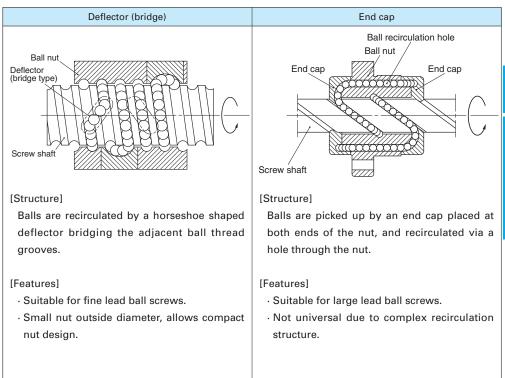
Fig. 1.2 Mechanical efficiency of ball screws


81 B2

B-1-2 Structure of a Ball Screw

Balls are placed between the screw shaft and nut and roll. This system is called a "ball screw." To keep the balls recirculating continually, this system requires a screw shaft, a nut, balls, and recirculation components as basic items. A ball screw has the following functions.

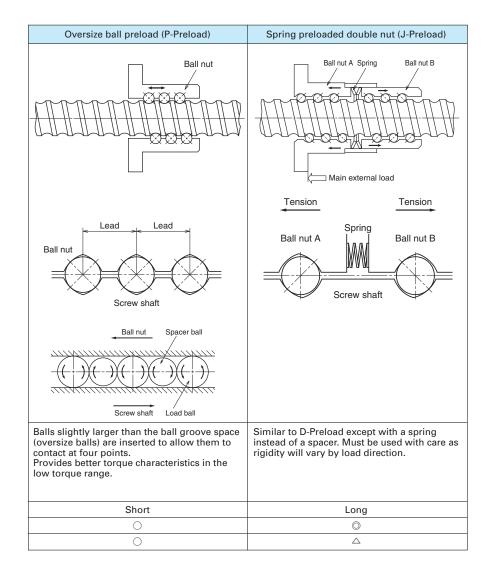
- (1) Converting motion: Changing rotary motion to linear motion (normal operation); Changing linear motion to rotary motion efficiently (back-drive operation).
- (2) Increasing power: A small torque is converted to a large thrust force.
- (3) Positioning: Sets accurate position in linear motion.


Table 2.1 Ball screw recirculation system

B-1-2.1 Ball Recirculation System

A ball screw's structure is typically classified by its recirculation system and preload.

As shown in **Table 2.1**, four types of ball recirculation system are used for NSK ball screws.

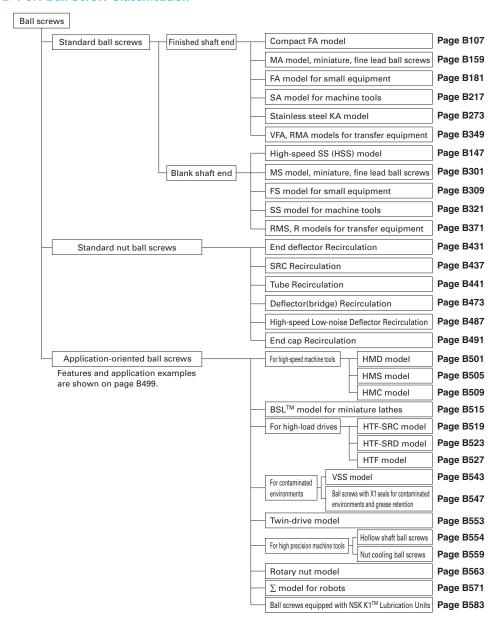


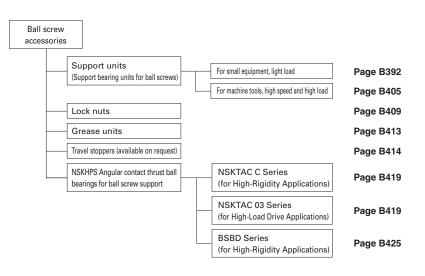
B-1-2.2 Preload system

There are four systems to apply preload to NSK ball screws, depending on the application.

Table 2.2 Preload system for ball screws

Preload system	Double nut preload (D-Preload)	Offset preload (Z-Preload)
Structure	Tension Spacer Ball nut B Ball nut A Spacer Ball nut B Spacer Ball nut B Spacer Ball nut B	Ball nut Lead Lead + α Lead Ball nut Screw shaft
Description	Uses two nuts with a spacer between them to apply the preload. In general, a spacer is thicker (by the deformation equivalent to the preload) than the actual space between two nuts. However, a thin spacer is inserted in some cases.	To apply preload, the lead near the center of the nut is offset by the volume equivalent to preload (α). This method is similar to double nut preload (D-preload) by a single ball nut, thus enabling a compact nut design.
Nut length	Long	Medium
Torque characteristics	0	0
Rigidity	©	0




B5 B6

B-1-3 Ball Screw Model

B-1-3.1 Ball Screw Classification

Lead classification

Classification	Lead ratio K = lead <i>l</i> / shaft diameter <i>d</i>
Fine	<i>K</i> < 0.5
Medium	0.5 ≤ <i>K</i> < 1
High helix	1 ≤ <i>K</i> < 2
Ultra high helix	2 ≤ <i>K</i>

B7 B8

B-1-3.2 Product Externals

(1) Ball screws

Standard ball screws

Fig. 3.1 Finished shaft end compact FA model

Page B107



Fig. 3.2 Blank shaft end high-speed SS model

Page B147

Fig. 3.3 Finished shaft end MA, FA, and SA models

Page B157

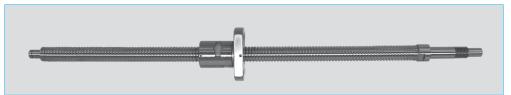


Fig. 3.4 Finished shaft end KA model

Page B273

Fig. 3.5 Blank shaft end MS, FS, and SS models

Page B299

Fig. 3.6 Finished shaft end VFA model for transfer equipment

Page B349

Fig. 3.7 Finished shaft end RMA model and blank shaft end RMS model for transfer equipment

Page B349

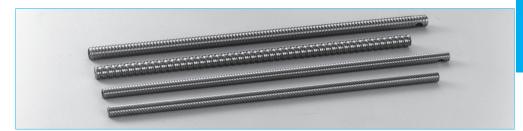


Fig. 3.8 Blank shaft end R model for transfer equipment

Page B349

Fig. 3.9 R model nut assembly for transfer Page B349

equipment

Standard nut ball screws



Fig. 3.10 End deflector recirculation Page B431

Fig. 3.11 SRC recirculation

Page B437

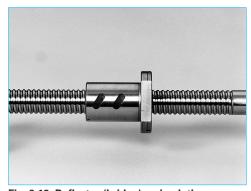


Fig. 3.13 Deflector (bridge) recirculation
Page B473

Fig. 3.16 HMD model for high-speed machine tools Page B501

Application-oriented ball screws

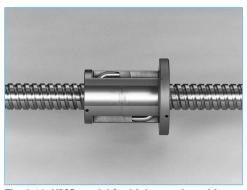


Fig. 3.18 HMC model for high-speed machine tools Page B50 Page B509

Fig. 3.17 HMS model for high-speed machine tools Page B505

Fig. 3.19 BSL model for miniature lathes Page B515

Page B441

Fig. 3.12 Tube recirculation

Fig. 3.14 High-speed low-noise deflector recirculation Page B487

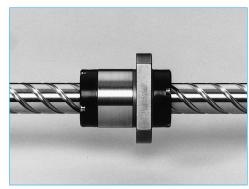


Fig. 3.15 End cap recirculation

Fig. 3.20 HTF-SRC model for high-load drives Page B519

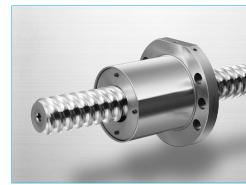


Fig. 3.21 HTF-SRD model for high-load drives Page B523 B12

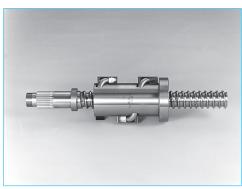


Fig. 3.22 HTF model for high-load drives Page B527

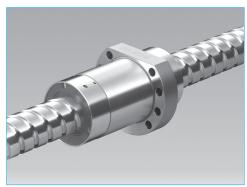


Fig. 3.23 VSS model for contaminated environments Page B543

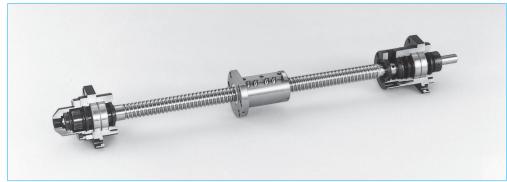


Fig. 3.27 Hollow shaft ball screws for high-precision machine tools

Page B554

Fig. 3.24 Ball screws with X1 seals for contaminated environments and grease retention Page B547

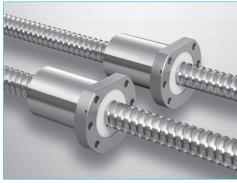


Fig. 3.25 Twin-drive model Page B553

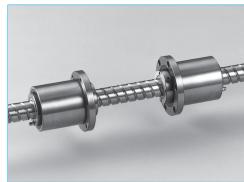



Fig. 3.28 Rotary nut model

Page B563

Fig. 3.29 Σ model for robots

Page B571

Fig. 3.26 Nut cooling ball screws for high precision machine tools Page B559

Fig. 3.30 Ball screws equipped with NSK K1™ lubrication units Page B58 Page B583

(2) Standard accessories

Page B392 Fig. 3.31 Support units (for small equipment, light load)

Page B392 Fig. 3.32 Support units (for small equipment, light load, low-profile)

Fig. 3.37 Lock nuts for high load Page B410

Fig. 3.38 NSK hand grease pump unit Page D19

Fig. 3.33 Support kits for RMA and RMS models Page B401

Fig. 3.34 Support unit for VFA model Page B402 (simple support side)

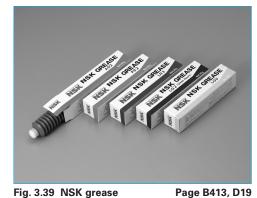


Fig. 3.39 NSK grease

Fig. 3.40 Travel stoppers (by order)

Fig. 3.35 Support units Page B407 (for machine tools, high speed, heavy load)

Fig. 3.36 Lock nuts for light load

Fig. 3.41 Ball screw support bearings Page B419 **NSKTAC C Series, NSKTAC 03 Series**

Fig. 3.42 Ball screw support bearings Page B425 **BSBD Series**

B15

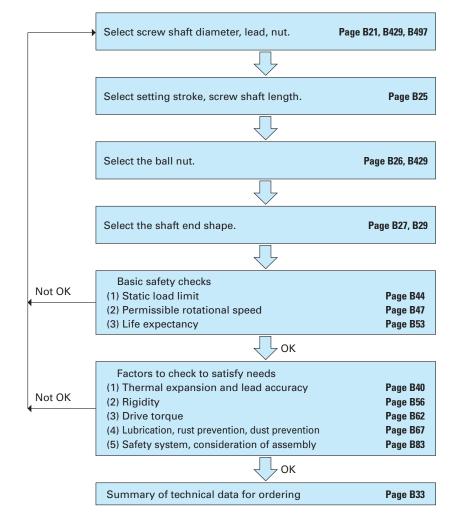
B-1-4 Procedures to Select Ball Screw

B-1-4.1 Flow Chart for Selection

Selecting a ball screw requires a review of use conditions and requirements such as applied load, stroke, positioning accuracy, required life, and the operating environment.

These factors are often at odds, so we recommend a multifaceted approach to selection.

(1) Standard ball screw


The chart below is one selection procedure. To take advantage of prompt delivery and reasonable prices, this procedure focuses on standardized ball screws. NSK offers a ball screw selection program and a service to select appropriate items using data compiled by our knowledge and experience.

(2) Made-to-order ball screws

Dimensions and specifications can be decided individually for application-oriented ball screws and standard nut ball screws. Procedures are as follows. Refer to the selection exercises on page B87.

Table 4.4 shows combinations of screw shaft diameter and leads for basic ball screws. Please consult NSK if you require types not listed in the table.

B17 B18

Ball Scre

B-1-4.2 Accuracy Grades

Table 4.1 shows examples of how to select accuracy grade for a specific use. These practical cases are based on NSK's experience. The circles indicate the range of the accuracy grade in actual use. The double circles indicate accuracy grades most frequently used among the cases marked with the single circle. These

symbols help to select the accuracy grade of ball screws temporarily. To confirm whether a specific ball screw accuracy grade satisfies requirements in positioning accuracy in actual use, refer to "Technical Description" and "Mean travel deviation and travel variation." (page B38)

Table 4.1 Applications for ball screws by accuracy grade

										NC	mach	nine to	ools								
	Application	-	Lames	Milling machines	Boring machines		Macming centers		Drilling machines		olg boring machines		Simple	Electric discharge	machines	Wire cuttings	Electric discharge machines	Punch presss	-	Laser cutung macrimes	Woodworking machines
A	xis	Χ	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	XY	Z	
	C0	0								0	0	0									
Φ	C1	0		0		0				0	0	0	0	0		0	0				
grade	C2	0		0	0	0	0					0	0	0	0	0	0				
acy	С3	0	0	0	0	0	0	0					0	0	0	0	0	0	0	0	
Accuracy	C5	0	0	0	0	0	0	0	0						0		0	0	0	0	0
Ğ	Ct7								0												0
	Ct10																				0

		ر ان	Sem	nicondu	ctor/a	ssociat	ed indu	ustry		Indus	trial r	obots				te		nt	Nuclea	power	
	Application	General industrial machines, Machines for specific use	Lithographic machines	nical processing equipment	Wire bonders	Probers	lectric component mounted devices	Printed circuit board drilling machines		Cartesian	Α	Ariculate	SCARA	el mills equipment	ic injection molding machines	Three-dimensional coordinate measuring machines	Office machines	processing equipment	Fuel rod controls	Mechanical snubbers	Aircraft
C0	Genera Machi	Lithog	Chemical equip	\$		Electric mount	Printed o	Assembly	other purposes	Assembly	other purposes		Steel	Plastic	Three-di me	O	Image p	Fue	Mech		
	C0		0			0										0		0			
Φ	C1		0		0	0		0								0		0			
grade	C2				0	0	0	0	0							0					
acy	СЗ	0		0			0	0	0		0		0						0		0
Accuracy	C5	0		0			0	0	0	0	0	0	0		0		0		0		0
Ā	Ct7	0		0					0	0	0	0	0	0	0		0		0	0	
	Ct10	0		0						0				0	0		0			0	

B-1-4.3 Axial Play

Table 4.2 indicates the combinations of NSK ball screw accuracy grades and axial play. Select an axial play which satisfies the required accuracy in backlash, positioning, and repeatability. Ranges of available ball thread effective lengths in relation to accuracy grade and axial play are shown in Table 4.3. Please note that if the effective length exceeds the

range, the axial play may become partially negative (preloaded condition).

For the axial play of Ct10 grade (ball screws for transfer equipment), refer to R model dimension tables.

Table 4.2 Combinations of accuracy grades and axial play

	Axial	Z	T	S	N	L
	play	0 mm	0.005 mm	0.020 mm	0.050 mm	0.3 mm
Accuracy	y grade	(Preload)	or less	or less	or less	or less
	C0	C0Z	C0T	_	_	_
	C1	C1Z	C1T	_	_	_
	C2	C2Z	C2T		_	
	C3	C3Z	СЗТ	C3S	_	_
	C 5	C5Z	C5T	C5S	C5N	_
	Ct7	_	_	C7S	C7N	_

Codes above are used in NSK reference numbers (designations).

Table 4.3 Maximum effective thread length in combination of accuracy grade and axial play

					Offic. Iffiff
Screw shaft	I	Effective length	of the screw th	read (maximum))
diameter	Axial play T (0.00	05 mm or under)	Axial pla	y <i>S</i> (0.020 mm (or under)
diametei	C0 – C3	C 5	C3	C 5	Ct7
4 – 6	100	80	100	80	_
8 - 10	250	200	300	250	_
12 – 16	500	400	700	600	500
20 – 25	800	700	1 000	1 000	1 000
28 - 40	1 000	800	2 000	1 500	1 500
45 – 63	1 200	1 000	2 500	2 000	2 000
80 – 125	_	_	4 000	3 000	3 000

Note: Refer to **Table 4.8** (page B25) for the available length of screw shaft (maximum length). Also, axial play of code N does not become partially negative if it is within the available range of effective ball thread length.

B19 B20

B-1-4.4 Screw Shaft Diameter, Lead, and Stroke

Choose a screw shaft diameter and stroke based on the allowable space for ball screw installation. A lead should be set based on the required running speed, and should give some allowance to the maximum rotational speed of the motor.

(1) Standard ball screw

Screws" (page B105).

Tables 4.4 and 4.5 show the combinations of ball screw shaft diameter, leads, and range of stroke. From these tables, select the closest values to the shaft diameter, lead, and stroke which had been selected previously. Confirm detailed specifications and sizes in "Dimension Tables for Standard Ball

Table 4.4 Screw shaft diameter, lead and stroke of standard ball screws

								Stroke						
Shaft dia.	Lead	- 50	- 100	- 150	- 200	- 250	- 300	- 350	- 400	- 450	- 500	- 550	- 600	- 650
4	1	Õ	$\bigcirc \triangle$	100	200	200	000	000	100	100	000	000	000	000
	1	8	6	()A	()A									
6	8		×											
٠ ١	12													
					\bigcirc									
-	1		<u>О</u> Д	8	<u>О</u> Д									
	1.5		QZ		\bigcirc									
8	10		ŎΔ	Ö										
	10													
	15													
	2 2.5 4			$\bigcirc \triangle$		$\bigcirc \triangle$								
	2.5		Ŏ	ŎΔ OΔ	8	<u>О</u> Д								
10	4			$\cap \triangle$		$\cap \triangle$	0	\bigcirc \triangle						
	5 10													
ŀ	10													
	2 2.5 5 10				()A		$\bigcirc \triangle = \Box$							
-	2.5		ŏ	$- \times -$	\bigcirc	8	OA L							
-	2.0		ŏ		0	<u> </u>	94							
12	10				\sim	<u> </u>	0,							
	10			•0	OΔ				<u></u>		○ ✓	_		
	20 30													
	30												_	
14	5				0		0	Δ			0		0	0
14	5 8 5 10 20							0			$\bigcirc \triangle$			
	5													
45	10						0	<u> </u>	0		0		0	
15	20				Ö		Ö	00/	O _A		Ŏ	00/	OA	
	30				<u> </u>									
	2					()A								
ŀ	2 2.5		8	8	8	$\overline{\bigcirc}$		8	$\overline{\Delta}$					
16	2.5		0	$-\times$							Δ			
16	5			$-\times$		9		2		-8	-			\sim
-	16 32				0	0	0	Q	0	0	0	04	0	0
	32							Q				Q		
	4 5 10						Δ				Δ	8		
	5					○ ○△				\bigcirc \bigcirc \triangle				
	10													
20	20 30 40					0		0		0		0		
	30									<u> </u>		Ŏ		-
	40													
-	60													
	4						Δ	0				0		
F	4									<u> </u>		\sim		
	5							OA		<u> </u>				
	6							\bigcirc				Ų.		
25	10						0	Δ				\triangle		Δ
20	20													
	25 30													
	30													
	50													
20	5				()			$\bigcirc \triangle$	()		()	$\bigcirc \triangle$		
28	5 6 5 6 8						Ŏ	OA A			Ŏ	ŎΔ		
	5				0	0	\sim	OAA	0	0	Ŏ	<u>О</u> Д	0	
H	6						8	0	-		8) A		-
32			 				8	-		 	8			
32	10						8	<u>^</u>	()A		8	<u></u>	()Δ	
	10									<u> </u>				-
L	25		L											<u> </u>
	32 10													
36	10						0		0		0	Δ	$\bigcirc \triangle$	
	5						0					Δ		
Ī	5 8					0				2				
	10					~	()			À		Δ	$\bigcirc \triangle$	
40	12		l						-		Ŏ		0	l
- H	16													
-	16 20		l					-		-		_		
45	10													
45	10												Q A	
50	10		ļ							0			\triangle	0
50	12		l											<u> </u>

Table 4.5 Screw shaft diameter, lead and stroke of stainless steel KA models

Unit: mm

Shaft dia.	Lead	- 150	– 200	- 250	- 300	- 350	- 450	- 500	- 650	- 1 050
6	1									
	1									
8	2									
10	2									
10	4									
	2									
12	5									
	10									
4.5	10									
15	20									
16	2									
20	20									

Key:

- •: PSS, USS, FSS models; ○: MA, FA, SA models; △: MS, FS, SS models;
- ▲: HSS model; ✓: VFA model; ■: RMA model; □: RMS model

Unit: mm

-700 -750 -800 -850 -900 -950 -1100 -1200 -1300 -1400 -1500 -1700 -2100 -300	700	- 750	- 800	050	- 900	٥٥٥	Str	oke 1 200	1 200	1 400	1 500	1 700	2 100	2.000
	- 700	- 750	- 800	- 850	- 900	- 950	- 1 100	- 1 200	- 1 300	- 1 400	- 1 500	- 1 /00	-2100	- 3 000
		~												
					_		8							
				$-\times$										
				$-\times$	_				0.0					
				0					04					
		Õ				ÓΔ		l ö			$\cap \triangle$			
		<u> </u>		-				-						
				_								-0		
												000		
		● ()△						()△						
		$\bigcap \Delta$						ÔΔ						
						_					_			
	$\overline{}$		_		_~					-				
		_		_			-		- XX		$-\times$	 	222	
											0			
		()\(\Delta \)						()A						
	Ŏ				Ŏ									
	\sim	00			\sim			00			\cap			
	\rightarrow	7	-			-			<u> </u>		$-\times\overline{-}$		-	
	\mathcal{Q}	0			\mathcal{L}	<u> </u>				-2	<u> </u>		1	
	()		l						L					
	0				\bigcirc				\bigcirc					
												()		()A
							\vdash $\check{\land}$						\sim	MA
							\times						×	
					\times	_								
	0	-			0		1-22				$-\times$			
		l										1 4		
	\circ				\bigcirc				$\bigcirc \triangle$		\bigcirc			\bigcirc \triangle \triangle
			()A		()A									() 🔼
					_						_			
					X				<u> </u>			<u> </u>	0	X
	\cup	l			U		\cup				l		\cup	
		1	l	_					1	_	1			_

Note: See Table for stainless steel KA models.

(2) Made-to-order ball screws

Table 4.7 shows combinations of screw shaft diameter and leads for made-to-order ball screws. For details, refer to the dimension tables from pages B429 and B497.

2 2.5

3

0.5

1 1.5

Table 4.6 Screw shaft diameter, lead and standard screw shaft length of R model Unit: mm

Screw shaft					Stand	dard screv	v shaft len	gth			
diameter	Lead	400	500	800	1 000	1 500	2 000	2 500	3 000	4 000	5 000
10	3										
10	6										
40	8										
12	12										
14	4										
14	5										
15	20										
	10										
16	16										
	32										
18	8										
	5						•				
20	10						•				
20	20						•				
	40										
	5						•				
25	10										
25	25										
	50										
28	6										
	10										
32	32										
	64										
36	10										
	10										
40	40										
	80										
45	12										
	10									•	
50	16										
	50										

4 D D D D S 8 D D D D S S S 10 D D D S 12 D D D D T S,T S,T S,C S 14 D D Τ Т 15 S S,T S,C S С 16 D D Т T,C С С S,T T,D D,B B T S,T D T S,T S S,C 20 S,C S,T T,D D,B B T,B S,T D,B T S,T S,T D S s,c С 25 Т 28 Т T,D T,D D,B S,T S,V S,T T,N S,T D 32 D S,C V,F S,T F S,F 36 S,T S,HS,H T,D T,D T,D S,T S,T F S,T H S,H S,T H,N S,H T,H N D C,V S 40 Ň S,T S,T 45 |S,H|S,H|S,H| H Н FF T,N C,V T,D T,D T,D S,T S,T D,F D,F S,T S,T S,T S,H T,H N S 50

Table 4.7 Combinations of screw shaft diameter and leads for typical ball screws Unit: mm

15 | 16 | 20 | 25 | 30 | 32 | 36 | 40 | 50 | 60 | 64 | 80 | 100

8

12 14

10

T: Tube recirculation

55

63

80

100 120

125 140

160

200

S: End deflector recirculation D: Deflector(bridge) recirculation H: HMC model, HMD model

F: HTF-SRC, HTF-SRD, HTF model

T,F F

T,D T,D F

D T,D

D D T,D D,F

FF N: ND model B: BSL model V: VSS model

FF

T,F Т

F

F H H H H

T,D F F

T,F T,D

FF Т

FF

F F

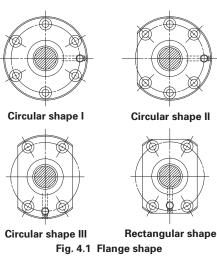
C: End cap recirculation

B-1-4.5 Manufacturing Capability for Screw Shafts

Table 4.8 shows the manufacturing capability for the screw shaft overall length for each accuracy grade. The capability of large ball screws whose shaft diameter exceeds 100 mm is limited due to weight (indicated by * asterisks in the table). Please consult NSK in such cases.

Also consult NSK if the screw shaft size you desire exceeds the size listed in Table 4.8.

	Та	ble 4.8 Mai	nufacturing c	apability for	r screw shat	fts	Unit: mm
Accuracy Screw grade shaft diameter	C0	C1	C2	C3	C5	Ct7	Ct10
4	90	110	120	140	140	140	_
6	150	180	200	250	250	250	_
8	240	280	340	340	340	340	_
10	350	400	500	500	500	550	800
12	450	500	650	700	750	800	800
14	600	650	750	800	1 000	1 000	1 000
15	600	700	800	900	1 250	1 250	1 500
16	600	750	900	1 000	1 500	1 500	1 500
18	_	_	_	_	_	_	1 500
20	850	1 000	1 200	1 400	1 900	1 900	2 000
25	1 100	1 400	1 600	1 900	2 500	2 500	2 500
28	1 100	1 400	1 600	1 900	2 500	2 500	2 500
32	1 500	1 750	2 250	2 500	3 200	3 200	3 000 (4 000)
36	1 500	1 750	2 250	2 500	3 200	3 500	3 000
40	2 000	2 400	3 000	3 400	3 800	4 300	4 000 (5 000)
45	2 000	2 400	3 000	3 400	4 000	4 500	4 000
50	2 000	3 200	4 000	4 500	5 000	5 750	4 000
55	2 000	4 000	5 000	5 800	6 000	6 000	_
63	2 000	4 000	5 000	6 000	6 800	7 700	_
80	_	4 000	6 300	8 200	9 200	10 000	_
100		4 000	6 300	10 000	12 500	13 500	_
*120	_	_	_	_	_	13 500	_
*125	_	_	_	10 000	13 500	13 500	_
*140	_	_	_	_	_	10 000	
*160	_	_	_	_	_	8 000	_
*200	_	_	_	_	_	5 000	_


Notes: 1. Values in parentheses of Ct10 are applicable to the ultra high helix lead (I/d≥2). Refer to dimension tables on B385 and following pages for details.

2. Please note that small leads (3 mm or under) are also limited by screw length.

B-1-4.6 Outside Shapes of Ball Nuts

(1) Flange shape

Fig. 4.1 shows the available flange shapes. Select the appropriate shape according to the nut installation conditions. (Fig. 4.2)

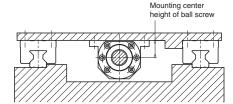


Fig. 4.2 Installation example

(2) Shapes of nut cross section

Cross-sections of nuts are shown in Fig. 4.3. For detailed dimensions, refer to dimension tables.

① Circular (round)

The ball recirculation components are contained inside the circumference of the nut. It can be inserted in a round hole.

2 Tube-projecting type

This shape is unique to the tube recirculation type. The nut outside diameter is small. However some recess must be given for the housing because the ball recirculation tube protrudes from the circumference of the nut.

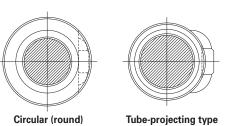


Fig. 4.3 Shape of the cross section of nut

B-1-4.7 Shaft End Configuration

(1) Standard shaft end dimensions

Tables 4.9 and **4.10** show shaft end types for NSK standard support units. Refer to the dimension tables below when designing

Refer to the dimension tables below when designing shaft ends of standard ball screws.

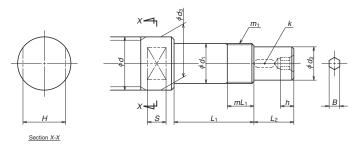


Fig. 4.4 Configuration of standard shaft end (drive side)

Table 4.9 Dimensions of shaft ends (drive side)

Unit: mm

WBK40DF-31H

WBK40DFD-31H

Screw	Bearing	journal	Threa		l	e secti	ion	Seal section	Hexag	on hole	Wrenc	h flats	Support
shaft diameter	Outside diameter	Length	Nominal spec.	Length	Outside diameter	Length	Key width	Outside diameter	Width across flats	Depth	Width across flats	Length	unit
d	d_1	L ₁	m ₁	mL ₁	d ₂	L ₂	k	d ₃	В	h	Н	S	Reference No.
4	6	22.5	M6×0.75	7	4.5	7.5	_	9.5	_	_	8	4.5	WBK06-01A WBK06-11
6	6	22.5	M6×0.75	7	4.5	7.5	_	9.5	_	_	8	4.5	WBK06-01A WBK06-11
8	8	27	M8×1	9	6	10	_	11.5	_	_	10	5.5	WBK08-01A WBK08-11
10	8	27	M8×1	9	6	10	<u> </u>	11.5	_	_	10	5.5	WBK08-01A WBK08-11
12	10	30	M10×1	10	8	15	_	14	_	_	12	6.5	WBK10-01A WBK10-11
14	12	30	M12×1	10	10	15	3	15	4	6	12	6.5	WBK12-01A WBK12-11
15	12	30	M12×1	10	10	15	3	15	4	6	12	6.5	WBK12-01A WBK12-11
16	12	30	M12×1	10	10	15	3	15	4	6	12	6.5	WBK12-01A WBK12-11
20	15	40	M15×1	15	12	20	4	19.5	5	7	17	8.5	WBK15-01A WBK15-11
20	17	81	M17×1	23	12	29	4	20	5	7	17	10	WBK17DF-31H
25	20	53	M20×1	16	15	27	5	25	6	8	22	10	WBK20-01 WBK20-11
	20	81	M20×1	23	15	39	5	25	6	8	22	10	WBK20DF-31H
28	20	53	M20×1	16	15	27	5	25	6	8	22	10	WBK20-01 WBK20-11
20	20	81	M20×1	23	15	39	5	28	6	8	24	12	WBK20DF-31H
	25	62	M25×1.5	20	20	33	6	32	8	10	27	12	WBK25-01W WBK25-11
32	25	89	M25×1.5	26	20	51	6	32	8	10	27	12	WBK25DF-31H
	25	104	M25×1.5	26	20	51	6	32	8	10	27	12	WBK25DFD-31H
36	30	89	M30×1.5	26	25	61	8	36	10	12	30	13	WBK30DF-31H
30	30	104	M30×1.5	26	25	61	8	36	10	12	30	13	WBK30DFD-31H
40	30	89	M30×1.5	26	25	61	8	40	10	12	_	_	WBK30DF-31H
40	30	104	M30×1.5	26	25	61	8	40	10	12	_	_	WBK30DFD-31H
45	35	92	M35×1.5	30	30	63	8	45	12	14	_		WBK35DF-31H
45	35	107	M35×1.5	30	30	63	8	45	12	14		_	WBK35DFD-31H

10 50

10 50

14

18

Note: Low-profile support units are available for the compact FA model.

40 92 M40×1.5 30 35 78

40 107 M40×1.5 30 35 78

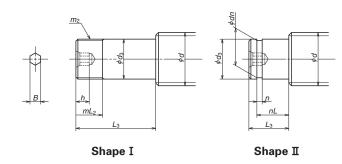


Fig. 4.5 Standard shaft end configuration (opposite the drive side)

Table 4.10 Dimensions of shaft ends (opposite the drive side)

Unit: mm

Screw shaft			g journal	Thread for	lock nut	Retair	ner ring	groove	Hexagor		Support unit
diameter	Shape	Outside diameter	Length	Nominal spec.	Length	Width	Groove diameter	Groove position	Width across flats	Depth	Reference No. Numbers in parentheses are
d		d ₃	L_3	m ₂	mL ₂	n	dn	nL	В	h	bearing designations
8	П	6	9	_	_	0.8	5.7	6.8	_	_	WBK08S-01
10	П	6	9	_	_	0.8	5.7	6.8	_	_	WBK08S-01
12	П	8	10	_	_	0.9	7.6	7.9	_	_	WBK10S-01
14	I	10	22(12)	_	_	1.15	9.6	9.15	4	6	WBK12S-01
15	П	10	22(12)	_	_	1.15	9.6	9.15	4	6	WBK12S-01
16	П	10	22(12)	_	_	1.15	9.6	9.15	4	6	WBK12S-01
20	П	15	25(13)	_	_	1.15	14.3	10.15	5	7	WBK15S-01
	I	20	19	_	_	1.35	19	15.35	6	8	WBK20S-01
25	I	20	53	M20×1	16	_			6	8	WBK20-01 WBK20-11
	I	20	81	M20×1	23	_	_	_	6	8	WBK20DF-31H
	П	20	19	_	_	1.35	19	15.35	6	8	WBK20S-01
28	I	20	53	M20×1	16		_	_	6	8	WBK20-01 WBK20-11
	I	20	81	M20×1	23	_	_	_	6	8	WBK20DF-31H
	I	25	20	_	_	1.35	23.9	16.35	8	10	WBK25S-01W
32	I	25	62	M25×1.5	20	_	_	_	8	10	WBK25-01W WBK25-11
	I	25	89	M25×1.5	26		_	_	8	10	WBK25DF-31H
36	Π	25	20	_	_	1.35	23.9	16.35	10	12	(6205)
30	I	25	89	M25×1.5	26	_	_	_	10	12	WBK25DF-31H
40	I	30	22	_	_	1.75	28.6	17.75	10	12	(6206)
40	I	30	89	M30×1.5	26	_	_	_	10	12	WBK30DF-31H
45	Π	35	25	_		1.75	33	18.75	12	14	(6207)
40	I	35	92	M35×1.5	30		_		12	14	WBK35DF-31H
50	I	40	25	_	_	1.95	38	19.95	14	18	(6208)
50	I	40	92	M40×1.5	30	_	_	_	14	18	WBK40DF-31H

(2) Shaft end configuration of R model ball screws for transfer equipment

Tables 4.11 and 4.12 show shaft end types for the R model.

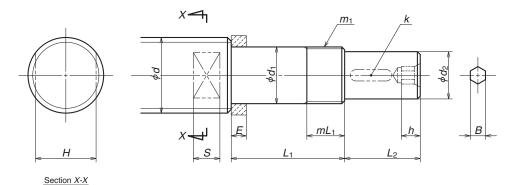


Fig. 4.6 R Model shaft end (drive side)

Table 4.11 Dimensions of R model shaft ends (drive side)

Unit: mm

Screw	Bearing	journal	Thread for lo	ock nut	Spacer	Dri	ve sect	ion	Hexagor	nal hole	Wrenc	h flat	Support
shaft	Outside	Length	Nominal spec	Length	Width	Outside	Length	Key	Width	Depth	Width	Length	unit
diameter	diameter					diameter		wiath	across flats		across flats		
d	d_1	L_1	$m_{\scriptscriptstyle 1}$	mL₁	Ε	d_2	L_2	k	В	h	Н	S	Reference No.
10	6	27	M6×0.75	7	5.0	4.5	7.5	_	_	_	8	4.5	WBK06-01A WBK06-11
12	8	32	M8×1	9	5.5	6	10	_	_	_	10	5.5	WBK08-01A WBK08-11
14	10	35	M10×1	10	5.5	8	15	_	_	_	12	6.5	WBK10-01A WBK10-11
15	10	35	M10×1	10	5.5	8	15	_	_	_	12	6.5	WBK10-01A WBK10-11
16	12	35	M12×1	10	5.6	10	15	3	4	6	12	6.5	WBK12-01A WBK12-11
18	12	35	M12×1	10	5.6	10	15	3	4	6	12	6.5	WBK12-01A WBK12-11
20	15	50	M15×1	15	10	12	20	4	5	7	17	8.5	WBK15-01A WBK15-11
25	17	53	M17×1	17	7	15	27	5	6	8	22	10	WBK17-01A —
25	20	64	M20×1	16	11	15	27	5	6	8	22	10	WBK20-01 WBK20-11
28	20	64	M20×1	16	11	15	27	5	6	8	22	10	WBK20-01 WBK20-11
32	25	76	M25×1.5	20	14	20	33	6	8	10	27	12	WBK25-01W WBK25-11
36	25	76	M25×1.5	20	14	20	33	6	8	10	27	12	WBK25-01W WBK25-11
40	30	89	M30×1.5	26	_	25	61	8	10	12	_	_	WBK30DF-31H
45	35	92	M35×1.5	30	_	30	63	8	12	14	_	_	WBK35DF-31H
50	35	92	M35×1.5	30	_	30	63	8	12	14	_	_	WBK35DF-31H

Note: The dimension d_1 must be smaller than the minor diameter of the ball screw thread to provide sufficient shoulder surface for the spacer.

Refer to "Precautions for Designing Ball Screws (page B83)".

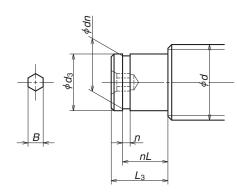


Fig. 4.7 Shaft end configuration of R model (opposite the drive side)

Table 4.12 Dimensions of R model shaft ends (opposite the drive side)

Unit: mm

Bearing	journal	Reta	ining ring g	roove	Hexagon	al hole	Support unit
Outside diameter	Length	Width	Groove diameter	Groove position	Width across flats	Depth	Numbers in parentheses are bearing designations.
$d_{\scriptscriptstyle 3}$	L ₃	n	dn	nL	В	h	bearing designations.
6	9	0.8	5.7	6.8	_	_	WBK08S-01(606)
8	10	0.9	7.6	7.9	_	_	WBK10S-01(608)
10	12	1.15	9.6	9.15	4	6	WBK12S-01(6000)
10	12	1.15	9.6	9.15	4	6	WBK12S-01(6000)
10	12	1.15	9.6	9.15	4	6	WBK12S-01(6000)
10	12	1.15	9.6	9.15	4	6	WBK12S-01(6000)
15	13	1.15	14.3	10.15	5	7	WBK15S-01(6002)
17	16	1.15	16.2	13.15	6	8	WBK17S-01(6203)
20	19	1.35	19	15.35	6	8	WBK20S-01(6204)
20	19	1.35	19	15.35	6	8	WBK20S-01(6204)
25	20	1.35	23.9	16.35	8	10	WBK25S-01W(6205)
25	20	1.35	23.9	16.35	8	10	WBK25S-01W(6205)
30	22	1.75	28.6	17.75	10	12	(6206)
35	23	1.75	33	18.75	12	14	(6207)
35	23	1.75	33	18.75	12	14	(6207)
	Outside diameter d _s 6 8 10 10 10 10 15 17 20 20 25 25 30 35	$\begin{array}{c cccc} \text{diameter} & & & & \\ & d_3 & & L_3 \\ \hline & 6 & 9 & \\ & 8 & 10 & \\ \hline & 10 & 12 & \\ \hline & 15 & 13 & \\ \hline & 17 & 16 & \\ & 20 & 19 & \\ \hline & 20 & 19 & \\ \hline & 25 & 20 & \\ \hline & 30 & 22 & \\ \hline & 35 & 23 & \\ \hline \end{array}$	Outside diameter Length diameter Width diameter d_3 L_3 n 6 9 0.8 8 10 0.9 10 12 1.15 10 12 1.15 10 12 1.15 10 12 1.15 15 13 1.15 17 16 1.15 20 19 1.35 20 19 1.35 25 20 1.35 25 20 1.35 30 22 1.75 35 23 1.75		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

B29 B30

B-1-5 When Placing Orders

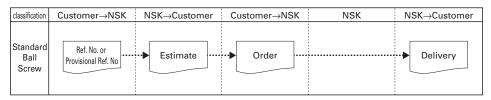
To avoid confusion, please use "reference numbers" or provisional reference numbers when inquiring about desired ball screw specifications.

♦ Reference Number (Ref. No.)

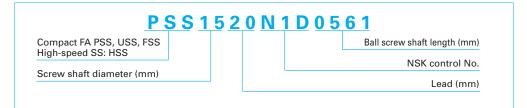
Alphanumeric codes are assigned to each ball screw. When placing orders, please use

this reference number.

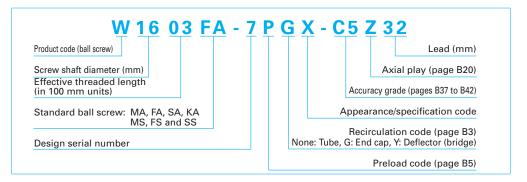
♦ Provisional Ref. No.:

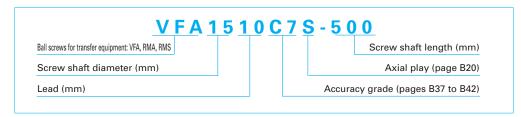

Specification factors are identified by alpha-numeric codes. Codes allow for easy explanation of your requirements. (If you do not use these numbers, please itemize your requirements.)

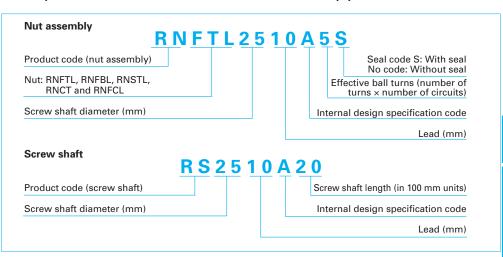
B-1-5.1 When Ordering Standard Ball Screws


Find the reference number from the dimension tables. Enter the reference number in the "Order Form" (page B34). Send this form to your local NSK agency (branch office, sales

office, or your local representative.).

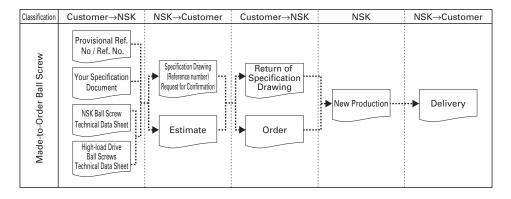

The following shows a flowchart for ordering standard ball screws.


(1) Example reference number standard compact FA model and high-speed SS (HSS) model

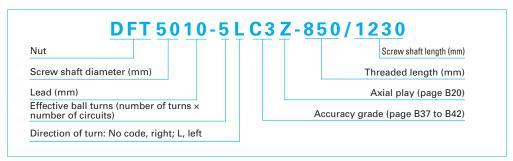

(2) Example reference number for standard ball screws

(3) Example reference number of ball screws for transfer equipment with finished shaft ends or blank shaft ends

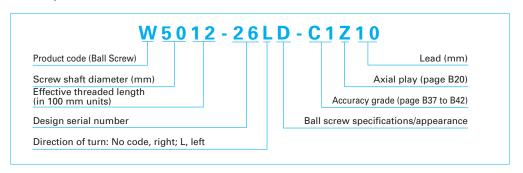
(4) Example reference number of R model ball screws for transfer equipment


B31 B32

B-1-5.2 When Ordering Made-to-Order Ball Screws


If you would like to discuss technical points regarding specifications, use the NSK ball screw technical data sheet as an aid (page B36). For high-load drive ball screws, use the technical

sheet on page B539 for NSK high-load drive


The following shows a flowchart for ordering made-to-order ball screws.

(1) Example of specification number of made-to-order ball screw

(2) Example reference number of made-to-order ball screw

Order Form

(Make copies for future orders)

Drive side

Company name :		Date: Day Month	Year
Address:		Telephone :	
Name of Contact Person :	Section :		

Product name	Provisional Ref. No / Ref. No.	Quantity	Desired deliver date
Precision ball screw			
R model ball screw Nut			
R model ball screw Screw shaft			
Support unit			
Lock nut			
Grease unit			

Describe the shaft end configuration if processing is required (blank shaft end ball screws) and specify which ball screw(s) must be processed.

Refer to pages B27 to B30 for shaft end configurations. These pages also show reference numbers for support units.

Opposite drive side		

i	Œ
ı	ì
ı	8
ı	=

SN

NSK Ball Screw Technical Data Sheet (example)

(2) Made-to-order ball screw

Company name	Date: Day Month Year
Address	Telephone
Contact person	Section
Machine Machining center Model MC-	Application Table left/right movement (X axis)
Drawing/raugh akatah attaahad? Voa	

Use conditions

	Axial load	Rotational speed	Operating hours				
Maximum load	9 000 N	2 0 min ⁻¹	15 %	-	Shaft rotation - Moving nut Normal operation		
					Shaft rotation - Moving shaft Back drive operation		
Load in normal use	4 000 N	3 6 0 min ⁻¹	60 %	Operating conditions	Nut rotation - Moving nut		
					Nut rotation - Moving shaft Oscillation		
Minimum load	2 000 N	1 000 min ⁻¹	25 %	-			
				Degree of vibration shock	Normal		
Maximum rotational speed	1 00	00 min ⁻¹	<u> </u>	Required life	20 000h		
Lubricant	Grease/oil (Bran	d name: NSK GR er:	S AS2	Motor in use	Company A, Model 1		
Seal	Ye	es	No	Control system	Company B, Model 2 (resolution: 1 µm)		
Support bearing	Drive side 35TA	A C 6 2 D F		Opposite drive side 35TAC62DF			
Guide way	Rolling Sliding (RA451500GM2-P4Z3-II)						
Environment	Temperature (Normal tem	perature in degrees Celsius)	Dust Hun	nidity Gas L	iquid (where?) Cleanroom In vacuum		
Schedule for prototype	Day	Month	Year (approx.)	Quantity used	Piece		
Production start/ quantity	/Month	/Year	/Lot	per machine			

Specifications

Screw shaft diameter	50 mm	Direction of turn	right	Accuracy grade	C2	Screw shaft length	880 mm	Preload	3000 N
Lead	10 mm	Effective ball turns		Axial play	0 mm	Overall shaft length	1 335 mm	Required torque	
Nut model	Nut model ZFT5010-10 Flange type		Circular I	Nut orientation	Same as show	n in the dimens	sion table	Opposite	

Supplemental explanation/requests		

NSK Ball Screw Technical Data Sheet

(2) Made-to-order ball screw

Company name	Date: Day Month Year
Address	Telephone
Contact person	Section
Machine	Application
Durania a / reach a lastah attach a d3 Van Na	

Use conditions

	Axial load	Rotational speed	Operating hours			
Maximum load	N	min ⁻¹	%		Shaft rotation - Moving nut	Normal operation
					Shaft rotation - Moving shaft	Back drive operation
Load in normal use	N	min ⁻¹	%	Operating conditions	Nut rotation - Moving nut	
					Nut rotation - Moving shaft	Oscillation
Minimum load	N	min ⁻¹	%			
				Degree of vibration shock		
Maximum rotational speed		min ⁻¹		Required life		
Lubricant	Grease/oil (Brand	d name: er:)	Motor in use		
Seal	Ye	s	No	Control system	(resolution:)
Support bearing	Drive side			Opposite drive sid	le	
Guide way	Rolling Slidin	g ()			
Environment	Temperature (Normal tem	perature in degrees Celsius)	Dust Hum	idity Gas L	iquid (where?) Cleanroo	om In vacuum
Schedule for prototype	Day	Month	Year (approx.)	Quantity used	Piece	9
Production start/ quantity	/Month	/Year	/Lot	per machine		

Specifications

5	Screw shaft diameter		Direction of turn		Accuracy grade		Screw shaft length		Preload	
ı	Lead		Effective ball turns		Axial play		Overall shaft length		Required torque	
	Nut model		Flange type		Nut orientation	Same as shown in the dimension table		Opposite		

Supplemental explanation/requests			

B35 B36

B-2 Technical Description of Ball Screws

B-2-1 Accuracy

B-2-1.1 Lead Accuracy

The lead accuracy of NSK precision ball screws (C0 to C5 grades) conforms to the four characteristics specified in JIS Standards. These characteristics are expressed by ep, v_{uv} , v_{300v} , and v_{2v} .

Fig.1.1 explains the definition of each characteristic and shows allowable values of each. Leads are classified into two categories: the C system for positioning and

the Ct system for transportation. **Tables 1.2, 1.3** and **1.4** show tolerance of each characteristic.

JIS B1192 sets C type and Cp type standards for positioning ball screws. NSK uses the specification of C type only. JIS B1192 specifies Ct1, 3, and 5 grade. NSK standards are integrated by C type only. Refer to **Table 1.2** for C type standard tolerance.

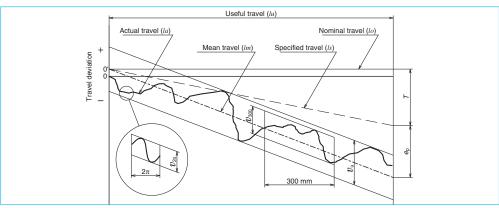


Fig. 1.1 Definition of lead accuracy

Table 1.1 Terminology in lead accuracy

Term	Code	Description	Tolerance
Specified travel	ls	The travel compensating the nominal travel for elongation caused	
Specified travel		by an increase of temperature or load.	
Travel compensation	Т	Value obtained by subtracting the specified travel from the nominal travel based on the useful travel. The value is to compensate for errors caused by thermal deformation or deformation by load. This value is determined by tests and experience (see page B39).	
Actual travel	la	Actually measured travel	
Actual mean travel	lm	A straight line that demonstrates the direction of actual travel. This straight line is obtained from the curve that shows actual travel volume by the least-squares method or by approximation.	
Tolerance on specified travel	ер	Obtained by subtracting the specified travel from the actual mean travel.	Table 1.2
Travel variation	υ _υ υ ₃₀₀ υ _{2π}	Maximum range of the actual travel which is between the two straight lines drawn parallel to the actual mean travel. There are three categories as shown below. • Maximum range relative to the effective length of thread. • Maximum range relative to the length of 300 mm anywhere within the effective length of thread. • Maximum range which corresponds to any single rotation (2π rad.) within the effective length of thread.	Table 1.2 Table 1.3, 1.4

Table 1.2 Tolerance on specified travel (±ep) and travel variation (v a) of positioning (C type) ball screws

Unit: um

	Accuracy grade		С	0	С	1	С	2	С	3	C5		
	over	or less	± <i>ep</i>	v_{u}	±ep	v_{u}	±ep	v_{u}	± <i>ep</i>	\mathbf{v}_{u}	±ep	$\upsilon_{\scriptscriptstyle u}$	•
	_	100	3	3	3.5	5	5	7	8	8	18	18	
	100	200	3.5	3	4.5	5	7	7	10	8	20	18	
	200	315	4	3.5	6	5	8	7	12	8	23	18	
	315	400	5	3.5	7	5	9	7	13	10	25	20	
	400	500	6	4	8	5	10	7	15	10	27	20	
_	500	630	6	4	9	6	11	8	16	12	30	23	
E	630	800	7	5	10	7	13	9	18	13	35	25	
Effective thread length, mm	800	1 000	8	6	11	8	15	10	21	15	40	27	
lenç	1 000	1 250	9	6	13	9	18	11	24	16	46	30	
ad	1 250	1 600	11	7	15	10	21	13	29	18	54	35	
thre	1 600	2 000			18	11	25	15	35	21	65	40	
ive ive	2 000	2 500			22	13	30	18	41	24	77	46	
fect	2 500	3 150			26	15	36	21	50	29	93	54	
Ш	3 150	4 000			30	18	44	25	60	35	115	65	
	4 000	5 000					52	30	72	41	140	77	Ва
	5 000	6 300					65	36	90	50	170	93	
	6 300	8 000							110	60	210	115	Screws
	8 000	10 000									260	140	S
	10 000	12 500									320	170	

Table 1.3 Tolerance of travel variation relative to 300 mm (v_{2n}) and one revolution (v_{2n}) of positioning (C type) ball screws

					Οπι. μπ
Accuracy grade	C0	C1	C2	C3	C5
$\upsilon_{\scriptscriptstyle 300}$	3.5	5	7	8	18
$\upsilon_{\scriptscriptstyle 2\pi}$	2.5	4	5	6	8

Note: = JIS B1192 standards. Values in other areas are NSK standards.

Table 1.4 Travel variation (v_{300}) relative to 300 mm of transport (Ct type) ball screws

		Unit: µm
Accuracy grade	Ct7	Ct10
$v_{\scriptscriptstyle 300}$	52	210

Note: Tolerance on specified travel (ep) of transport (Ct type) ball screws is calculated as follows.

$$ep = \pm \frac{lu}{300} \times v_{300}$$

lu: Effective length of the screw thread

B37 B38

Example selection of lead accuracy

<Use Conditions>

Model No.: DFT4010-5 Stroke: 1 000 mm

Positioning accuracy: ±0.035 mm/1 000 mm

<Calculation>

Obtain required lead accuracy of a ball screw under these conditions.

(1) Calculate the length of the thread

Stroke + nut length + margin =1 000 + 193 + 100
=1 293 (mm)
$$\cdots$$
 \rightarrow 1 300 mm

(2) Calculate lead accuracy

From **Table 1.2**, obtain the tolerance on specified travel relative to the length of thread (1 300 mm).

C5 ··· ±0.054/1 250 - 1 600 C3 ··· ±0.029/1 250 - 1 600

(3) Determine lead accuracy

Positioning accuracy is: ±ep <±0.035/1 000 mm

Accuracy grade: C3 grade $\pm ep$ = 0.029/length of thread (1 300 mm) $\upsilon_{\rm u}$ = 0.018

B-2-1.2 Thermal Expansion and Target Value of Specified Travel

(1) Thermal expansion

Thermal expansion of screw shaft induces the degradation of positioning accuracy of ball screws. Thermal expansion of a screw shaft is calculated as follows.

 $\Delta L_{\theta} = \rho \cdot \theta \cdot L \text{ (mm) } \cdots 1$

In this formula:

 $\Delta L_{\rm B}$: Thermal expansion (mm)

 ρ : Thermal expansion coefficient (12.0×10⁻⁶ °C⁻¹)

 θ : Average temperature rise of screw shaft (Celsius)

L: Length of screw shaft (mm)

The above formula indicates that when the temperature rises one degree Celsius, the screw shaft stretches 12 µm per meter. Ball screws generate more heat when used at high speed. This causes elongation of the screw shaft. Although the ball screw lead is ground high precision, an elongated screw shaft due to high temperature rise may not satisfy required highly accurate positioning.

(2) Countermeasures against temperature rise

Hollow shaft or nut-cooled ball screws are recommended for operation under high-speed and high-precision conditions. Take these countermeasures against temperture rise:

- (a) Suppress heat generation.
- Do not apply excessive preload to the ball screw and support bearing.
- Select appropriate lubricant and use it properly.
- Use higher helix ball screw lead to lower rotational speed.
- (b) Use forced cooling.
- Feed liquid coolant into the hollow shaft or nut-cooled ball screws. Refer to information on hollow shaft ball screws for high accuracy machine tools in the section for application-oriented ball screws (pages B554 to B562).
- Cool screw shaft surface with lubricant oil or air.
- (c) Avoid effects of temperature rise on positioning.
- · Warm up the machine at high speed until

the temperature rise of ball screw shaft saturates, then maintain it properly.

- Set pre-tension. (Fig. 1.2)
- Set the negative (minus) target value of specified travel.
- Employ a closed loop control system.

(3) How to determine specified travel

In general, the specified travel of a ball screw is the same as the nominal travel. However, the specified lead of ball screw is sometimes set to negative (minus) or positive (plus) to adjust expansion by temperature rise during operation, or the elongation/contraction of the screw shaft by external load. For such occasions, specify travel compensation (*T*) when ordering the ball screw.

As an example, **Table 1.5** shows the travel compensation (*T*) for typical NC machine tools.

Table 1.5 Travel compensation (T) of specified travel for typical NC machine tools

		Unit: mm	
Type of machine	Axis	Travel compensation	Grews
		(per 1 m)	2
NC lathes	X	- 0.02 — - 0.05	
	Z	- 0.02 — - 0.03	
Machining	X, Y	- 0.03 — - 0.04	
centers	Z	Differs by structure	

(4) How to determine pre-tension force

In order to absorb thermal expansion, pretension can be provided to the screw shaft at the time of installation. In this case, the pretension is usually equivalent to the expansion brought about by a temperature rise of 2 to 3°C. Fig. 1.2 shows the bearing support structure in such occasions.

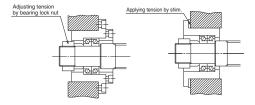


Fig. 1.2 Bearing structure to provide pre-tension

B-2-1.3 Mounting Accuracy and Tolerance of Ball Screws

The accuracy to mount the ball screws is specified by the following seven characteristics (Fig. 1.3).

Tolerances are indicated in the specification drawing.

Detailed tolerances are specified by JIS B1192. For reference, **Table 1.6** shows standard values of "(7) Total run-out of the screw shaft axis (straightness of the screw shaft)". NSK sets stricter tolerance standards than JIS standards. For accuracy of ball screw installation, refer to "Installation of Ball Screw (1) Centering of the units" (page B73).

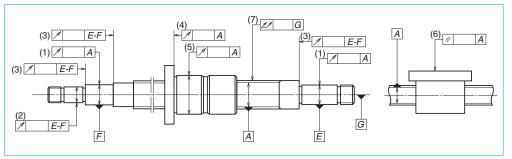


Fig. 1.3 Mounting accuracy of ball screw

- (1) Radial run-out of the support bearing seat relative to the axis of the ball thread of screw shaft.
- (2) Radial run-out of the other shaft ends section relative to the axis of the support bearing
- (3) Radial run-out of the shoulder of support bearing seat relative to the axis of support bearing seat.
- (4) Radial run-out of the nut flange surface, or of the nut end datum surface, relative to the axis of screw shaft.
- (5) Radial run-out of the nut outside surface (cylindrical shape) to the axis of screw shaft.
- (6) Parallelism of the nut mounting surface to the screw shaft axis (in case of flat mounting surface).
- (7) Total run-out of the screw shaft axis.

Table 1.6 Total run-out of the screw shaft axis

Unit: µm

															т. р
	Accuracy g	ırade	C0					C1							
Nomina	l diameter (mm)	over	-	8	12	20	32	50	-	8	12	20	32	50	80
	over	or less	8	12	20	32	50	80	8	12	20	32	50	80	125
	-	125	15	15	15				20	20	15				
	125	200	25	20	20	15			30	25	20				
(mm)	200	315	35	25	20	20			40	30	25	20			
	315	400		35	25	20	15		45	40	30	25	20		
shaft	400	500		45	35	25	20			50	40	30	25		
	500	630		50	40	30	20	15		60	45	35	25	20	
screw	630	800			50	35	25	20			60	40	30	25	
of	800	1 000			65	45	30	25			75	55	40	30	25
gth	1 000	1 250			85	55	40	30			95	65	45	35	30
len	1 250	1 600			110	70	50	40			130	85	60	45	35
Overall length	1 600	2 000				95	65	45				120	80	55	40
Õ	2 000	2 500											100	70	50
	2 500	3 150												130	90
	3 150	4 000													120

Unit: um

Accuracy grade			C3							C5						
Nomina	diameter (mm)	over	-	8	12	20	32	50	80	-	8	12	20	32	50	80
	over	or less	8	12	20	32	50	80	125	8	12	20	32	50	80	125
	-	125	25	25	20					35	35	35				
	125	200	35	35	25	20				50	40	40	35			
	200	315	50	40	30	30				65	55	45	40			
	315	400	60	50	40	35	25			75	65	55	45	35		
(MC	400	500		65	50	40	30				80	60	50	45		
Overall length of screw shaft (mm)	500	630		70	55	45	35	30			90	75	60	50	40	
hafi	630	800			70	55	40	35				90	70	55	45	
× ×	800	1 000			95	65	50	40	30			120	85	65	50	45
scre	1 000	1 250			120	85	60	45	35			150	100	75	60	50
of s	1 250	1 600			160	110	75	55	40			190	130	95	70	55
gth	1 600	2 000				140	95	70	50				170	120	85	65
len	2 000	2 500					120	85	60					150	110	80
erall	2 500	3 150					160	110	75					200	140	95
Õ	3 150	4 000					220	150	100					260	180	120
	4 000	5 000						200	130						240	160
	5 000	6 300													310	210
	6 300	8 000														280
	8 000	10 000														370

B41 B42

B-2-1.4 Automatic Lead Accuracy Measuring System of NSK

In response to the demand for high precision in production technology, NSK was the first to develop and use the "Lead Accuracy Measuring System (LAMS)." Lead accuracy is measured by a system that employs a laser interferometer measuring instrument and a personal computer.

Fig. 1.4 shows the lead accuracy measuring system. Inspection data for the ball screw is shown in Fig. 1.5. The laser interferometer measures either ball nut travel accuracy or lead accuracy of the ball thread. The data input into a computer are processed into four characteristic readings regarding lead accuracy. (See page B37.)

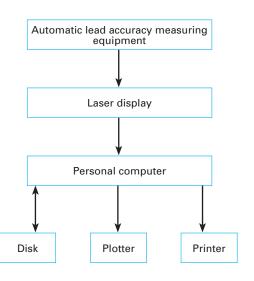


Fig. 1.4 Lead accuracy measuring system

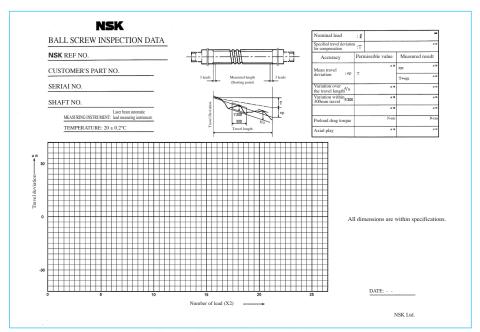


Fig. 1.5 Ball screw inspection data

B-2-2 Static Load Limits

Ball screws, based on their function, will generally receive axial load only. Ball screw shafts in general are long, so it is necessary to consider the 3 items below:

- · Buckling load of the screw shaft
- Yielding of the screw shaft by tensional or compressive stress
- Permanent deformation at the ball contact points

B-2-2.1 Buckling Load

It is necessary to calculate whether the ball screw shaft is safe against buckling.

Buckling load, i.e. permissible compressive load *P* to the axial direction, is calculated as follows.

$$P = \alpha \times \frac{N \cdot \pi^2 \cdot E \cdot I}{L^2} = m \frac{d_r^4}{L^2} \times 10^4 \text{ (N) } \cdots 2)$$

In this formula:

 α : Safety factor (α = 0.5)

E: Elastic modulus ($E = 2.06 \times 10^5 \text{ MPa}$)

I: Moment of inertia

$I = \frac{\pi}{64} d_r^4$	(mm ⁴) ·····3)
----------------------------	----------------------------

- d, : Screw shaft root diameter (mm) (See the dimension table.)
- L : Distance between support positions (mm) (See Figs. 4.1 and 4.2 'Support configuration for screw shaft and nut' on page B51.)
- m, N: Factors determined by the supporting condition of the ball screw shaft

Table 2.1 Factors of bucking load

Support condition	m	N
Fixed-Fixed	19.9	4
Fixed-Simple	10.0	2
Fixed-Free	1.2	0.25
Simple-Simple	5.0	1

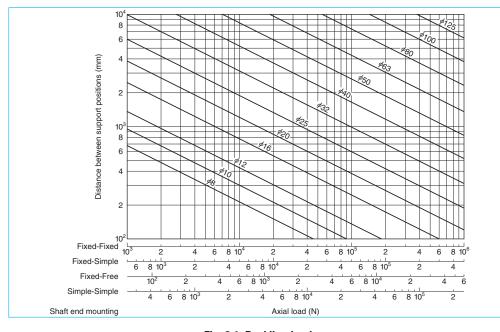


Fig. 2.1 Buckling load

<< Example calculation for buckling load>>

Calculate buckling load under the conditions in Fig. 2.2.

<Use conditions>

Model No.: DFT4010-5

Support configuration is Fixed - Fixed (From (ii) in Fig. 4.1 "Support configuration

of screw shaft and nut' on page B51.)

Distance between support positions L = 2000 mm

Screw shaft root diameter $d_r = 34.4 \text{ mm}$ (From the dimension table)

<Calculation>

Support configuration is Fixed - Fixed from Table 2.1 on page B44

N = 4

m = 19.9

By formula 2) on page B44

$$P = m \frac{d_1^4}{L^2} \cdot 10^4 = 19.9 \times \frac{34.4^4}{2000^2} \times 10^4 = 69 667 \text{ (N)}$$

Therefore,

Permissible buckling load P = 69600 N

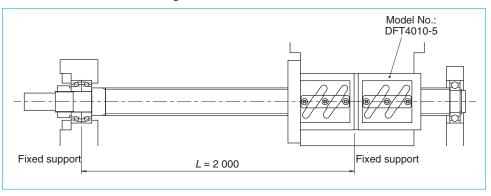


Fig. 2.2 Example calculation for buckling load

B-2-2.2 Yield by Tensional/Compressive Stress

It is necessary to consider permissible load in regards to the yield stress.

Permissible load *P* by tensional or compressive stress to screw shaft is

$$P = \sigma \cdot A = 1.15 d_r^2 \times 10^2 \text{ (N)}$$
 ... 4

In this formula:

σ: Allowable stress (= 147 MPa)

A: Cross section area of a screw shaft using root diameter (mm²)

$$A = \frac{\pi}{4} \cdot d_r^2 \text{ (mm}^2\text{)} \qquad \cdots 5$$

d: Screw shaft root diameter (mm)

<<Example calculation for yield load>>
Obtain load in respect to the allowable stress
under the conditions in Fig. 2.2.

<Use conditions>

Model No.: DFT4010-5

Screw shaft root diameter $d_r = 34.4$ (mm)

(From the dimension table)

<Calculation>

By formula 4)

$$P = 1.15 d_r^2 \times 10^2 = 1.15 \times 34.4^2 \times 10^2$$

= 136 086 (N)

Therefore,

Permissible load $P = 136\,000\,\text{N}$

B-2-2.3 Permanent Deformation at the Ball Contact Point

Exposed to an excessively heavy load in axial direction, the balls are squashed, and the ball rolling surface is dented. The deformations on these points do not perfectly restore to original shape after the load is removed. They are permanently disfigured. It is necessary to determine the limit of this disfigurement to contain it within a certain range.

(1) Basic static load rating C_{0a}

Basic static load rating $C_{\rm oa}$ is a load in the axial direction that results in combined permanent deformation equal to 0.01% of the ball diameter at the contact points of ball and ball grooves of the screw shaft and nut.

(2) Calculation of permissible load by C_{0a}

 P_{\circ} (allowable axial load to limit permanent deformation) is calculated using $C_{\circ \circ}$.

$$P_0 = \frac{C_{0a}}{f} (N) \qquad \cdots 6$$

In this formula, f.: Static permissible load factor

Table 2.2 Static permissible load factor

At time of normal operation	1 – 2
With vibration impact	1.5 – 3

<< Example calculation for maximum allowable load>>

Obtain the maximum allowable load to the ball groove section under conditions in Fig. 2.2.

<Use conditions>

Model No.: DFT4010-5

Basic static load rating $C_{0a} = 137\,000$ (N)

(From the dimension table)

Static permissible load factor $f_s = 2$

(normal operation, no vibration impact)

<Calculation>

By formula 6), the maximum allowable load of the ball groove section

$$P_0 = \frac{C_{0a}}{f_s} = \frac{137\ 000}{2} = 68\ 500\ (N)$$

B-2-3 Permissible Rotational Speed

Permissible rotational speed is determined by the feeding speed and ball screw lead. When selecting a ball screw, it is important to know the permissible rotational speed.

It is necessary to calculate two items below, and take the smaller as the permissible rotational speed.

The lower of the following two factors, $d \cdot n$ and critical speed, will determine the overall permissible rotational speed of the ball screw.

- Critical speed, which is the resonance vibration of the shaft.
- d·n value, which is involved in damaging the ball recirculation components.
- * Please consult NSK if the maximum rotational speed exceeds the criteria of maximum rotational speed on page B50, even if both the critical speed of screw shaft rotation and the *d*·*n* value are in range of the allowable limits.

B-2-3.1 Critical Speed of the Screw Shaft

Calculate the critical speed matching the ball screw rotational speed and the natural frequency of the screw shaft. 80% of the critical speed is defined as the permissible rotational speed.

Calculate the critical speed of the screw shaft whether you use shaft rotation or nut rotation. Critical speed varies by the nut traveling position. Please consult NSK for detailed calculations.

If using a ball screw exceeding the critical speed, it is necessary to increase the natural frequency by using an intermediate support, etc. If using nut rotation, it is possible to operate exceeding critical speed by installing a vibration energy absorbing system (optional, vibration control damper: patented by NSK) to the screw shaft. (Refer to "Rotary nut ball screws" on page B563.)

Calculate the permissible rotational speed based on critical speed n_c as follows, taking in account "B-2-4 Support Configuration for Calculation of Buckling Load and Critical Speed" on page B51.

Fig. 3.1 shows the permissible rotational speeds against critical speed for each shaft diameter.

$$n_{c} = \alpha \times \frac{60\lambda^{2}}{2\pi L^{2}} \sqrt{\frac{E \cdot I \cdot 10^{9}}{\rho \cdot A}}$$

$$= f \frac{d_{r}}{L^{2}} \times 10^{7} \text{ (min}^{-1)}$$
... 7)

In this formula:

 α : Safety factor (α = 0.8)

E: Elastic modulus (E = 2.06×10^5 MPa)

I: Moment of inertia of area of screw shaft

$$I = \frac{\pi}{64} d_r^4 (mm^4) \qquad \cdots 3$$

- d_r: Screw shaft root diameter (mm) (See the dimension table.)
- ρ: Material density (ρ=7.86 g/cm³)
- A: Cross section area of the screw shaft root diameter (mm²)

$$A = \frac{\pi}{4} \times d_r^2 \text{ (mm}^2\text{)} \qquad \cdots 5$$

- L: Distance between support positions (mm) (See Figs. 4.1, and 4.2 "Support configuration of screw shaft and ball nut" on page B51)
- f, λ : Factors determined by support conditions

Table 3.1 Coefficients of critical speed

Support condition	f	λ
Fixed-Fixed	15.1	3.927
Fixed-Simple	21.9	4.730
Fixed-Free	3.4	1.875
Simple-Simple	9.7	π

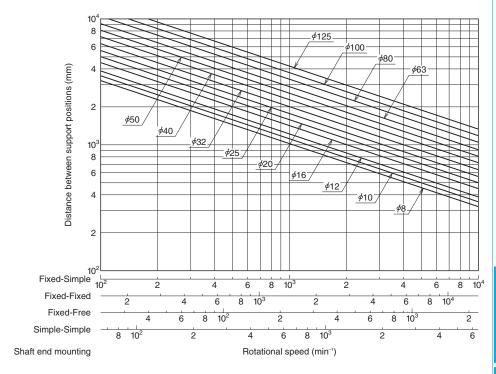


Fig. 3.1 Permissible rotational speeds vs. critical speeds

<<Example calculation of permissible rotational speed to critical speed>> Calculate the permissible rotational speed to the critical speed under conditions in Fig. 3.2.

<Use conditions>

Model No.: DFT4010-5

The support configuration is Fixed-Simple (condition (ii) in Fig 4.1

Support configuration of screw shaft and ball nut on page B51.)

Distance between support positions L = 2000 mm

Screw shaft root diameter $d_r = 34.4 \text{ mm}$ (from the dimension table)

<Calculation>

The support configuration is Fixed-Simple, from Table 3.1 on page B47

$$\lambda = 3.927$$

$$f = 15.1$$

By formula 7) on page B47, permissible rotational speed to critical speed is

$$n_{\rm e} = f \frac{d_{\rm r}}{L^2} \times 10^7 = 15.1 \times \frac{34.4}{2000^2} \times 10^7 = 1$$
 298.6 (min⁻¹)

 $n_c = 1 \, 290 \, \text{min}^{-1} \, \text{or under}$

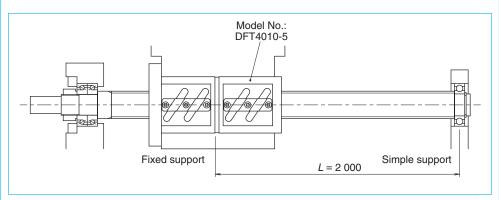


Fig.3.2 Example calculation of permissible rotational speed to critical speed

B-2-3.2 *d-n* Value

An increase of ball revolution speed increases the collision impacts of balls to ball recirculation parts, thus resulting in damage. For this reason, the permissible rotational speed is also limited by the $d \cdot n$ value (d, shaft diameter in millimeters; n, rotational speed per minutes). **Table 3.2** shows the allowable $d \cdot n$ value and the maximum rotational speed of ball screws.

- Notes: 1. Special measures must be taken for high-speed specification products.

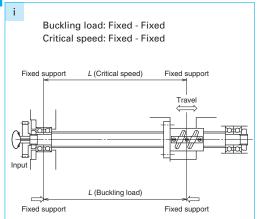
 Please consult NSK.
 - Please consult NSK if the maximum rotational speed or the d·n value exceed the values below, even if both the critical speed of screw shaft and the d·n value are in range of allowable limits.

Table 3.2 Criteria of allowable d·n value and maximum rotational speed

Ball screw recirculation system, model		Allowable <i>d∙n</i>	value	Criterion of permissible
		Standard	High-speed	rotational speed [min ⁻¹]
Standard ball screw	R model ball screws for transfer equipment	50 000 or less	-	3 000
	End-deflector recirculation	180 000 or less	-	5 000
	SRC recirculation	160 000 or less	-	5 000
Standard nut ball	Tube recirculation	70 000 or less	100 000 or less	3 000
screws	Deflector (bridge) recirculation	84 000 or less	100 000 or less	3 000
	High-speed Low-noise Deflector Recirculation	160 000 or less, 150 000 or less*1	-	5 000
	End cap recirculation	80 000 or less	100 000 or less	3 000
	HMD model for high-speed machine tools	160 000 or less	-	4 000
	HMS model for high-speed machine tools	160 000 or less	-	5 000
	HMC model for high-speed machine tools	100 000 or less, 135 000 or less*1	-	3 750
	BSL model for miniature lathes	(180 000 or less)	-	4 000
A 1'	HTF-SRC model for high-load drives	140 000 or less, 160 000 or less ^{*1}	-	3 225
Application-	HTF-SRD model for high-load drives	120 000 or less	_	2 400
oriented ball screws	HTF model for high-load drives	50 000 or less, 70 000 or less*1	100 000 or less	3 125
	VSS model for contaminated environments	150 000 or less	-	3 000
	Rotary nut ball screws	70 000 or less	100 000 or less	3 000
	Σ model for robots	70 000 or less	-	3 000
	R model for transfer equipment	50 000 or less	_	3 000

- *1) Please refer to the relevant page when two allowable d·n values are listed:
 - · High-speed Low-noise Deflector Recirculation: page B487
 - · HMC model for high-speed machine tools: page B509
 - · HTF-SRC model for high-load drives: page B519
 - · HTF model for high-load drives: page B527

B49 B50


B-2-4 Support Configuration for Calculation of Buckling Load and Critical Speed

Figs. 4.1 and 4.2 are typical conditions in supporting ball screws. Use them to calculate buckling load and critical speed.

Please consult NSK to scrutinize calculations due to use conditions, or if boundary conditions are not clear due to a special installation.

[How to read the tables]

Example ii: A buckling load is generated between the nut and the left bearings, indicating that the critical speed appears between the nut and the right bearing. Therefore, set L at the maximum stroke for each side. Calculate by applying support bearing conditions.

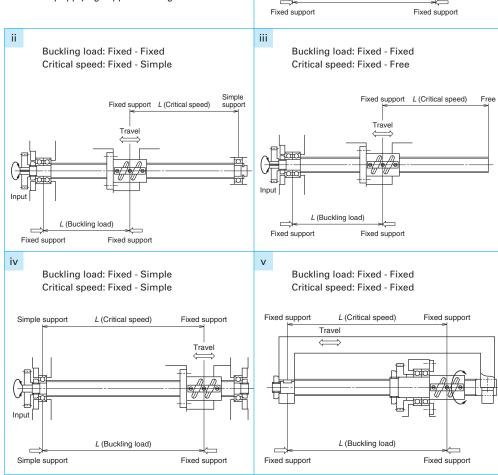
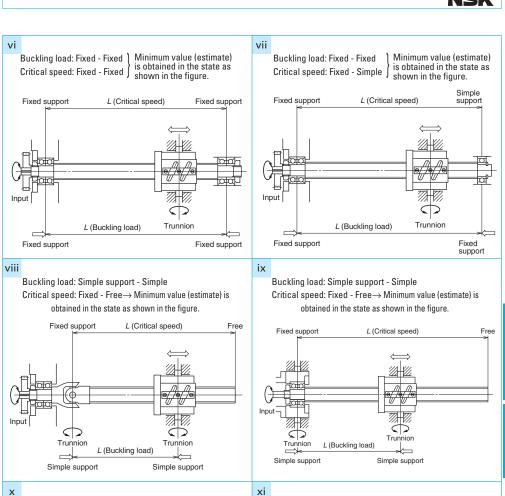
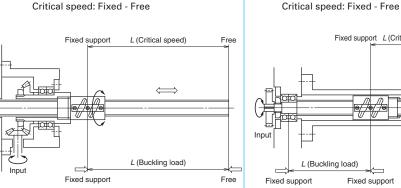
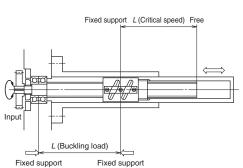





Fig. 4.1 Support configuration for screw shaft and ball nut

Buckling load: Fixed - Free

Buckling load: Fixed - Fixed

Fig. 4.2 Support configuration for screw shaft and ball nut

B-2-5 Life (Dynamic Load Limits)

B-2-5.1 Life of Ball Screws

Although used in appropriate conditions and ideally designed, the ball screw deteriorates after a certain operation period, and eventually becomes unusable. The period in this situation is the life of the ball screw. There are two life categories, "fatigue life" caused by flaking, and "accuracy life" caused by deterioration in precision because of wear.

B-2-5.2 Fatique Life

Fatigue life of a ball screw can be estimated by the basic dynamic load rating (C_a) as for rolling bearings.

(1) Basic dynamic load rating C_a

The basic dynamic load rating is the axial load that allows 90% of the group of the same ball screws to rotate 1 million times (10⁶ rev) under the same conditions without causing flaking by rolling contact fatigue.

(2) Fatigue life calculation

Fatigue life is defined in general as the total number of rotations. It is sometimes indicated by total rolling hours or total running distance. Fatigue life is obtained by the following formula.

$$L = \left(\frac{C_{\rm a}}{F \cdot f}\right)^3 \cdot 10^6 \qquad \cdots 8$$

$$L_{t} = \frac{L}{60n}$$
 ... 9

$$L_{\rm s} = \frac{L \cdot l}{10^6} \qquad \cdots 10$$

In this formula:

L: Rating fatigue life (rev)

L.: Life in hours (h)

 $L_{\rm s}$: Life by running distance (km)

 $C_{\rm a}$: Basic dynamic load rating (N)

F_a: Axial load (N)

n: Rotational speed (min⁻¹)

l: Lead (mm)

 $f_{\rm w}$: Load factor (Coefficient by operating condition)

Load factor f_w for operating conditions is shown in **Table 5.1**.

Table 5.1 Load coefficient fw

Smooth operation without impacts	1.0 – 1.2
Normal operation	1.2 – 1.5
Operation associated with impacts or vibrations	1.5 – 3.0

Setting fatigue life too long requires larger, more costly ball screws. Below are the general target values of operating life for machines.

Table 5.2 General target values of fatigue life

Machine tools	20 000 hours
Industrial machines	10 000 hours
Automatic control system	15 000 hours
Measuring equipment	15 000 hours

(3) Mean load

If the axial load often varies, calculate life by obtaining the mean load, which gives the equivalent fatigue life under varying load conditions.

(a) When the load and the rotational speed shift stepwise Obtain the mean load F_m by the formula below. Obtain mean rotational speed N_m by the formula below as **Table 5.3** and **Fig. 5.1**.

$$F_{m} = \left\{ \frac{F_{1}^{3} \cdot n_{1} \cdot t_{1} + F_{2}^{3} \cdot n_{2} \cdot t_{2} + \cdots + F_{n}^{3} \cdot n_{n} \cdot t_{n}}{n_{1} \cdot t_{1} + n_{2} \cdot t_{2} + \cdots + n_{n} \cdot t_{n}} \right\}^{\frac{1}{3}} \cdots 11$$

$$N_{\rm m} = \frac{n_1 \cdot t_1 + n_2 \cdot t_2 + \dots + n_n \cdot t_n}{t_1 + t_1 + \dots + t} \cdots 12$$

Table 5.3 Stepwise operation conditions

Axial load	Rotational speed	Hours of use, or		
(N)	(min ⁻¹)	ratio of hours of use		
F ₁	<i>n</i> ₁	<i>t</i> ₁		
F_2	n ₂	t_2		
:	:	:		
F_{n}	n _n	t _n		

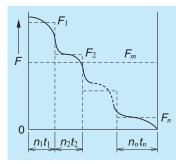


Fig. 5.1 Stepwise load variation

(b) When the rotational speed is constant, and the load changes linearly, obtain the approximate value of the mean load F_m by the formula below.

$$F_{\rm m} = \frac{1}{3} \left(F_{\rm min} + 2 F_{\rm max} \right) \qquad \cdots \quad 13$$

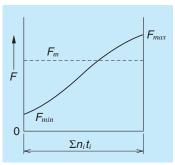


Fig. 5.2 Linear load change

(c) When the rotational speed is constant, and the load changes in a sinusoidal pattern, obtain the approximate value of the mean load F_m by the formula below.

When the sine curve is Fig. (a) $F_{\rm m} \doteq 0.65 \ F_{\rm max} \qquad \cdots \ {\rm 14)}$ When the sine curve is Fig. (b)

 $F_{\rm m} = 0.75 F_{\rm max} \cdots 15$

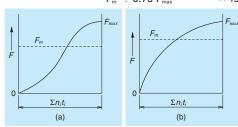


Fig. 5.3 Load changes in sinusoidal pattern

(4) Efffects of mounting misalignment

Moment load or radial load applied to the ball screw adversely affects ball screw function and shortens life. Watch for eccentric load that induces moment or radial load.

Fig. 5.4 shows a calculation example of fatigue life when moment load is applied to the ball screw. In this figure, the value of the rigidity of mounting ball screw sections (screw shaft, support bearing, guide, etc.) is set at infinity. In actual use, deformation absorbs the moment load in various areas, and the moment load between the screw shaft and nut is abated.

In general, the following values are recommended as control values for precision grade.

Misalignment in inclination: 1/2 000 or less (Target value: 1/5 000 or less)

Eccentricity: 0.020mm or less

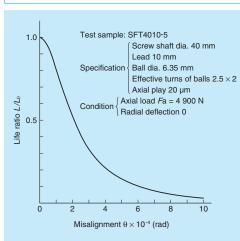


Fig. 5.4 Efffects of misalignment

(5) Effects of heavy load and short stroke

If the ball screw is used under heavy load and short strokes, such as for the drive of plastic injection molding machines and press machines, the fatigue life may become significantly shorter than the rated fatigue life calculated in B-2-5.2.

This decreased life occurs because the heavy load generates large stress (surface pressure) in the contact points of balls and ball grooves of the screw shaft and the nut, adversely affecting

The axial load F_{amax}^{*1} during operation and the size of strokes, which affect fatigue life, can be obtained by the following formula.

In such cases, the life calculation should take into account the surface pressure as well as the size of the stroke. Please consult with NSK.

$$F_{\text{amax}} \ge 0.10 C_{0a}$$
 ... 16)
 $S \le 4$

In this formula:

 F_{amax} : Maximum load in axial direction during drive (N)

 C_{0a} : Basic static load rating (N)

S: Stroke (rev)

$$S = \frac{L_s}{I}$$

L_c: Stroke distance (mm)

l: Lead (mm)

*1) Axial load: The load applied in the axial direction when the screw shaft and the nut of ball screw are rotating relative to each other. The rotational speed is irrelevant.

B-2-5.3 Ball Screw Hardness

Table 5.4 indicates the hardness of NSK standard ball screws.

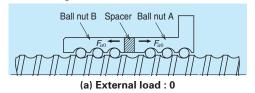
Table 5.4 Ball screw materials and their hardness

Component	Heat treatment method	Hardness (HRC)
Screw shaft	Carburizing	58 or over
Screw shall	Induction hardening	58 or over
Nut	Carburizing	58 or over

Note: NSK manufactures special material ball screws for special environments (stainless steel: SUS440C, SUS630). NSK also furnishes protective surface treatments (refer to page D5). Please consult NSK for such requests.

B-2-5.4 Wear Life

Wear of materials, as is the case for other mechanical components, is significantly affected by use conditions, lubrication conditions, and other factors. It is difficult to estimate its volume, and measuring requires various tests and field data.


NSK has wear data accumulated through abundant experience. Please contact NSK for inquiries pertaining to wear.

B-2-6 Preload and Rigidity

B-2-6.1 Elastic Deformation of Preloaded Ball Screw

(1) Position preload (D, Z, and P preload)

The concept of double nut preload ball screw is shown in Fig. 6.1.

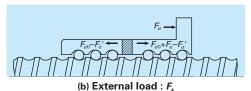


Fig. 6.1 Position preload (double-nut)

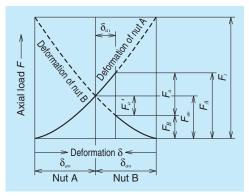


Fig. 6.2 Deformation of nuts A and B (position preload)

Elastic deformation of Nut A and B is already given at the time of assembly by the amount of δa o by preload F_{a0} . When the external load F_a is added to Nut A, the elastic deformation δ_a and δ_b of Nut A and B change as shown in Fig. 6.2,

$$\delta_a = \delta_{a0} + \delta_{a1}$$
 $\delta_b = \delta_{a0} - \delta_{a1}$

At this time, the loads to Nut A and B are:

$$F_{A} = F_{ao} + F_{a} - F_{a}$$

$$F_{\rm B} = F_{\rm co} - F_{\rm c}$$

This shows that the load applied to Nut A is affected by Nut B and reduced by the amount of F_a . Thereby, the elastic deformation of Nut A becomes smaller. This effect continues until the elastic deformation from external load becomes δ_{aa} , and the preload of Nut B disappears.

Assuming that the load when preload is absorbed is F_{i} , the relationship between the axial load and elastic deformation is as follows (refer to Fig. 6.2).

$$\delta_{ao} = K \cdot F_{ao}^{2/3} \qquad 2\delta_{ao} = K \cdot F_{i}^{2/3}$$
(K: Constant)
$$\left[\frac{F_{i}}{F_{ao}} \right]^{2/3} = \frac{2\delta_{ao}}{\delta_{ao}} = 2$$

$$F_{i} = 2^{3/2} \times F_{ao} = 3F_{ao}$$

For this reason, the preload should be about 1/3 the maximum axial load. However, please note that if preload of about 1/3 the maximum axial load exceeds 8% of C_{a} , which is the criterion of the maximum preload, the ball screw may adversely generate more heat and/or have shortened life.

Fig. 6.3 shows two types of elastic deformation curves: one is by a ball screw with preload, the other without preload. When an axial load which is about three times as large as the preload is applied, the deformation of the preloaded ball screw is 1/2 the deformation of the ball screw without preload.

Fig. 6.3 Deformation of preloaded ball nut (position preload)

(2) Constant pressure preload (J preload: preloaded by spring)

Fig. 6.5 shows elastic deformation of a ball screw which is preloaded with "constant pressure." The rigidity of the preload spring is sufficiently smaller than the nut rigidity. Therefore, the deformation of the spring becomes nearly parallel to the abscissa axis. For this reason, elastic deformation by preload with constant pressure changes along the deformation curve by Nut A.

In order to take advantage of the characteristics of preload with constant pressure, the major external load should be applied in the directions shown by arrows in Fig. 6.4.

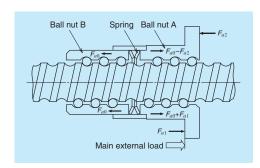


Fig. 6.4 Constant pressure preload (double nut)

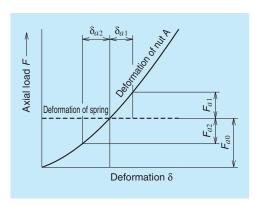


Fig. 6.5 Deformation curve of constant pressure preloaded nut

B-2-6.2 Rigidity of the Feed Screw System

A low rigidity around the feed screw mounting area causes lost motion. To improve the positioning accuracy of precision machines such as NC machine tools requires a good balance in axial rigidities of the parts composing the feed screw system.

One should also examine the torsional rigidities of the feed screw system.

(1) Axial rigidity of the feed screw system $K_{\scriptscriptstyle T}$

Elastic deformation and rigidity of the feed screw system can be obtained by the following formula.

$$\delta = \frac{F_{a}}{K_{T}}$$
 17)
$$\frac{1}{K_{T}} = \frac{1}{K_{S}} + \frac{1}{K_{N}} + \frac{1}{K_{B}} + \frac{1}{K_{H}}$$
 18)

 K_{T} K_{S} K_{N} K_{B} K_{H} In this formula:

 δ : Volume of axial elastic deformation of the feed screw system (µm)

F_a: Axial load on the feed screw system (N)

 K_T : Axial rigidity of the feed system (N/ μ m)

 K_s : Axial rigidity of the screw shaft (N/ μ m)

 K_N : Axial rigidity of the nut (N/ μ m)

 $K_{\rm B}$: Axial rigidity of the support bearing (N/µm)

 K_H : Axial rigidity of the nut and bearing mounting section (N/ μ m)

(2) Axial rigidity of the screw shaft: K_s

(a) In case of: Fixed - Free (axial direction)

$$K_{\rm S} = \frac{A \cdot E}{x} \times 10^{-3} \dots 19$$

In this formula:

 K_s : Axial rigidity of the screw shaft (N/ μ m)

A: Cross section area of the screw shaft (mm²)

$$A = \frac{\pi}{4} dr^2$$

dr : Screw shaft root diameter (mm)

E: Elastic modulus ($E = 2.06 \times 10^5$ MPa)

x: Distance between points of load application (mm)

(b) In case of: Fixed - Fixed support (axial direction)

$$K_{\rm S} = \frac{A \cdot E \cdot L}{x (L - x)} \times 10^{-3} \dots 20$$

In this formula:

 K_s : Axial rigidity of the screw shaft (N/ μ m)

L: Distance between support positions (mm)

x: Axial deformation is maximum at position x = L/2.

Axial rigidity of the screw shaft can be obtained by the following formula.

$$K_{\rm S} = \frac{4A \cdot E}{L} \times 10^{-3} \dots 21$$

<< Example calculation for axial rigidty (1)>>

Obtain axial rigidity of the screw shaft under the conditions in Fig. 6.6.

<Use conditions>

Model No.: DFT 4010-5

From Fig. 6.6: Support configuration

Fixed-Free (axial direction)

Distance between points of load application

$$x = 1200 \text{ mm}$$

Screw shaft root diameter (from the dimension table)

$$d_{.} = 34.4 \text{ mm}$$

<Calculation>

By formula 19), axial rigidity K_s is:

$$A = \frac{\pi}{4} d_r^2 = \frac{3.14}{4} \times 34.4^2 = 929.4 \text{ (mm}^2\text{)}$$

$$K_s = \frac{A \cdot E}{r} \times 10^{-3} = \frac{929.4 \times 2.06 \times 10^5}{1.200} \times 10^{-3} = 159 \text{ (N/}\mu\text{m)}$$

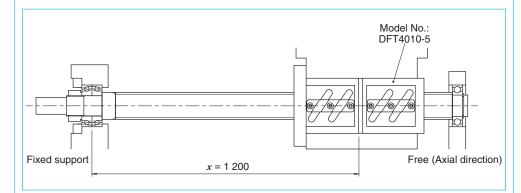


Fig. 6.6 Example calculation for axial rigidity of screw shaft (1)

<< Example calculation for axial rigidty (2)>>

Obtain axial rigidity of the screw shaft under the conditions in Fig. 6.7.

<Use conditions>

Model No.: DFT 4010-5

From Fig. 6.7: Support configuration:

Fixed - Fixed support (axial direction)

L = 1 200 mm

Distance between points of load application:

Screw shaft root diameter (from the dimension table)

$$dr = 34.4 \text{ mm}$$

<Calculation>

By formula 21), axial rigidity K_s is :

$$A = \frac{\pi}{4} dr^2 = \frac{3.14}{4} \times 34.4^2 = 929.4 \text{ (mm}^2\text{)}$$

$$K_s = \frac{4A \cdot E}{I} \times 10^{-3} = \frac{4 \times 929.4 \times 2.06 \times 10^5}{1.200} \times 10^{-3} = 638 \text{ (N/µm)}$$

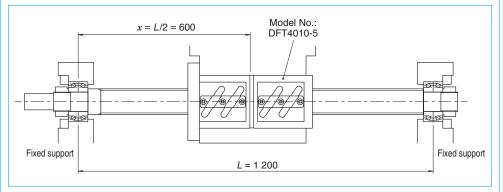


Fig. 6.7 Example calculation for axial rigidity of screw shaft (2)

(3) Axial rigidity of the ball nut : K_N

(a) Rigidity of the nut with axial play

Theoretical rigidity K is shown in the dimension tables. The value of K is obtained from the elastic deformation between screw grooves and balls when an axial load equivalent to 30% of the basic dynamic load rating $C_{\rm a}$ is applied. The criterion for the ball nut rigidity is 80% of the value listed in the table taking into consideration deformation of the ball nut, etc.

The rigidity K_N is obtained by the following formula when the axial load F_a is not 30% of " C_0 ."

$$K_{\rm N} = 0.8 \times K \left(\frac{F_{\rm a}}{0.3 C_{\rm a}} \right)^{1/3} ({\rm N/\mu m})$$
 ... 22

In this formula:

K: Rigidity in dimension tables (N/μm)

F_a: Axial load (N)

 C_a : Basic dynamic load rating (N)

<<Example calculation for axial rigidity (3)>> Obtain axial rigidity of the nut under the following conditions.

<Use conditions>

Model No.: SFT 4010-5 Axial load: $F_a = 6\,000\,N$

 $F_{\rm a}$ = Rigidity at 0.3 $C_{\rm a}$ K = 741 N/ μ m

(from the dimension table)

<Calculation>

 $= 408 (N/\mu m)$

By formula 22), axial rigidity K_N is:

$$K_{N} = 0.8 \times K \left[\frac{F_{a}}{0.3 \cdot C_{a}} \right]^{1/3}$$
$$= 0.8 \times 741 \times \left[\frac{6000}{0.3 \times 61200} \right]^{1/3}$$

(b) Rigidity of preloaded ball nut

Theoretical rigidity K of a preloaded ball nut under an axial load is shown in each dimension table. K is obtained from the elastic deformation of the ball rolling surface and the balls when a preload equivalent to 10% of the basic dynamic load rating C_a (5% in case of the P-preload [single-nut oversize ball preload system]) is applied. The criterion for calculation of nut rigidity is 80% of the value listed in the table taking into consideration deformation of the ball nut, etc.

Rigidity K_N is obtained by the following formula when preload F_{N0} is not 10% (or 5%) of C_N .

$$K_{\rm N} = 0.8 \times K \left(\frac{F_{\rm a0}}{\varepsilon \cdot C_{\rm a}} \right)^{1/3} (N/\mu m) \qquad \cdots 23$$

In this formula:

K: Rigidity in dimension tables (N/µm)

 F_{a0} : Preload (N)

 ϵ : Basic factor to calculate rigidity (ϵ = 0.1. For P-preload, use the percentage of the preload to the basic dynamic load rating e.g. 0.03 for BSS and 0.015 for VSS.)

<< Example calculation for axial rigidity of screw shaft (4)>> Obtain axial rigidity of the nut under the following conditions.

<Use conditions>

Model No.: DFT 4010-5

Preload : $F_{a0} = 4 000 \text{ N}$

Rigidity K when $F_{a0} = \varepsilon C_a$: $K = 1 454 \text{ N/}\mu\text{m}$ (from the dimension table on page B461)

Basic factor to calculate rigidity for

D-Preload ε = 0.1

<Calculation>

By formula 23)

$$K_{N} = 0.8 \times K \left(\frac{F_{a0}}{\epsilon \cdot C_{a}} \right)^{1/3}$$
$$= 0.8 \times 1.454 \times \left(\frac{4.000}{0.1 \times 61.200} \right)^{1/3}$$

 $= 1 009 (N/\mu m)$

Ball screw preload criteria

Nut rigidity increases with larger preload volume. But excessive preload shortens life and generates heat. Set the maximum preload to about 0.08 C_a (0.03 for P-Preload). Table 6.1 shows the criteria for preload for different applications.

Table 6.1 Criteria of preload

Ball screw application	Preload (relative to dynamic load rating $C_{\scriptscriptstyle a}$)
Robots, material handling systems, etc.	Axial play or under 0.01 $C_{\scriptscriptstyle a}$
Semiconductor manufacturing systems, etc. That require highly accurate positioning	0.01 C _a – 0.03 C _a
Medium- high-speed machine tools for cutting	0.03 C _a - 0.05 C _a
Low to medium-speed systems that require especially high rigidity	0.05 C _a - 0.07 C _a

(4) Axial rigidity of support bearing: $K_{\rm R}$

The rigidity (K_B) of a bearing used for ball screw support is shown in the dimension tables. See Page B415 for NSKTAC C Series bearings and Page B425 for BSBD Series.

(5) Axial rigidity of the ball nut and bearing mounting section: K_H

As the rigidity of the mounting section has a profound effect on positioning accuracy, we recommend incorporating high rigidity mounting sections for the ball nut and support bearings into the design the machine.

- (a) Torsional rigidity of the feed screw system Major torsion factors in the rotating system that bring about error in positioning accuracy are:
 - · Torsional deformation of the screw shaft
 - Torsional deformation of the joint section
 - · Torsional deformation of the motor

The value of the effect of torsional strain to positioning accuracy is smaller than axial deformation. However, check the effect when designing equipment that requires high positioning accuracy.

(b) Suppress thermal error

To minimize the thermal error for positioning

- Suppress heat
- · Use forced cooling
- · Avoid temperature rise

Refer to "Measures against thermal expansion" on page B40.

B-2-7 Friction Torque and Drive Torque

Operations that use ball screw drives require a motor torque equivalent to the total of the following:

- Friction torque, i.e. the friction of the ball screw itself
- Drive torque which is required for operation

B-2-7.1 Friction Torque

(1) Starting friction torque (breakaway torque)

High torque is necessary to start a ball screw. This is called "starting friction torque" or

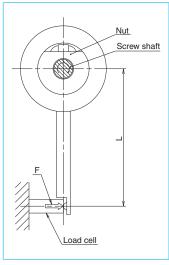


Fig. 7.1 Preload dynamic torque measuring method

"breakaway torque." This torque is 2 to 2.5 times larger than the dynamic (friction) torque due to preload, which is described below. The starting friction torque quickly diminishes once the ball screw begins to move.

(2) Dynamic friction torque (dynamic friction torque due to preload)

When a ball screw is moving, two types of torque are generated: dynamic friction torque due to preload and friction torque associated with ball recirculation. JIS B1192 sets the standard of dynamic friction torque due to preload, which is the total of these two torque types. They are defined in Fig. 7.2.

Dynamic friction torque due to preload is calculated by the following formula. When the screw shaft is rotated as in Fig. 7.1 in the following measuring conditions, measure the nut holding power F and then multiple the distance of action line L perpendicular to the direction of the power F.

$$T_p = F \cdot L$$
 ... 24)

- Measure at a rotational speed of 100 min⁻¹.
- · Viscosity of Iubrication is ISO VG 68 as prescribed in JIS K 2009.
- · Remove Seals.

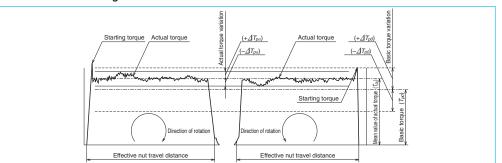


Fig. 7.2 Definitions of dynamic preloaded drag torque

(3) Calculation of basic torque

The basic torque of a preloaded ball screw T_{p0} can be obtained by the following formula.

$$T_{\rm p0} = K \; \frac{F_{\rm a0} \cdot l}{2\pi} \; \doteq 0.014 F_{\rm a0} \sqrt{d_{\rm m} \cdot l} \; \; ({\rm N} \cdot {\rm cm}) \\ \cdots 25 \label{eq:Tp0}$$

In this formula:

 F_{a0} : Preload (N) l: Lead (cm)

K: Torque coefficient of ball screw

$$K = \frac{0.05}{\sqrt{\tan \beta}}$$

β: Lead angle (deg.)

d_m: Ball pitch circle diameter (cm)

Allowable values of torque variation relative to basic torque are specified as shown in **Table 7.1**.

B-2-7.2 Drive Torque

(1) Operating torque of a ball screw

(a) Normal drive

The torque when converting rotational motion to linear motion (normal operation) is obtained by the following formula.

$$T_{\rm a} = \frac{F_{\rm a} \cdot l}{2\pi \cdot \eta_1} \quad (N \cdot cm) \qquad \cdots 26)$$

In this formula:

 T_a : Normal operation torque (N · cm)

F_a: Axial load (N)

l: Lead (cm)

 η_1 : Normal efficiency ($\eta_1 = 0.9$ to 0.95)

(b) Back-drive operation

The torque when converting linear motion to rotational motion (back-drive operation) is obtained by the following formula.

$$T_{\rm b} = \frac{F_{\rm a} \cdot l \cdot \eta_2}{2\pi} \quad (N \cdot cm) \qquad \cdots 27)$$

In this formula:

 T_b : Reverse operation torque (N · cm)

 η_2 : Reverse efficiency ($\eta_2 = 0.9$ to 0.95)

(c) Dynamic drag torque of preloaded ball screws The operation torque of preloaded ball screws can be obtained by Formula 25).

Table 7.1 Range of allowable values of torque variation rates (Source: JIS B 1192)

			Effective length of the screw thread (mm)									
Basic	torque				4 000 c	or under				Over 4 000 and 10 000 or under		
(N ·	cm)	Slend	lerness ra	tio ⁽¹⁾ : 40 o	r less	Slendernes	s ratio ⁽¹⁾ : Mor	re than 40 ar	d 60 or less		_	
		Accuracy grade			Accurac	cy grade		Ac	curacy gra	ade		
Over	Incl.	C0	C1	C2, 3	C5	C0	C1	C2, 3	C5	C1	C2, 3	C5
20	40	±30%	±35%	±40%	±50%	±40%	±40%	±50%	±60%	_	_	_
40	60	±25%	±30%	±35%	±40%	±35%	±35%	±40%	±45%	_	_	_
60	100	±20%	±25%	±30%	±35%	±30%	±30%	±35%	±40%	_	±40%	±45%
100	250	±15%	±20%	±25%	±30%	±25%	±25%	±30%	±35%	_	±35%	±40%
250	630	±10%	±15%	±20%	±25%	±20%	±20%	±25%	±30%	_	±30%	±35%
630	1 000	_	±15%	±15%	±20%	_	_	±20%	±25%	_	±25%	±30%

Notes: 1. Slenderness ratio: The value obtained by dividing the length of the screw thread section of screw shaft (mm) by diameter of the screw shaft (mm)

2. NSK independently sets torque standards under 20 N · cm.

(2) Drive torque of the motor

(a) Drive torque at constant speed

The torque necessary to drive a ball screw at a constant speed resisting external loads can be obtained by the following formula.

$$T_1 = (T_a + T_{pmax} + T_u) \times \frac{N_1}{N_2} \qquad \cdots 28$$

In this formula:

 $T_{\rm a}$: Drive torque at constant speed

$$T_{\rm a} = \frac{F_{\rm a} \cdot l}{2\pi \cdot \eta_{\rm a}} \qquad \cdots 26)$$

F_a: Axial load (N)

The value of F_a in Fig. 7.3 is:

$$F_a = F + \mu \cdot m \cdot g$$

F: Axial forces on screw shaft such as cutting force, etc. (N)

 μ : Friction coefficient of the guide way

 $m: \mbox{Volume of the traveling section (table mass plus work mass (kg)}$

g: Gravitational acceleration (9.80665 m/s²)

 T_{pmax} : Upper limit of the dynamic friction torque of ball screw (N · cm)

 T_u : Friction torque of the support bearing (N \cdot cm)

N₁: Number of teeth in Gear 1

 N_2 : Number of teeth in Gear 2

Generally, though it depends on the type of motor, T_1 is normally under 30% of the motor rating torque.

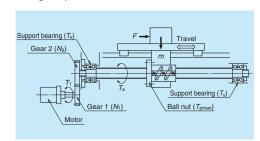


Fig. 7.3 Driving mechanism of ball screw

(b) Drive torque at acceleration

Accelerating a ball screw resisting axial load requires the maximum torque in an operation. Drive torque necessary for this occasion can be obtained by the following formula.

$$T_2 = T_1 + J \cdot \dot{\omega}$$
 ... 29

$$J = J_M + J_{G1} \left(\frac{N_1}{N_2} \right)^2 \left[J_{G2} + J_S + m \left(\frac{l}{2\pi} \right)^2 \right] \text{ (kg} \cdot \text{m}^2\text{)}$$

... 3

In this formula:

 T_2 : Maximum drive torque at time of acceleration (N·m)

 $\dot{\omega}$: Motor's angular acceleration (rad/s²)

J: Moment of inertia applied to the motor (kg · m²)

 $J_{\rm M}$: Moment of inertia of the motor (kg · m²)

 J_{G1} : Moment of inertia of Gear 1 (kg · m²)

 J_{G2} : Moment of inertia of Gear 2 (kg · m²)

 J_s : Moment of inertia of the screw shaft $(kg \cdot m^2)$

When selecting a motor, it is necessary to examine the maximum torque of the motor relative to the drive torque T_2 at the time of acceleration.

For the calculation of the moment of inertia of a cylindrical object (ball screw, gear, etc.), please refer to the formula below.

Formula for the moment of inertia of a cylindrical object

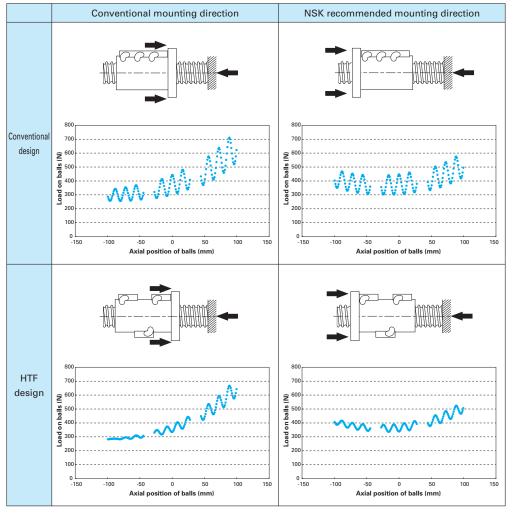
$$J = \frac{\pi \cdot \gamma}{32} D^4 \cdot L \text{ (kg} \cdot \text{cm}^2\text{)} \qquad \cdots 31\text{)}$$

In this formula:

γ: Material density (kg/cm³)

D: Diameter of the cylindrical object (cm)

L: Length of the cylindrical object (cm)


B-2-8 Even Load Distribution in Ball Nuts (Ball Screws for High-Load Drives)

Generally, the distribution of loaded balls in a ball nut is three-dimensionally asymmetric, thus resulting in uneven load distribution to the balls and ball nut. NSK has taken measures for even load distribution on the balls by an optimal arrangement of the position of ball recirculation circuits.

Additionally, a heavier load results in measurable axial deformation of the screw

shaft and the ball nut, thus further increasing the unevenness of load distribution. We have lessened the unevenness of load distribution to the balls by arranging the load acting point of the ball nut and the screw shaft opposite to each other. The relation between loading points and load distribution is shown in Fig. 8.1, while Table. 8.1 shows the results of load distribution analysis.

Table. 8.1 Results of equalization of load distribution

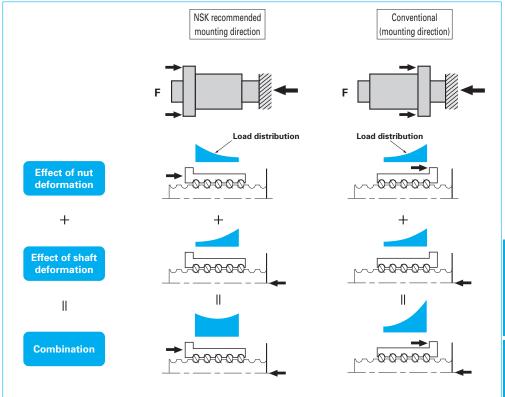


Fig. 8.1 Relationship between acting point of load and load distribution

B-2-9 Lubrication of Ball Screws

Lithium soap-based grease with base oil viscosity of 30 to 140 mm²/s (40°C) is recommended for grease lubrication and oil of ISO VG 32 to 100 for oil lubrication.

In general, a lubricant with low base oil viscosity is recommended where a ball screw is used for high-speed operation and thus requires reducing thermal elongation of the screw shaft. On the other hand, a lubricant with high base oil viscosity is recommended for low-speed, high-temperature operation or high-load, oscillating operation.

Please consult NSK about greases for high-load drives and high-temperature applications.

NSK offers "NSK Grease Units" as standard products for a variety of applications. NSK Grease Units for ball screw lubrication include:

- 1) Various types of grease in bellows tubes which can be easily attached to a grease pump
- 2) Hand grease pumps which are compact and easy to use
- 3) Nozzles

Table 9.1 shows NSK grease and names of other ball screw grease.

Table 9.2 explains check points in lubrication and standard intervals between replenishments. It is important to wipe off old grease from the screw shaft prior to applying new grease. Page D16 also explains in detail the replenishing methods.

Table 9.1 Grease for ball screw

Product name	Thickener	Base oil	Base oil viscosity mm²/s (40°C)	Range of temperature for use (°C)	Application
NSK Grease AS2	Lithium	Mineral oil	130	-10 - 110	For general use at high load
NSK Grease PS2	Lithium	Synthetic oil combined with Synthetic hydrocarbon oil	15.9	-50 - 110	For light load
NSK Grease LR3	Lithium	Synthetic oil	30	-30 - 130	For high-speed medium load
NSK Grease LG2	Lithium	Mineral oil combined with Synthetic hydrocarbon oil	32	-20 - 70	For cleanroom environments
NSK Grease NF2	Urea composite	Synthetic hydrocarbon oil	26	-40 - 100	For fretting resistance

^{*}Refer to page D13 for characteristics of NSK greases.

Table 9.2 Checking lubricant and intervals of replenishment

Lubricating method	Checking intervals	Check points	Replenishment/replacement interval
Intermittent automatic oil supply	Once a week	Remaining volume, contamination	Supply oil when checking (depending on the tank volume)
Grease	2 – 3 months after start of use	Clean, foreign matters	Generally once a year (replenish when necessary)
Oil bath	Every day, when starting work	Oil level	Specify according to oil consumption

B-2-10 Dust Prevention for Ball Screws

If foreign matter enters inside the ball nut, all screw grooves and balls wear rapidly, and the ball screw may malfunction due to damage of groove and/or ball recirculation system. Use bellows or telescopic pipes (Fig. 10.1) to keep foreign matter from entering into the feed screw

system. Install these items so as to exclude foreign matter completely from the ball screw. It is even more effective to add seals on the ball nut as shown in Figs. 10.2 to 10.7. We provide the seals listed in Table 10.1.

Table 10.1 Seal

	Sealing capability	Torque	Heat	Grease retention	Application
Thin plastic seal	0	0	0	0	End defector recirculation, HMS model, BSL model
Plastic seal	×	0	0	×	Tube recirculation, deflector (bridge)
Wiper seal	0	×	×	0	recirculation (seals are not used with leads 1 mm or smaller)
X1 seal	0	0	0	0	HMS model, HMD model
High performance seal	0	0	0	0	VSS model
Brush-seal	Δ	0	0	Δ	R model (plastic seals are used for shaft diameters of 14 mm of less)

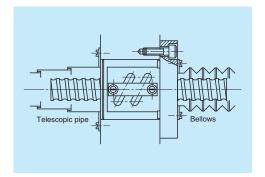


Fig. 10.1 Dust prevention by telescopic pipe and bellows

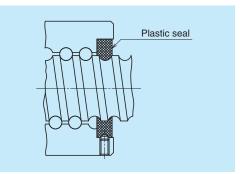


Fig. 10.3 Plastic seal

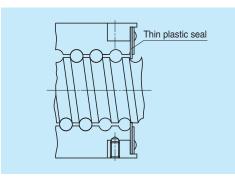


Fig. 10.2 Thin plastic seal

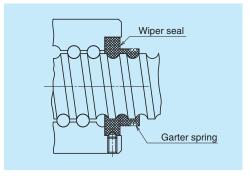


Fig. 10.4 Wiper seal

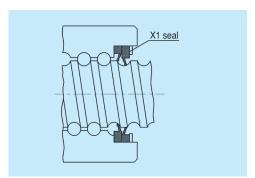


Fig. 10.5 X1 seal

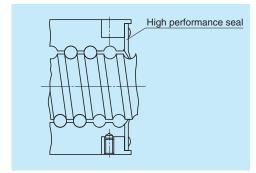


Fig. 10.6 High performance seal

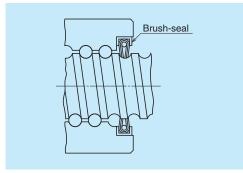


Fig. 10.7 Brush-seal for R Model

B-2-11 Rust Prevention and Surface Treatment of Ball Screws

(1) Stainless steel ball screw

KA model ball screws made of stainless steel are available. Please consult NSK for a custom made stainless steel ball screw.

(2) Types of surface treatment

The following are common types of treatment.

- OLow temperature chrome plating
- Used to prevent corrosion and light reflection, and for cosmetic purposes.
- OFluoride low temperature chrome plating
- · Fluoroplastic coating is provided following the low temperature chrome plating.
- Resistance to corrosion is higher than the low temperature chrome plating.
- OHard chrome plating
- Very hard coating provides high resistance to both wear and corrosion.
- OElectroless nickel plating
- · Creates a film of consistent thickness on complex shaped items.
- For corrosion prevention.

(3) Recommended surface treatment

Among the surface treatments mentioned above, we recommend "Low temperature chrome plating" and "fluoride low temperature chrome plating" for rust prevention because of humidity chamber test results.

However, never apply any organic solvent for degreasing because it will have an adverse effect on antirust characteristics.

Table 11.1 Surface treatment length

	Applicable length
Low temperature chrome plating	5 m or less
Fluoride low temperature chrome plating	4 m or less

Refer to "1.3 Rust Prevention and Surface Treatment" (page D5) for the results of humidity chamber tests.

B-2-12 Ball Screw Specifications for Special Environments

B-2-12.1 Cleanroom Environments

NSK manufactures NSK Clean Grease "LG2" and "LGU" for NSK linear guides, ball screws, and Monocarriers used under normal temperature and pressure in cleanrooms.

LG2 and LGU grease have stable torque characteristics far superior to that of vacuum grease which has been used as a countermeasure against dust generation. LG2 and LGU also have sufficient durability and dust prevention capability.

Features of "LG2" and "LGU"

- (a) Generates less dust than prevailing vacuum grease and general greases. Cleanliness is enhanced by simply switching the grease to LG2 or LGU.
- (b) Extremely low and stable torque characteristics, LG2 and LGU are ideal for high-speed operation.
- (c) Unlike prevailing vacuum greases, LG2 and LGU have a nature similar to general grease. Their effect is long-lasting and sufficiently durable. They greatly contribute to minimize the frequency of maintenance.
- (d) They have an equal capability in rust prevention as general grease and are reliable.

When using NSK linear guides, ball screws, or Monocarriers in a cleanroom environment, request LG2 or LGU as a packed lubricant prior to delivery. NSK also makes bellows tubes which contain 80 grams of LG2 or LGU. The tube is easy to use and is ideal for maintenance (refer to pages B413 and D19). Wash to remove grease or oil substances prior to use.

Refer to page D8 for the functions and characteristics of LG2 and LGU.

B-2-12.2 Measures for Use Under Vacuum

NSK developed MoS₂ / WS₂ spattering and dryfilmed ball screws for equipment to be used in space. NSK also makes soft-metal film (gold and silver) ball screws to be used in a vacuum environment for semiconductor and flat panel display processing equipment.

Lubricants widely used for ball screws in a high vacuum are:

- · Vacuum grease which uses a base oil of low vapor pressure.
- Solid lubricants such as MoS₂ and WS₂ used mainly for equipment in space.
- · Solid lubricants with soft-metal such as gold, silver, or lead film.

When used for semiconductor and flat panel display manufacturing equipment, the oil of vacuum grease evaporates and causes environmental contamination. Also, it hinders creation of a super high vacuum. MoS, in the state of solid lubricant generates a large volume of dust, and Mo is unsuitable for semiconductors and reformed surfaces. Therefore, it is not suitable for processing machines for semiconductors and flat panel displays.

NSK recommends solid lubricant ball screws with a long life. These ball screws are treated with special silver film by NSK's unique processing technology and can be used in a super-high vacuum. However, solid lubricant may cause the film to peel off and stick to surface of ball grooves repeatedly, causing torque to rise momentarily on some occasions. The drive motor should be of large capacity to handle this drastic variation of torque.

Refer to page D7 for the test data of ball screws in vacuum.

For ball screw specifications for special environments, refer to page D2.

B69 B70

B-2-13 Noise and Vibration

B-2-13.1 Consideration of Noise

As the machine operates at higher speeds, noise levels tend to increase. Covering the nut section is insufficient to lower noise. NSK has abundant data (NSK Motion & Control Technical Journal No.4, etc.), and offers advice to users regarding selecting ball screws.

To lower noise level in general, the following points should be taken into consideration.

- (a) Use as a large lead as possible to reduce rotational speed.
- (b) Use a ball screw with the smallest outer diameter possible.
 - (Designs near limits often require special specifications, Please consult NSK.)

For reference, noise levels by ball screws alone are plotted below. The formula for calculation is also shown below.

(a) Average value at measuring distance of 400 mm dB (A) = 25.2 {log₁₀ ($D_{\rm w} \cdot d_{\rm m} \cdot n \times 10^{-5}$)} + 63.9 ... 32)

(b) Upper limit at measuring distance of 400 mm Average value + 6 dB (A)

D_w: Ball diameter (mm)

 d_{m} : Ball pitch circle dia. (mm)

n: Rotational speed (min⁻¹)

If measuring distance is 1 m, 8 dB (A) is subtracted from the 400 m average value to obtain the average noise level.

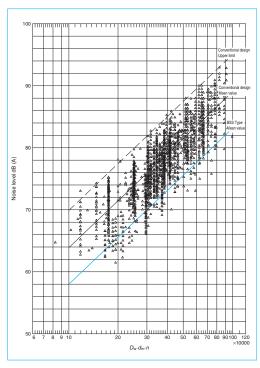


Fig. 13.1 Noise levels of ball screws

<<Calculation example for noise levels>>
<Use conditions>

Model No.: DFT4010-5

From the dimension table: $D_{\rm w} = 6.350$

 $d_{\rm m} = 41$

Maximum rotational speed: 2 000 min⁻¹

<Calculation>
By formula 34):

dB (A) = 25.2 { $\log_{10} (D_{w} \cdot d_{m} \cdot n \times 10^{-5})$ } + 63.9

= 25.2 { $\log_{10} (6.350 \times 41 \times 2000 \times 10^{-5})$ } + 63.9

= 82 dB (A)

The average value of noise level by ball screws alone at maximum rotational speed (measuring distance 400 mm) is 82 dB (A). Upper limit is: 82 dB (A) + 6 dB (A) = 88 dB (A) If the measuring distance is 1 m, the average value of noise level is 74 dB (A), and upper limit is 80 dB (A).

When installed, the noise of ball screw becomes higher from the noise of the machine and the characteristics of machine vibration.

B-2-13.2 Consideration of Ball Screw Support System

A ball screw has low radial rigidity because its support span is long compared to its shaft diameter. It has only small damping capacity, requiring as much support rigidity as possible through design.

A simplified support bearing system to cut costs invites noise and vibration problems. Therefore, consideration to the ball screw support system of both shaft ends is increasingly becoming important as the speed of machines is ever-increasing.

If one shaft end must be left unfixed without a support bearing due to structural reasons, noise and vibration problems may occur. These problems are related to the natural vibration frequency of the screw shaft on the unsecured end. This problem can be averted by installing an impact damper to the shaft end (Fig. 13.2). Please consult NSK for details.

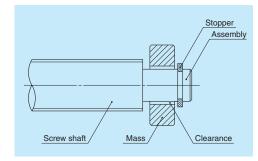
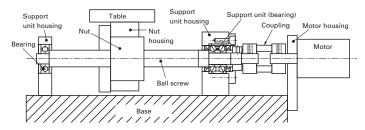



Fig. 13.2 Impact damper (Applied for patent)

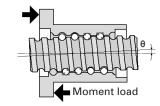
B71 B72

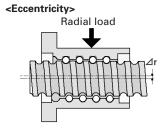
B-2-14 Installation of Ball Screw

The following simplified component drawing shows a representative example of a single-axis table.

The screw shaft of the ball screw is supported by a nut and bearings, and it is driven by a motor.

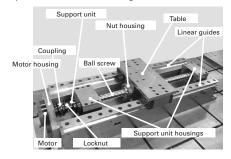
It is critically important to complete centering work to ensure the predetermined operation life, functionality, and accuracy of the ball screw. In general, the following accuracy is recommended for precision-class applications.

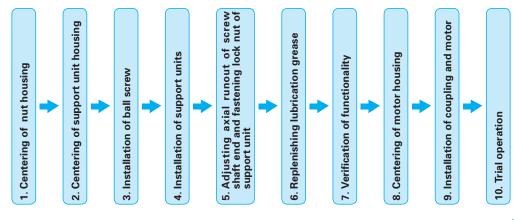

Inclination of center line: 1/2000 or less (Target: 1/5000 or less)


Eccentricity: 0.020 mm or less

The following problems could occur if installation error negatively affected the ball screw:

- (1) Effects on durability:
 - → Lowered flaking life or wearing life.
- (2) Effects on torque characteristics:
 - → Increased friction torque or torque variations.
- (3) Effects on feed rate:
 - → Decreased accuracy in motion.

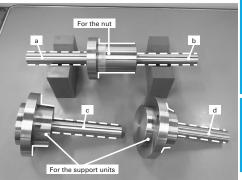

<Inclination of center line>


Overall View of Assembled Body

Explanations of the assembly procedure are given below, using a single-axis table as an example: In this explanation, two different installation procedures are provided: one for machine tools, where high installation accuracy is required, and another for general industrial machinery.

B-2-14.1 Installation Procedure for High Accuracy Applications (Machine Tools, etc.)

A single-axis table must be installed according to the following procedure:



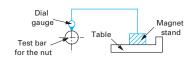
I. Jigs required for installation

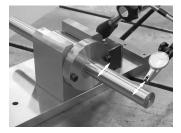
Test bars:

(For the nut: one piece; for the support units: two pieces)

⇒ For centering and measurement of axial runout. The portions onto which the housing is installed (marked with the solid line) and the portions subject to measurement (a, b, c and d, marked with the broken line) must be finished to high precision.

II. Installation of assembled body

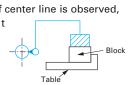

1. Centering of nut housing

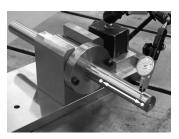

1-

Turn the table over and mount the nut housing and test bar for the nut onto it.

Set up a magnet stand with a dial gauge attached, taking the rear side of the table as reference. Measure two spots at the top of the test bar for the nut by moving the magnetic stand around to check the inclination in the vertical direction.

If inclination of center line is observed, adjust the surfaces on which the nut housing is installed.





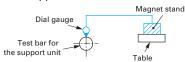
1-2

Fix the magnetic stand with the dial gauge attached onto a block. While pressing the block toward the reference surface of the table, move the magnet stand around. Measure the side surface of the test bar for the nut and check the inclination in the horizontal direction. If inclination of center line is observed. adjust the portion where the nut

housing is installed onto the table.

2. Centering of support unit housing

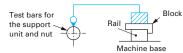
Install the linear guides onto the machine base, and then install the table, which has already been centered. (For installation of linear guides, please refer to A67 in CAT. No. 9008.)

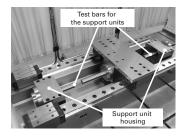

2-1

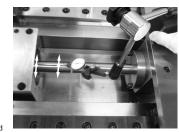
Install the test bar for the support unit onto the support unit housing.

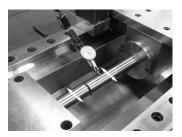
2-2

Install the magnet stand with the dial gauge attached using the table as reference. While moving the table, measure the two spots at the top of the test bar for the motor-side support unit to check the inclination in the vertical direction. If inclination of center line is observed, adjust the mounting surfaces of the support unit housing.

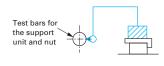

Follow the same procedure for the opposite side of the motor.






Fix the magnet stand with the dial gauge attached onto a block, and install the block onto the top surface of the linear guide rail. Measure the top points of the test bar for the nut and the support unit to check for eccentricity in the vertical direction. If eccentricity is observed, adjust the mounting surface of the support unit housing.

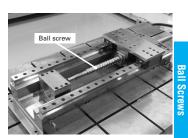
Follow the same procedure for the opposite side of the motor.



2-4

Fix the magnet stand with the dial gauge attached onto a block. While pressing the block toward the top surface of the linear guide rail as reference and moving it, take measurements of the side surfaces of the test bars for the nut and support unit to check for eccentricity in the horizontal direction. If eccentricity is observed, adjust the mounting surface of the support unit housing.

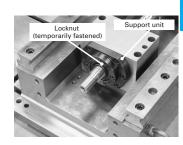
Follow the same procedure for the opposite side of the motor.



3. Installation of ball screw

Remove all test bars from the housing.

Clean the outside diameter surface of the nut and the inside diameter surface of the housing using a cloth, and install the ball screw.


Apply grease to spots with metal-to-metal contact to avoid any scratches or dents. While doing this, be careful not to drop the ball screw or hit it with anything which might cause malfunctions. If the housing must be removed in order to mount the ball screw, use a positioning pin so that the housing can be mounted back in its original position.

4. Installation of support units

Insert the screw shaft into the support unit housing and mount the support units on both shaft ends. Fix the motor-side support unit to the housing. Fasten the locknut temporarily.

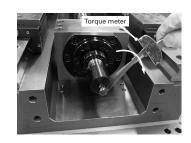
Follow the same procedure for the opposite side of the motor.

5. Adjusting axial runout of screw shaft end and fastening lock nut of support unit

Bring the dial gauge into contact with the top of the shaft end. Then, while rotating the screw shaft, measure the runout of the shaft end. While adjusting the shaft end runout, fasten the locknut to attain the required fastening torque.

Follow the same procedure for the opposite side of the motor.

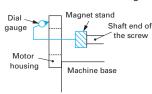
6. Replenishing lubrication grease


Wipe away the antirust oil from the empty ball screw to which grease has not been applied, and supply grease through the grease hole to fill the inside. (Supply the grease while rotating the ball screw in the direction that moves grease toward the inside of the nut. This will lubricate the ball screw evenly.) If you use a ball screw already filled with grease, it is not

7. Verification of functionality

necessary to add more.

To check whether the ball screw has been installed accurately, verify its functionality. Measure the driving torque with a torque meter over the entire movable range of the screw. Confirm (including by touch) that there are no abnormalities.

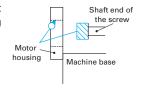


8. Centering of motor housing

2.1

Install the motor housing, and mount the dial gauge onto the shaft end of the ball screw. Rotate the screw shaft to check the inclination of the motor housing with the stylus of the dial gauge in contact with the end face of the motor housing. If

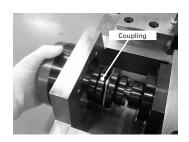
inclination of the end surface of the motor housing is observed, gauge adjust the mounting surface of the motor housing.



8-2

Set up the dial gauge onto the end face of the ball screw. Rotate the screw shaft to check eccentricity with the stylus touching the inside diameter surface of the motor housing. If

eccentricity is observed, adjust it by installing the motor housing appropriately.

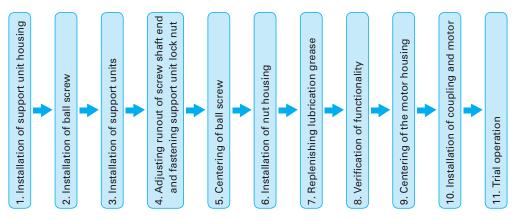


9. Installation of coupling and motor

Mount the coupling onto the shaft end of screw, and install the motor.

Fasten the bolts of the coupling to connect the shaft end with the motor shaft.

10. Trial operation

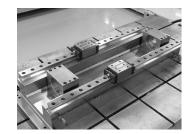

At the beginning, run the assembly at low speed to check for vibrations and noise. Then, run it at moderate speed, and finally at high speed and check for abnormalities. Then run it continuously for approximately two hours and carry out a running-in operation while checking for any abnormalities. During this running-in operation, the excess grease inside of the nut is pushed out of the nut. Wipe it away.

B77 B78

B-2-14.2 Installation Procedure for General Industrial Machinery

In this procedure, the ball screw is installed with the accuracy required for the linear quide. The centering of the nut and table are adjusted by installing the nut housing appropriately. Since no test bars are required and the inside diameter of the nut housing does not need to be fit with the nut, the ball screw can be installed relatively easily and cheaply.

The installation procedure used for a single-axis table is shown below:

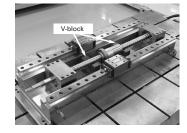

I. Installation of assembled body

1. Installation of support unit housing

Install the linear guide onto the machine base.

(For installation procedurez for linear guidez, please refer to A67, CAT. No. 9908.)

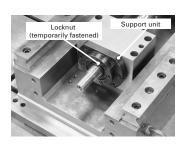
Place the support unit housing at the predetermined position and fasten it temporarily.



2. Installation of ball screw

Clean the outside diameter surface of the nut and the inside diameter surface of the housing using a cloth, and install the ball screw.

Apply grease to spots with metal-to-metal contact to avoid scratches and dents. While doing this, be careful not to drop the ball screw or hit it with anything which might cause malfunctionx.


Conduct this task using a V-block to prevent scratches and dents.

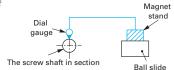
3. Installation of support units

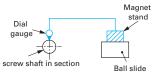
Insert the screw shaft into the support unit housing and mount support units on both shaft ends. Fix the motor-side support unit to the housing. Fasten the locknut temporarily.

Follow the same procedure for the opposite side of the motor.

4. Adjusting runout of screw shaft end and fastening support unit locknut

Bring the dial gauge into contact with the top of the shaft end. Then, while rotating the screw shaft, measure the runout of the shaft end. While adjusting the shaft end runout, fasten the locknut to attain the required fastening torque.

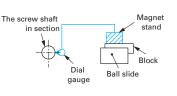

Follow the same procedure for the opposite side of the motor.



5. Centering of ball screw

Set up a magnet stand with a dial gauge attached, using the ball slide of the linear guide as a reference. Measure the top of the screw shaft in the vicinity of the support unit housing both on the motor and opposite side to check the inclination in the vertical direction. If inclination of center line is observed, adjust

the mounting surface of the support unit housing.

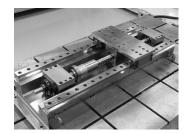




Fix the magnet stand with the dial gauge attached onto a block. While pressing the block toward the ball slide of the linear guide, move the block. Measure the side surface of the screw shaft in the vicinity of the support unit housing both on the motor and opposite side to check the inclination in the horizontal direction. If inclination of center line is observed,

adjust by installing the support unit housing The screw shaft appropriately.

After the adjustment, fix the support unit housings of the motor side and the opposite side.



6. Installation of nut housing

6-1

Temporarily fasten the nut housing onto the table, and fasten the table, using the ball slide of the linear guide as reference surface.

To minimize bending of the screw shaft caused by the weight of the nut, move the nut toward the support unit housing at the shaft end.

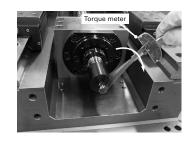
6-2

Move the table toward the nut, and fasten the nut to the nut housing.

Loosen the bolts that fasten the table to the nut housing, and re-fasten them.

Loosen the bolts that fasten the nut housing and the nut, and re-fasten them.

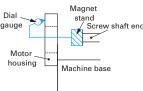
7. Replenishing lubrication grease


Wipe away the antirust oil from the empty ball screw to which grease has not been applied and supply grease through the grease hole to fill the inside. (Supply grease while rotating the ball screw in the direction that moves grease toward the inside of the nut. This will lubricate the ball screw evenly.)

If you use a ball screw already filled with grease, it is not necessary to add more.

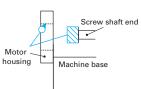
8. Verification of functionality

To check whether the ball screw has been installed accurately, verify its functionality. Measure the driving torque with a torque meter over the entire movable range of the screw. Confirm (including by touch) that there are no abnormalities.

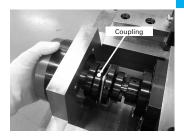


9. Centering of motor housing

9-1


Install the motor housing, and mount the dial gauge onto the end face of the ball screw. Rotate the screw shaft to check the inclination of the motor housing with the stylus of the dial gauge in contact with the end face of the motor housing. If inclination of center line is observed, adjust the mounting surface of the motor housing.

9-2


Set up the dial gauge onto the end face of the screw shaft. Rotate the screw shaft to check eccentricity with the stylus touching the inside-diameter surface of the motor housing. If eccentricity is observed, adjust it by installing the motor housing appropriately.

10. Installation of coupling and motor

Mount the coupling onto the shaft end, and install the motor. Fasten the bolts of the coupling to connect the shaft end with the motor shaft.

11. Trial operation

At the beginning, run the assembly at low speed to check for vibrations and noise. Then, run it at moderate speed, and finally at high speed and check for abnormalities. Then run it continuously for approximately two hours and carry out a running-in operation while checking for any abnormalities. During this running-in operation, the excessive grease inside of the nut is pushed out of the nut. Wipe it away.

B81 B82

B-2-15 Precautions for Designing Ball Screws

B-2-15.1 Safety System

As shown in the illustration on page B352, a stopper is installed in some cases to prevent the nut from overrunning due to malfunction of the safety system of the machine itself, or human error during operation.

The travel stopper should be installed at a place where it will not come into contact with the nut when the nut reaches the designed stroke end. An impact absorbing travel stopper (NSK patent, refer to page B414) is available.

B-2-15.2 Design Considerations for Assembly

(1) Cutting through the thread screw to the end Some recirculation systems, including deflector (bridge), end-cap, S1 (high-load drive), and some end-deflector specifications, require one end of the thread screw to be cut. This is necessary to assemble the ball nut to the screw shaft (Fig. 15.1). In this case, the shaft end diameter to where this "cut-through thread" is made should be 0.2 mm or smaller than the ball groove root diameter "dr". (See the dimension tables.) A similar precaution is required when it is absolutely necessary to remove the nut from the screw shaft in order to install the ball screw to the machine. Also, if using the cut-through end as the shoulder of the support bearing, make certain that a sufficient amount of the effective flat surface is left from the root diameter. If it is insufficient, the bearing cannot be installed perpendicularly to the bearing seat. (Fig. 15.2)

(2) Designing the screw shaft end and the nut mounting area

When installing a ball screw to the machine, avoid a design which makes it necessary to separate the nut from the screw shaft as shown in Fig. 15.3. If separated, the balls may fall out. The separation may also deteriorate the ball screw accuracy or damage the ball screw. If separating them is unavoidable, please furnish NSK with the component which is to be installed between the nut and screw shaft. NSK will install the component prior to delivery.

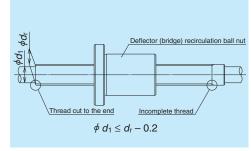


Fig. 15.1 Shaft end of a deflector (bridge) recirculation system ball screw

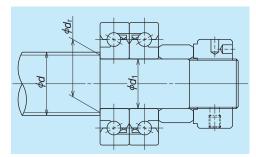


Fig. 15.2 Support bearing and end face (shoulder) for installation

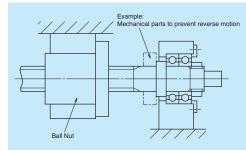


Fig. 15.3 Nut and ball screw are required to be separated when installing in this structure.

(3) Removing the nut from the screw shaft at the time of assembly

If it is unavoidable, use an arbor (Fig. 15.4) to keep the balls in the nut. In this case, the outside diameter of the arbor should be approximately 0.2 mm to 0.4 mm smaller than the ball groove root diameter "d,-"

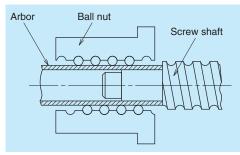
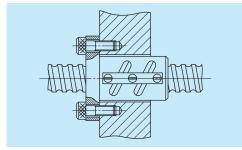



Fig. 15.4 Arbor to install and remove nut

(4) Centering of the ball nut when installing

When installing the nut as shown in **Fig. 15.5**, provide a space between the housing and the nut body diameter, allowing centering to be performed.

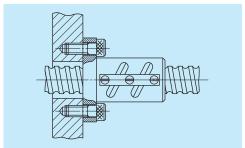


Fig. 15.5 Fixing a ball nut by flange

(5) Preventing the thread screw of nut from loosening

When installing and securing the nut to the housing at the thread screw section, as in the case for RNCT ball screws, apply an agent which prevents the nut from loosening.

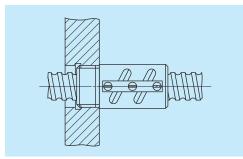


Fig. 15.6 Fixing a ball nut with thread screw

(6) Installation of brush-seal to the nut

If a brush-seal is installed at the thread screw side of the nut similar to the RNCT model which comes with a thread screw, the brush-seal should be secured as shown in Fig. 15.7.

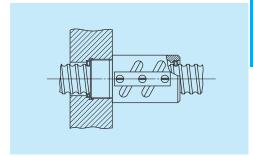


Fig. 15.7 Installation of brush-seal to a ball nut with thread screw

B-2-15.3 Effective Stroke of Ball Screws

When hardened by induction hardening, the hardness of a ball screw may be slightly low at both ends of the screw section. Consider this low hardness prior to determining the length of the effective stroke. Please consult NSK for details.

B-2-15.4 Machining after Delivery

When, after the delivery of a ball screw, you require a drill knock pin hole on the screw shaft end or at the nut mounting area please inform NSK on the position and size of the hole.

NSK will take measures and protect designated spots from heat treatment prior to delivery to make subsequent machining easy.

B-2-15.5 "NSK K1" Lubrication Unit

When using the NSK K1 lubrication unit, be aware of the operating temperature and chemicals that contact the unit to maintain the K1's best performance.

Temperature range for use:

Maximum temperature; 50°C

Momentary maximum temperature; 80°C

Chemicals to avoid contact with:

Do not leave the K1 unit in organic solvents, white kerosene such as hexane, thinners which remove oil, and rust preventive oil which contains white kerosene.

Water-based cutting oil, oil-based cutting oil, AS2 mineral grease, and PS2 ester grease can be used without damaging the K1 unit.

B-2-15.6 Intermediate support

The deflection of a long screw shaft due to its own weight may cause a radial load on the nut. There is also a risk that excessively large repeated load (rotational bending stress) will be applied to the shaft end during rotation. We therefore recommend intermediate support of the screw shaft at multiple points to minimize deflection.

B-2-15.7 Shaft End Strength

Take extra care to consider the strength of the shaft end shape and provide a design with a safety factor in mind when:

- *A pulley is mounted to the ball screw drive with a folded motor
- *Radial loads are applied due to the mounting structure
- *The ball screw is used under tension.

B-2-16 Shaft End Machining

You must machine the shaft ends of:

- *Precision ball screws with blank shaft ends
- *R model ball screws with blank shaft ends,
- *Completed ball screws that require additional machining

The following summarizes the machining of these shaft ends. For details, please contact NSK.

(1) Machining of blank shaft ends of precision ball screws

(a) Cutting screw shaft

Use a cutting whetstone or the like to cut the shaft, leaving stock for turning. Keep the nut assembled to the screw shaft, and open only one side of the plastic wrapping bag exposing only the shaft end section to be machined, and then cut the screw shaft. This prevents foreign matter from entering the ball screw section. Do the same for other machining.

(b) Precautions in cutting shaft end

Outside of the screw shaft is ground with precision (excluding the R model). There are center holes in the ends. Use them for centering. Do not rotate the shaft quickly or stop it suddenly, or the nut might move along the shaft. We recommend securing the nut with tape. To machine a very long shaft, apply work rests to the screw shaft surface to suppress vibration (especially caused by critical speed).

(c) Turning by lathe

Cut to the length, turn shaft end steps, turn the thread screw, and provide the center hole. Refer to JIS B1192 for shaft end accuracy.

(d) Processing by grinding

Apply the same precautions used for cutting when centering and securing the nut and work rest. Grind sections where the bearings and "Spann ring" are installed.

e) Milling processing

Process keyways and tooth seats for lock washers.

(f) Deburring, washing, and rust prevention Wash with clean white kerosene after processing. Apply lubricant for immediate use. For later use, apply a rust preventive agent.

Note: Contact NSK if the nut is accidentally removed.

B-2-17 Ball Screw Selection Exercise

Drill 1: High-speed transporting system

1. Design conditions

Table mass : $m_1 = 40 \text{ kg}$ Mass of the work : $m_2 = 20 \text{ kg}$ Maximum stroke : $S_{\text{max}} = 700 \text{ mm}$

Rapid traverse speed: $V_{\text{max}} = 1\,000 \text{ mm/sec}$ (60 m/min) Positioning accuracy: $\pm 0.05/700 \text{ mm}$ (0.005 mm/pulse)

Repeatability: ±0.005 mm

Required life : $L_{\rm t}$ = 25 000 h (5 years) Guide way (rolling) : μ = 0.01 (friction coefficient)

Drive motor: AC servo motor

 $(N_{\text{max}} = 3\ 000\ \text{min}^{-1})$

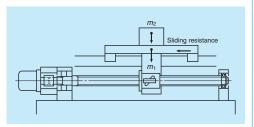


Fig. 17.1 System appearance

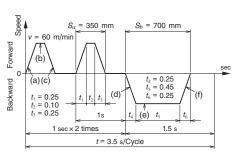


Fig. 17.2 Operating conditions

2. Selection of basic factors

(1) Selection of accuracy grade and axial play

According to **Table 4.1** "Applications for ball screws by accuracy grade" on page B19, the accuracy grade of ball screws for Cartesian industrial robots is C5 to Ct10.

From the following conditions in design, the axial play should be 0.005 mm or less.

Repeatability: ±0.005 (mm) Resolution: 0.005 mm/pulse

According to **Table 4.2** "Combinations of accuracy grades and axial play" on page B20, you will require the accuracy grade C5 to satisfy the axial play of 0.005 mm or less. Therefore select accuracy grade C5 and the axial play of 0 mm (Z-preload).

(2) Selection of lead

Calculate the lead l based on the maximum speed of the AC servo motor and the rapid traverse speed V_{\max} .

$$l \ge \frac{V_{\text{max}}}{N_{\text{max}}} = \frac{1\ 000 \times 60}{3\ 000} = 20\ \text{(mm)}$$

Select a lead *l* of 20 mm or larger.

(3) Selection of screw shaft diameter

According to **Table 4.4** "Shaft diameter, lead and stroke of standard ball screws" on page B21, the screw shaft diameter *d* which has a lead *l* larger than 20 mm should be in the range of 15 mm to 32 mm. Select the smallest: 15 mm.

(4) Selection of stroke

From **Table 4.4** "Screw shaft diameter, lead, and stroke of standard ball screws" on page B21, a ball screw with shaft diameter *d* of 15 mm and lead *l* of 20 mm meets maximum stroke of 700 mm, therefore it is possible to select from standard ball screws. The primary selection is as follows:

Primary selection:

Shaft diameter: 15 (mm) Lead: 20 (mm)

Stroke : 700 (mm)

Accuracy grade: C5
Axial play: Z

3. Confirmation of standard ball screw

In consideration of delivery time and price, select from standard ball screws with finished shaft ends.

Primary candidate: W1507FA-3PG-C5Z20

4. Basic safety check

Let's examine the primary candidate.

(1) Allowable axial load

[1] Calculation of allowable axial load

From **Fig. 17.2**: Acceleration α_1 at accelerating / decelerating is:

$$\alpha_1 = \frac{V_{\text{max}}}{t_1} = \frac{1\ 000}{0.25} = 4\ 000\ (\text{mm/s}^2) = 4\ (\text{m/s}^2)$$

Axial load F_i is:

(At the time of acceleration (a)(d))

$$F_1 = \mu (m_1 + m_2) \times g + (m_1 + m_2) \times \alpha_1$$

= 0.01 × (40 + 20) × 9.80665 + (40 + 20) × 4
= 246 (N)

(At the time of constant speed (b)(e))

$$F_2 = \mu (m_1 + m_2) \times g = 0.01 \times (40 + 20) \times 9.80665$$

= 6 (N)

(At the time of deceleration (c)(f))

$$F_3 = -\mu (m_1 + m_2) \times g + (m_1 + m_2) \times \alpha_1$$

= -0.01 \times (40 + 20) \times 9.80665 + (40 + 20) \times 4
= 234 (N)

Thus, the maximum axial load P is 246 N. [2] Buckling load

W1507FA-3PG-C5Z20 has a support length of 804 mm (L_a as per the dimension table on page B193), and must support maximum axial load P of 246 (N). The support configuration of screw shaft is "Fixed – Simple", and the support configuration of ball nut is "Fixed". Due to the direction of the load, the whole ball screw support configuration is "Fixed – Fixed" (Factor m = 19.9).

From fomula 2) on page B44:

$$d_r \ge \left(\frac{P \cdot L_a^2}{m} \times 10^4\right)^{1/4} = \left(\frac{246 \times 804^2}{19.9} \times 10^4\right)^{1/4}$$

= 5.3 (mm)

W1507FA-3PG-C5Z20 has the dimension d_r of 12.2 mm as per the dimension chart (page B193) and therefore meets the conditions.

Result: Acceptable

(2) Allowable rotational speed

The permissible rotational speed listed in the dimension table is 3 000 min⁻¹. Since the motor maximum rotational speed is 3 000 min⁻¹, the operation is in the range of permissible rotational speed.

Result: Acceptable

(3) Checking life expectation

[1] Mean load F_m and mean rotational speed N_m From the calculation of axial load, rotational speed N_i and the operating time t_i are:

(At the time of acceleration (a)(d))

$$F_1 = 246 (N)$$

$$N_1 = \frac{n}{2} = \frac{3\ 000}{2} = 1\ 500\ (\text{min}^{-1})$$

$$t_a = 2 \times t_1 + t_4 = 0.75$$
 (s)

(At the time of constant speed (b)(e))

$$F_2 = 6 (N)$$

$$N_2 = 3\,000\,(\text{min}^{-1})$$

$$t_{\rm b} = 2 \times t_2 + t_5 = 0.65$$
 (s)

(At the time of deceleration (c)(f))

$$F_3 = 234 (N)$$

$$N_3 = 1500 \text{ (min}^{-1}\text{)}$$

$$t_c = 2 \times t_3 + t_6 = 0.75$$
 (s)

Calculation results are shown in Table 17.1

Table 17.1 Axial load and rotational speed

Operating conditions	Axial load (N)	Rotational speed (mean) (min ⁻¹)	Operating time (s)
(a) (d)	$F_1 = 246$	$N_1 = 1500$	$t_{a} = 0.75$
(b) (e)	$F_2 = 6$	$N_2 = 3000$	$t_{\rm b} = 0.65$
(c) (f)	$F_3 = 234$	$N_3 = 1500$	$t_{c} = 0.75$

From formulas 11) and 12) on page B53:

$$F_{m} = \left(\frac{F_{1}^{3} \cdot N_{1} \cdot t_{a} + F_{2}^{3} \cdot N_{2} \cdot t_{b} + F_{3}^{3} \cdot N_{3} \cdot t_{c}}{N_{1} \cdot t_{a} + N_{2} \cdot t_{b} + N_{3} \cdot t_{c}}\right)^{1/3}$$

= 195 (N)

$$N_{\rm m} = \frac{N_1 \cdot t_{\rm a} + N_2 \cdot t_{\rm b} + N_3 \cdot t_{\rm c}}{t}$$

= 1 200 (min⁻¹)

NSK

[2] Calculation of life expectancy

As the basic dynamic load rating C_a of W1507FA-3PG-C5Z20 (Clearance Z) is 4 320 N (as per the dimension table on page B193), from formulas 8) and 9) on page B53:

$$L_{t} = \left(\frac{C_{a}}{F_{m} \cdot f_{w}}\right)^{3} \times \frac{1}{60N_{m}} \times 10^{6}$$
$$= \left(\frac{4320}{195 \times 1.2}\right)^{3} \times \frac{1}{60 \times 1200} \times 10^{6}$$
$$= 87400$$

The ball screw satisfies the required life.

Result: Acceptable

5. Check other requirements

(1) Accuracy and axial play

As per the dimension table on page B180 and **Table 1.2** for the permissible value of lead accuracy on page B38:

According to Table 1.2:

Accuracy grade: C5

 $e_{\rm p} = \pm 0.035/800 \, ({\rm mm})$

 $v_{...} = 0.025 \text{ (mm)}$

This grade satisfies the required positioning accuracy of $\pm 0.05/700$ mm.

The checking of axial play is omitted here since it is explained in "2. Selection of basic factors."

(2) Drive torque

Required specifications are as follows.

Motor rotational speed: 3 000 min⁻¹

Time to reach maximum speed: Less than 0.25 sec

[1] Load (converted to the motor axis)

Using formulas 30) and 31) on page B64, calculate the moment of inertia where γ is the material density of the ball screw.

(Screw shaft)

(Moving part)

$$J_{\rm B} = \frac{\pi \cdot \gamma}{32} D^4 \cdot L = \frac{\pi \times 7.8 \times 10^3}{32} \times 1.5^4 \times 80$$

 $= 0.31 (kg \cdot cm^2)$

$$J_{w} = m \times \left(\frac{l}{2\pi}\right)^{2} = 60 \times \left(\frac{2}{2\pi}\right)^{2}$$
$$= 6.1 \text{ (kg} \cdot \text{cm}^{2}\text{)}$$

(Coupling)

(As a whole)

 $J_{c} = 0.25 \text{ (kg} \cdot \text{cm}^2) \cdots \text{Temporary}$

Moment of inertia of the ball screw J_i is:

$$J_{L} = J_{B} + J_{W} + J_{C}$$
$$= 0.31 + 6.1 + 0.25$$
$$= 6.7 \times 10^{-4} \text{ (kg} \cdot \text{m}^{2}\text{)}$$

[2] Driving torque

We assume that the WBK12-01 compact light load model is used as recommended for W1507FA-3PG-C5Z20, and the moment of inertia of motor J_M is 3.1 (kg · cm²) (3.1 × 10⁻⁴ kg · m²).

(At the time of constant speed)

The torque which is necessary to drive the ball screw at a constant speed resisting external loads is per formula 28) on page B64:

$$T_1 = T_a + T_{pmax} + T_u$$

In this formula, T_a is the drive torque at constant speed, T_{pmax} is the upper limit of the dynamic friction torque of the ball screw, and T_u is the friction torque of the support bearings.

From the chart on pages B193 and B400, T_{pmax} is 7.8 (N · cm) and T_n is 2.1 (N · cm) respectively.

$$T_{\rm a} = \frac{F_{\rm a} \cdot l}{2\pi \eta_1}$$

Using formula 26) on page B63, the drive torque at a constant speed T_1 is:

$$T_{1} = \frac{F_{a} \cdot l}{2\pi \cdot \eta_{1}} + T_{pmax} + T_{u}$$

$$= \frac{6 \times 2}{2\pi \times 0.9} + 7.8 + 2.1$$

$$= 12 (N \cdot cm) = 0.12 (N \cdot m)$$

(At the time of acceleration)

The drive torque necessary for accelerating the ball screw resisting axial load can be calculated by the formula 29) on page 64.

$$T_2 = T_1 + J \cdot \frac{2\pi \cdot n}{60t_1}$$

$$= T_1 + (J_L + J_M) \cdot \frac{2\pi \cdot n}{60t_1}$$

$$= 0.12 + (6.7 \times 10^4 + 3.1 \times 10^4) \frac{2\pi \times 3000}{60 \times 0.25}$$

$$= 1.35 \text{ (N · m)}$$

(At the time of deceleration)

Similarly, at the time of acceleration:

$$T_3 = T_1 - J \cdot \frac{2\pi \cdot n}{60t_3}$$

$$= T_1 - (J_L + J_M) \cdot \frac{2\pi \cdot n}{60t_3}$$

$$= 0.12 - (6.7 \times 10^4 + 3.1 \times 10^4) \frac{2\pi \times 3000}{60 \times 0.25}$$

$$= -1.11 \text{ (N \cdot m)}$$

[3] Selection of motor

Selection conditions are as follows.

Maximum rotational speed: $N_{\rm M} \ge 3~000~({\rm min}^{-1})$ Motor rating torque: $T_{\rm M} \ge T_{\rm rms}~({\rm N}\cdot{\rm m})$

 $(T_{rms}: Effective torque)$

Moment of inertia of the motor: $J_{\rm M} > J_{\rm L}/3$ or more From above: select an AC servo motor with the following specifications.

Motor specifications:

Rating power output: $W_{\rm M} = 300$ (W)

Maximum rotational speed:

$$N_{\rm M} = 3\,000\,({\rm min}^{-1})$$

Rating torque: $T_{\rm M} = 1 \, ({\rm N \cdot m}) = 1 \times 10^2 \, ({\rm N \cdot cm})$ Moment of inertia: $J_{\rm M} = 3.1 \times 10^4 \, ({\rm kg \cdot m^2})$

 $= 3.1 (ka \cdot cm^{2})$

[4] Check effective torque

Effective torque T_{rms} can be calculated as follows:

$$T_{\text{rms}} = \sqrt{\frac{T_2^2 \times t_a + T_1^2 \times t_b + T_3^2 \times t_c}{t}}$$

$$= \sqrt{\frac{1.35^2 \times 0.75 + 0.12^2 \times 0.55 + 1.11^2 \times 0.75}{3.5}}$$

$$= 0.81$$

Thus the condition of " $T_{\rm M} \ge T_{\rm rms}$ " is cleared.

[5] Check time to reach maximum speed The time required to reach the rapid traverse speed can be calculated as follows. Where $T_{M}' = 2 \times T_{M}$:

$$t_{a} = \frac{(J_{L} + J_{M}) \times 2\pi \times n}{(T_{M}' - T_{1})} \times 1.4$$

$$= \frac{(6.7 \times 10^{-4} + 3.1 \times 10^{-4}) \times 2\pi \times 3000}{(2 \times 1 - 0.12) \times 60} \times 1.4$$

$$= 0.23$$

Thus, the ball screw meets the requirement of "0.25 sec or less".

From the above, use W1507FA-3PG-C5Z20

Drill 2: Processing table for special machines

1. Design conditions

Table mass: $m_1 = 1000 \text{ kg}$ Mass of the work: $m_2 = 600 \text{ kg}$ Maximum stroke: $S_{max} = 1000 \text{ mm}$ Maximum speed: $V_{\rm max} = 15\,000\,{\rm mm/min}$ Positioning accuracy: ±0.035/1 000 mm (no load)

* Attitude accuracy of the table and thermal displacement are not included in the accuracy requirements of the ball screw.

Repeatability: ±0.005 mm (no load) Lost motion: 0.020 mm (no load)

Required life expectancy: L = 20000 h

 $(16^{h} \times 250^{days} \times 10^{years} \times 0.5^{rate of operation})$

Guide way (sliding): $\mu = 0.15$

(friction coefficient)

Processing: Milling and drilling Drive motor: AC servo motor

 $(N_{\text{max}} = 2\ 000\ \text{min}^{-1})$

Fig. 17.3 System appearance

Sliding resistance

Cutting resistance

Table 17.2 Operating conditions

Operation	Axia	l load (N)	Feed speed	Use time	
Operation	Cutting resistance	Sliding resistance	(mm/min)	ratio (%)	
Rapid traverse	0	2 354	15 000	30	
Light/medium cutting	4 000	2 354	500	50	
Heavy cutting	8 000	2 354	100	20	

* Sliding resistance: $F_r = \mu (m_1 + m_2) g = 0.15 \times (1000 + 600) \times 9.80665 = 2354 (N)$

* Ignore the inertia force at the time of acceleration/deceleration because their time rate is negligibly short.

2. Selection of basic factors

(1) Selection of accuracy grade and axial play

The proper accuracy grade for machining centers should be in the range from C1 to C5 according to "Table 4.1 Applications for ball screws by accuracy grade" on page B19. Assuming the nut length is 200 mm and margin stroke is 100 mm, shaft length L_0 is obtained as follows:

 $L_0 = Maximum stroke + nut length + margin$

= 1000 = (200) + (100) = 1300

From "Table 1.2 Tolerance on specified travel and travel variation of positioning ball screws" on page B38, the accuracy factors which satisfy the required functions are:

Accuracy C3 grade

 $e_0 = \pm 0.029/1 600 \text{ (mm)}$

 $v_{..} = 0.018 \text{ (mm)}$

Considering the importance of lost motion, select Z code (axial play 0 mm and less) for the axial play.

(2) Selection of lead

From the maximum rotational speed of AC servo motor N_{max} and rapid traverse speed of table V_{max} , lead l is:

$$l \ge \frac{V_{\text{max}}}{N_{\text{max}}} = \frac{15\ 000}{2\ 000} = 7.5\ (\text{mm})$$

A larger lead l would be beneficial for higher feed speed. But from the view of the control system (resolution), lead l is limited to 8 mm or 10 mm.

(3) Selection of screw shaft diameter

According to Table 4.4 "Screw shaft diameter, lead and stroke of standard ball screws" on page B21, screw shaft diameters with leads of 8 mm or 10 mm are in the range of 10 mm to 50 mm. Placing more importance on rigidity than volume of lost motion, select a relatively large size in the range of 32 mm to 50 mm.

(4) Selection of stroke

Select 1 000 mm, the maximum stroke as specified in the design conditions.

Primary selection:

Standard ball screw

Shaft diameter: 32, 36, 40, 45, 50 mm

Lead: 8, 10 mm Stroke: 1 000 mm

Grade: C3 Axial play code: Z

3. Confirmation of standard ball screw

Giving consideration to delivery time and price, select a standard ball screw.

C3 grade is not found in standard ball screws. Let us check application-oriented ball screws for a C3 grade.

4. Confirmation of made-to-order ball screw

Because standard ball screws do not meet the accuracy grade requirement, we will consider made-to-order ball screws which are based on standard ball screws but with accuracy grade of C3.

Second selection:

Made-to-order ball screw

Shaft diameter: 32, 36, 40, 45, 50 mm

Lead: 8. 10 mm 1 000 mm Stroke:

Accuracy grade: C3 Axial play: Ζ

5. Selection of screw shaft diameter. lead, and nut

(1) Dynamic load rating

Obtain required load carrying capacity for each lead through load conditions. From Table 17.2 "Operating conditions" on page B91, calculate the rotation speed N₂ as shown in **Table 17.3**.

$$N_i \geq \frac{V_i}{l}$$

Table 17.3 Load conditions

Operating condition	Axial load (N)	Rotations per $l = 8$	Use time ratio (%)	
Rapid traverse	$F_1 = 2354$	$N_1 = 1875$	$N_1 = 1500$	$t_1 = 30$
Light/medium cutting	$F_2 = 6354$	$N_2 = 62.5$	$N_2 = 50$	$t_2 = 50$
Heavy cutting	$F_3 = 10354$	$N_3 = 12.5$	$N_3 = 10$	$t_3 = 20$

By using formulas 11) and 12) on page B53, calculate the mean load F_m and the mean rotational speed N_m as shown below.

$$F_{m} = \left(\frac{F_{1}^{3} \cdot N_{1} \cdot t_{1} + F_{2}^{3} \cdot N_{2} \cdot t_{2} + F_{3}^{3} \cdot N_{3} \cdot t_{3}}{N_{1} \cdot t_{1} + N_{2} \cdot t_{2} + N_{3} \cdot t_{3}}\right)^{1/3}$$

$$N_{\rm m} = \frac{N_1 \cdot t_{\rm a} + N_2 \cdot t_{\rm b} + N_3 \cdot t_{\rm c}}{t}$$

Table 17.4 Mean load and mean rotational speed

Table 1711 Moult load alla li	iouii i otutic	mar opeca
Lead (mm)	8	10
Mean load F_m (N)	3 122	3 122
Mean rotational speed N _m (min ⁻¹)	596	477

Using formulas 8) and 9) on page B53, calculate the required dynamic load rating.

$$C_a \ge (60 N_m \cdot L_t)^{1/3} \cdot F_m \cdot f_w \times 10^{-2} (N)$$

Whereas required life expectancy $L_t = 20000$ (h), load coefficient f_w = 1.2 (refer to page B53),

$$l = 8 \text{ (mm)} \cdots C_a \ge 33 500 \text{ (N)}$$

$$l = 10 \text{ (mm)} \cdots C_2 \ge 31 \ 100 \text{ (N)}$$

(2) Selection of the nut

Due to the requirement on lost motion, the nut will be selected as follows emphasizing the importance of system rigidity.

Table 17.5 shows the dynamic load rating of each specification.

- · Standard nut ball screw, tube recirculation
- Model No.: ZFT or DFT (pages B443 to B472)
- · Number of ball turns: Select from 2.5 turns 2 circuits or 2.5 turns 3 circuits

From Table 17.5, select an item that meets the required dynamic load rating C_a as follows:

Third selection: the range surrounded by dotted lines in Table 17.5

Table 17.5 Dynamic load rating of each specification

Screw shaft	Dynamic load rating Ca: (N)								
diameter	Lead	8 mm	Lead 10 mm						
(mm)	2.5 turns 2 circuits	2.5 turns 3 circuits	2.5 turns 2 circuits 2.5 turns 3 circuits						
32	37 300	-	54 500 –						
36	_	-	58 000 -						
40	41 100	_	61 200						
45	_	-	65 800 93 300						
50	45 700	64 800	68 100 96 500						

(3) Permissible rotational speed

[1] Critical speed

Check if the rapid traverse speed of 15 000 mm/min (V....) clears the critical speed. Ball screw rotational speed at each lead N is:

$$l = 8 \text{ (mm)} \cdot \cdot \cdot \cdot N = 1 875 \text{ (min}^{-1})$$

$$l = 10 \text{ (mm)} \cdot \cdot \cdot \cdot N = 1500 \text{ (min}^{-1})$$

From formula 7) on page B47, screw shaft root diameter to meet critical speed requirements is:

$$d_{\rm r} \ge \frac{N \cdot L_{\rm a}^2}{f} \times 10^{-7} \, (\rm mm)$$

In this formula, distance between support positions L_s is:

$$= 1000 + 100 + 200 = 1300 (mm)$$

The support configuration of the screw shaft is

- Fixed, and that of the ball nut is Fixed. Therefore, support configuration is Fixed - Fixed (Factor f = 21.9)

$$l = 8 \text{ (mm)} \cdots d_{i} \ge 14.5 \text{ (mm)}$$

$$l = 10 \text{ (mm)} \cdots d_r \ge 11.6 \text{ (mm)}$$

[2] *d* • *n* value

From **Table 3.2** on page B50, as the $d \cdot n$ is 70 000 or less, screw shaft diameters to meet d-n are:

$$d \le \frac{70\ 000}{N}$$
 (mm)

$$l = 8 \text{ (mm)} \cdots d \leq 37.3 \text{ (mm)}$$

$$l = 10 \text{ (mm)} \cdots d \leq 46.7 \text{ (mm)}$$

Based on nut specifications (pages B443 to B472) select an item that meets screw shaft root diameter d, and screw shaft diameter d.

* Please consult NSK if the $d \cdot n$ value exceeds 70 000.

Fourth selection: the range surrounded by solid lines in Table 17.5

(4) Rigidity of the ball screw system

Set the lost motion of the ball screw system (screw shaft, nut and support bearings) at 80% of the specified value. Then calculate the system rigidity. The criterion for lost motion is:

$$20 (\mu m) \times 0.8 = 16 (\mu m)$$

At this time, the one-way elastic deformation ΔL of the major factors of the ball screw system will be less than half the above criterion.

$$\Delta L \leq 8 \text{ (um)}$$

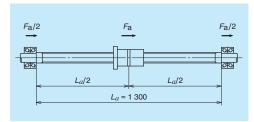


Fig. 17.3 Distance between support positions

Calculate the rigidity at the center of screw shaft where the axial deformation becomes the largest. Because the support configuration of the screw shaft is Fixed - Fixed, the rigidity is per formula 21) on page B58:

$$K_{\rm s} = \frac{\pi \cdot d_{\rm r}^2 \cdot E}{L_{\rm a}} \times 10^{-3} \, (\text{N/mm})$$

E is the elastic modulus. From formula 17) on page B57, the elastic deformation of the screw shaft ΔL_s is:

$$\Delta L_{s} = \frac{F_{a}}{K_{s}} = \frac{rF_{a} \cdot L_{a}}{\pi \cdot d_{c}^{2} \cdot E} \times 10^{3} \text{ (µm)}$$

The sliding resistance F_a is:

$$F_{\rm a} = \mu \ (m_1 + m_2) = 0.15 \times (1\ 000 + 600)$$

= 2 354 (N)

Table 17.7 shows the rigidity of screw shaft K_s and the elastic deformation $\Delta L_{\rm s}$.

[2] Rigidity of the ball nut K_N

Set about 1/3 the maximum axial load as preload value F_{a0} .

$$F_{a0} = \frac{F_{max}}{3} = \frac{10\ 354}{3} = 3\ 452 \rightarrow 3\ 500\ (N)$$

From formula 23) on page B60, the rigidity of the ball nut $K_{\mathbb{N}}$ is:

$$K_{\rm N} = 0.8 \times K \left(\frac{F_{\rm a0}}{\epsilon \cdot C_{\rm a}} \right)^{1/3} = 0.8 \times K \left(\frac{3500}{0.1 \cdot C_{\rm a}} \right)^{1/3}$$
 (N/µm)

K: Theoretical rigidity

From formula 17) on page B58, elastic deformation of the ball nut ΔL_{N} is:

$$\Delta L_{\rm N} = \frac{F_{\rm a}}{K_{\rm N}} = \frac{2354}{K_{\rm N}}$$

Table 17.7 shows the rigidity of ball nut K_{N} and the elastic deformation $\Delta L_{\rm N}$.

[3] Rigidity of the support bearing $K_{\rm R}$

NSKTAC C Series ball screw support bearings will be used. We specify designations for support units by shaft diameter as shown in Table 17.6 (refer to page B415).

Table 17.6 Bearing No. (designation)

Screw shaft diameter (mm)	Bearing No. (designation)		
32	25TAC62CDF		
36	25TAC62CDF		
40	30TAC62CDF		
45	35TAC72CDF		

Refer to page B422 for the rigidity $K_{\rm B}$ of each bearing unit (axial spring modulus). Elastic deformation of bearing $\Delta L_{\rm R}$ is:

$$\Delta L_{\rm B} = \frac{F_{\rm a}}{2K_{\rm o}}$$

Table 17.7 shows the rigidity of support bearing K_{\circ} and elastic deformation ΔL_{\circ} .

Table 17.7 Rigidity and elestic deformation

Model No.:	Screw shaft		N	ut	Support	Total	
Wiodel No	K _s	△Ls	K _N	ΔL_{N}	K _B	$\Delta L_{\scriptscriptstyle \rm B}$	ΔL
DFT3210-5	347	6.8	843	2.8	850	1.4	11.0
DFT3610-5	460	5.1	898	2.6	000	1.4	9.1
DFT4010-5	589	4.0	966	2.4	890	1.3	7.7
DFT4510-5	772	3.0	1 054	2.2	1 030	1.1	6.3
DFT4510-7.5	112	3.0	1 381	1.7	1 030	1.1	5.8

Choose the most economical ball screw system which meets the requirement of one-way deformation (ΔL) of 8 µm or less.

The selected ball screw:

DFT4010-5 Model No.: Shaft diameter: 40 (mm) Lead: 10 (mm) Dynamic load rating: 61 200 (N)

6. Decision of screw shaft length

DFT4010-5 ball nut has a length of 193 mm, and thus the distance between support positions of screw shaft La should be:

 $L_a = Maximum stroke + nut length + margin$

 $= 1000 + 193 + 100 = 1293 \rightarrow 1300 \text{ mm}$

7. Checking basic safety

(1) Permissible axial load

Calculate the buckling load for conditions shown in Fig. 17.4 with P of 10 354 (N) and L_1 of 1 210 (mm).

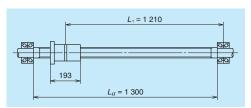


Fig. 17.4 Examination of bucking load

Support configuration is Fixed - Fixed, and from calculation formula 2) on page B44, the screw shaft diameter d, to prevent buckling is

$$d_{r} \ge \left(\frac{P \cdot L_{1}^{2}}{m} \times 10^{4}\right)^{1/4}$$
$$= \left(\frac{10.354 \times 1210^{2}}{19.9} \times 10^{4}\right)^{1/4} = 16.6 \text{ (mm)}$$

From the specification of DFT4010-5 ball nut (page B461), the root diameter of screw shaft *d*, is 34.4 mm and thus meets the above conditions.

Result: Acceptable

(2) Permissible rotational speed

[1] Critical speed n

From the critical speed calculation formula 7) on page B47:

$$n = f \cdot \frac{d_r}{L_1^2} \times 10^7 = 21.9 \times \frac{34.4}{1210^2} \times 10^7$$

= 5 140

The maximum rotational speed (N_{max}) of 1 500 min⁻¹ is less than the critical speed and thus meets requirements.

Result: Acceptable

[2] *d* • *n* value

The $d \cdot n$ value is:

$$d \cdot n = 40 \times 1500 = 60000$$

From **Table 3.2** on page B50, the $d \cdot n$ of the tube recirculation ball nut is 70 000 or less and meets requirements.

Result: Acceptable

(3) Life L,

The dynamic load rating C_a is 61 200 N (see dimension table on page B461), and from formulas 8) and 9) on page B53 the life expectancy is:

$$L_t = \left(\frac{C_{\rm a}}{f_{\rm w} \cdot F_{\rm m}}\right)^3 \times 10^6 \times \frac{1}{60 \cdot N_{\rm m}}$$

≒ 152 000

The above result satisfies the required life of 20 000 (h). Result: Acceptable

8. Check whether factors satisfy requirements (1) Checking accuracy

[1] Positioning accuracy

The positioning accuracy of $\pm 0.035/1~000$ mm, from **Table 1.2** "Tolerance of specified travel and travel variation" on page B38 meets the required positioning accuracy as follows:

 $e_{\rm p} = \pm 0.029/1\,600\,({\rm mm})$

 $v_{...} = 0.018 \text{ (mm)}$

[2] Measures against thermal expansion

Provide pre-tension force equivalent to the elongation from 3°C temperature rise, taking in consideration the load carrying capacity of bearings. Also, adjust the travel compensation for the specified travel equivalent to 3°C temperature rise (refer to page B40).

(a) Thermal elongation : ΔL

From formula 1) on page B40:

$$\Delta L_{\theta} = \rho \cdot \theta \cdot L_{a} = 12.0 \times 10^{-6} \times 3 \times 1300$$

= 0.047 (mm)

(b) Pre-tension force : $F_{\rm e}$

$$F_{\theta} = \Delta L_{\theta} \cdot Ks = \frac{\Delta L_{\theta} \cdot E \cdot \pi \cdot d_{r}^{2}}{\Delta I}$$

$$=\frac{0.047\times2.06\times10^{5}\times\pi\times34.4^{2}}{4\times1~300}$$

 $= 6922 \rightarrow 6900 (N)$

Travel compensation: -0.047/1 300 (mm)

Pre-tension force: 6 900 (N)

Tension (elongation) volume: 0.047 (mm)

[3] Selection of support bearing

Assuming that the ratio of basic dynamic load rating of support bearing (C_a) and pre-tension force (F_θ) is ε , select a bearing which generally satisfies the following:

$$\varepsilon = F_{\rm e}/C_{\rm a} < 0.20$$

Design the bearing support configuration to which pre-tension force is applied in such way that the axial load is supported by a paired mounting or other multi-bearing arrangement. Please consult NSK when one bearing must sustain the pre-tension load.

Table 17.8 Comparison of dynamic load rating and pre-tension force

Bearing No. (designation)	C _a (N)	ε		
30TAC62CDF	29 200	0.23		
30TAC62CDFD	47 500	0.14		

Selected support bearing: 30TAC62CDFD

(2) Checking drive torque of motor

(Required specifications)

- Motor rotational speed: 1 500 min⁻¹
- Time to reach maximum speed: 0.16 sec or less (At the time of rapid traverse)

[1] Load (converted to the motor load)

Calculate the moment of inertia of the ball screw. From formulas 30) and 31) on page B64, moment of inertia of ball screw parts J is calculated as follows, where γ is material density and ball screw shaft length L_{\circ} is 1550 mm.

(Screw shaft)

$$J_{\rm B} = \frac{\pi \cdot \gamma}{32} D^4 \cdot L_{\rm o} = \frac{\pi \times 7.8 \times 10^3}{32} \times 4^4 \times 155$$

$$= 30 (ka \cdot cm^2)$$

(Moving part)

$$J_{\rm w} = m \times \left(\frac{l}{2\pi}\right)^2 = 1 \ 600 \times \left(\frac{1}{2\pi}\right)^2$$

$$= 40 (ka \cdot cm^2)$$

(Coupling)

$$J_c = 10 \text{ (kg} \cdot \text{cm}^2) \cdots \text{assumed}$$

(Total)

$$J_{L} = J_{B} + J_{w} + J_{c} = 30 + 40 + 10$$

= 80 (kg · cm²) \rightarrow 80 × 10⁻⁴ (kg · m²)

[2] Driving torque

The required torque to drive a ball screw resisting external loads T_1 can be obtained by formula 28) on page B64:

$$T_1 = T_\Delta + T_P + T_H$$

In this formula, T_A is drive torque at constant speed, T_P is dynamic friction torque, and, T_U is friction torque of the support bearings. From formula 26) and 25) on page B63, T_A and T_P are:

$$T_A = \frac{Fa \cdot l}{2\pi n}$$

$$T_P = 0.014 F_{a0} \sqrt{d_m \cdot l}$$

$$\eta_1 = 0.9$$

Refer to the starting torque value in **Table** on page B422:

 T_{\shortparallel} is:

 $T_0 = (16 \times 1.35) + (16 \times 1.35) = 43.2 \text{ (N} \cdot \text{cm)}$ So, the required drive torques during rapid traverse T_{11} and heavy cutting T_{13} are:

(At the time of rapid traverse)

$$T_{11} = T_{A1} + T_{P1} + T_{U1}$$

= $\frac{2354 \times 1}{2\pi \times 0.9} + 0.014 \times 3500 \sqrt{4.1 \times 1} + 43.2$

(At the time of heavy cutting)

$$T_{12} = T_{A2} + T_{P2} + T_{U2}$$

$$= \frac{10.354 \times 1}{2\pi \times 0.9} + 0.014 \times 3500 \sqrt{4.1 \times 1} + 43.2$$

 $= 1.973 (N \cdot cm) \rightarrow 1.973 \times 10^{-2} (N \cdot m)$

= 559 (N · cm) \rightarrow 559 \times 10⁻² (N · m)

[3] Selection of the motor

(Selection conditions)

Maximum rotational speed: $N_{\rm M} \ge 1\,500\,({\rm min}^{-1})$

Motor rating torque: $T_M > T_1$ (N · m)

Moment of inertia of the motor: $J_{\rm M} > J_{\rm L}/3$ (kg \cdot m²) Based on the above, select an AC servo motor as follows.

Motor specifications

Rating power output: $W_{\rm M} = 1.8$ (kW)

Maximum rotational speed:

 $N_{\rm M} = 1500 \, (\rm min^{-1})$

Rating torque: $T_{\rm M} = 22.5 \, (\rm N \cdot m)$

 $= 22.5 \times 10^{2} (N \cdot cm)$

Moment of inertia: $J_{\rm M} = 190 \times 10^{-4} \, (\text{kg} \cdot \text{m}^2)$

 $= 190 (kg \cdot cm^2)$

[4] Checking the time to reach maximum speed: Required time to reach rapid traverse speed can be calculated as follows (where $T_M' = 2 \times T_M$):

$$t_{a} = \frac{(J_{L} + J_{M}) \times 2\pi \times N}{(T_{M}' - T_{1}) \times 60} \times 1.4$$

$$= \frac{(80 \times 10^{-4} + 190 \times 10^{-4}) \times 2\pi \times 1500}{(2 \times 22.5 - 559 \times 10^{-2}) \times 60} \times 1.4$$

$$= 0.15 \text{ (sec)}$$

Thus, the time meets the requirement of 0.16 sec or less.

Drill 3: Cartesian robot Z axis (vertical axis)

1. Design conditions

Nut:

Mass of the work : m = 300 kgMaximum travel : $S_{\text{max}} = 1500 \text{ mm}$ Rapid traverse speed : $V_{\text{max}} = 10000 \text{ mm/min}$

Repeatability: 0.3 mm Required life: $L_t = 24\,000\,h$

 $(16^{\text{hours}} \times 300^{\text{days}} \times 5^{\text{years}})$

Screw shaft support configuration:

Fixed -- Simple Flanged single nut

Guide way (rolling): $\mu = 0.01$ (friction coefficient)

Drive motor: AC servo motor $(N_{\text{max}} = 1 \ 000 \ \text{min}^{-1})$

Environment: Slightly dusty

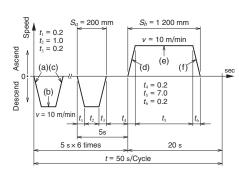


Fig. 17.5 System appearance

Fig. 17.6 Operating conditions

2. Selection of basic factors

(1) Selection of accuracy grade

Although this application is not listed in **Table 4.1** "Accuracy grades of ball screws and their applications" on page B19, it is possible to use an R model ball screw for transfer equipment because the required repeatability of 0.3 mm is not very high.

(2) Selection of lead

From the maximum rotational speed of the AC motor:

$$l \ge \frac{V_{\text{max}}}{N_{\text{max}}} = \frac{10\ 000}{1\ 000} = 10\ (\text{mm})$$

Select a lead 10 mm or over.

(3) Selection of screw shaft diameter

According to **Table 4.6** "Shaft diameter, lead and standard screw length of R models" on page B23, the shaft diameters whose lead is 10 mm or over are in the range of 12 mm to 50 mm.

(4) Selection of stroke

From **Table 4.6** "Screw shaft diameter, lead and standard screw shaft length of R models" on page B23, it is possible to select from R models because the diameter *d* of 15 mm to 50 mm and lead *l* of 10 mm will meet the required maximum stroke of 1500 mm.

Screw shaft diameter: 16, 20, 25, 32, 36

40, 50 (mm) Lead: 10 (mm) Stroke: 1 500 (mm)

4. Decision of screw length

Screw length L_{\circ} is:

L_o = Stroke + nut length + margin + shaft end length

$$= 1500 + 100 + 100 + 200 = 1900 (mm)$$

Normally, the overall screw shaft length L_{\circ} less than or equal to 70 times the screw shaft diameter d is recommended.

Therefore, screw shaft diameter d is:

$$d \ge \frac{L_s}{70} = \frac{1900}{70} = 27.1 \text{ (mm)}$$

Third selection: R model ball screw for transfer equipment Shaft diameter: 32, 36, 40, 45, 50 (mm)

Lead: 10 (mm)
Stroke: 1 500 (mm)

5. Checking basic safety

(1) Allowable axial load

[1] Calculation of allowable axial load Accelerating/decelerating time is:

$$\alpha = \frac{V}{60 t} = \frac{10 \times 10^{3}}{60 \times 0.2} = 833 \text{ (mm/s}^{2})$$
$$= 0.833 \text{ (m/s}^{2})$$
$$t = t_{1} = t_{2} = t_{4} = t_{5}$$

(a), (f)
$$\cdots F_1 = mg - m\alpha$$

 $=300\times 9.80665 - 300\times 0.833$

= 2690 (N)

(b), (e)
$$\cdots F_2 = mg = 2940 (N)$$

(c), (d)
$$\cdots F_3 = mg + m\alpha = 3 \ 190 \ (N)$$

[2] Buckling load

For conditions in **Fig. 17.7**, use values below.

 $P = 3 190 \text{ N}, L_1 = 1 600 \text{ mm}$

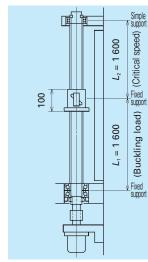


Fig. 17.7 Inspecting for buckling load and critical speed

From formula 2) on page B44:

$$d_{r} \ge \left(\frac{P \cdot L_{1}^{2}}{m} \times 10^{-4}\right)^{1/4}$$

$$= \left(\frac{3.190 \times 1.600^{2}}{19.9} \times 10^{-4}\right)^{1/4} = 14.2 \text{ (mm)}$$

(2) Checking permissible rotational speed

[1] Critical speed

Use values below.

 $n = 1\,000\,(\text{min}^{-1}), L_2 = 1\,600\,(\text{mm})$

From formula 7) on page B47:

$$d_r \ge \frac{n \cdot L_2^2}{f} \times 10^{-7} = \frac{1000 \times 1600^2}{15.1} \times 10^{-7}$$

= 17 (mm)

From Table 3.2 on page B50:

$$d \le \frac{50\ 000}{n} = \frac{50\ 000}{1\ 000}$$

= 50 (mm)

* Please consult NSK when the *d* • *n* value exceeds 50 000.

(3) Checking life (dynamic load rating)

Determine the required load carrying capacity from the load conditions in **Table 17.9**.

Table 17.9 Load conditions

Operating condition	Axial load (N)	Rotational speed (mean) (min ⁻¹)	Use time (s)
(a) _{×6} (f)	$F_1 = 2690$	$N_1 = 500$	$t_{\rm a} = 1.4$
(b) _{x6} (e)	$F_2 = 2940$	$N_2 = 1 000$	$t_{\rm b} = 13.0$
(c) _{x6} (d)	$F_3 = 3 190$	$N_3 = 500$	$t_{c} = 1.4$

Calculate mean load F_m and mean rotational speed N_m from the formulas 11) and 12) on page B53:

Required load carrying capacity is:

$$F_{m} = \left(\frac{F_{1}^{3} \cdot N_{1} \cdot t_{a} + F_{2}^{3} \cdot N_{2} \cdot t_{b} + F_{3}^{3} \cdot N_{3} \cdot t_{c}}{N_{1} \cdot t_{a} + N_{2} \cdot t_{b} + N_{3} \cdot t_{c}}\right)^{1/3}$$

$$= 2 940 \text{ (N)}$$

$$N_{\rm m} = \frac{N_1 \cdot t_{\rm a} + N_2 \cdot t_{\rm b} + N_3 \cdot t_{\rm c}}{t}$$

= 288 (min⁻¹)

From formulas 8) and 9) on page B53:

$$C_a \ge (60 N_m \cdot L_1)^{1/3} \cdot F_m \cdot f_w \times 10^{-2} \text{ (N)}$$

= $(60 \times 288 \times 24000)^{1/3} \times 2940 \times 1.2 \times 10^{-2}$
= 26 300 (N)

(4) Checking static load rating

$$C_{0a} = F_{\text{max}} \times f_{\text{s}} = 3 \ 190 \times 2$$

= 6 380 (N)

In consideration of expense, select a ball screw shaft as follows.

Fourth selection: R model ball screw for transfer equipment

Shaft diameter: 32 (mm)

Lead: 10 (mm)

Stroke:

Ball turns and numbers of circuits : 2.5×2 Screw length : 2 000 (mm)

Basic dynamic load rating: 42 000 (N)

6. Selection of nut

Select a "standard nut with a flange and a built-in brush seals" based on the environment conditions.

Selected ball screw:

Nut assembly RNFTL3210A5S

Screw shaft RS3210A20

II Screw

B99 B100

NSK

B-2-18 References

"NSK Motion & Control (technical journal)" was compiled to introduce NSK products and technologies. You will find data summaries for selecting ball screws in this catalog. If you need detailed technical data, please refer to "NSK Motion & Control" technical journals.

For inquiries and orders, please contact NSK branch offices, sales offices, or representatives.

Table 18.1 NSK Motion & Control (technical journal): Issues relating to ball screws (2002-)

		a control (technical journal) . Issues relating to ball screws (2002-)
Issue No.	Date of Publication	Articles Related to Ball Screws ^{*1}
No.13	October 2002	Development of HTF Series Ball Screws for High Load Drive Applications
No.13	October 2002	High Lead Precision Rolled Ball Screws
No.14	May 2003	High Speed and Low Noise Ball Screws HMC-B02 Series
No.15	December 2003	Clean Support Units for Ball Screws
No.16	August 2004	Development of High Speed and Low Noise Ball Screws
No.18	August 2005	S3 Ball Screws: Super Low Noise Ball Screws for Automation Equipment
No.19	September 2006	High-Speed and Low-Noise Ball Screw for Standard Stock - Compact FA Series
No.21	December 2007	V1 Series Ball Screws for Contaminated Environments
110.21	December 2007	HTF-SRC Series Ball Screws for High-Speed and High-Load Applications
		Technological Trends of Ball Screws for Industrial Machinery
No.22	March 2011	BSL Series Ball Screws for Small Lathes
		HTF-SRD Series Long-Lead Ball Screws for High-Speed and Heavy-Load Applications
No.23	June 2013	TW Series Ball Screws for Twin-Drive Systems
NO.23	June 2013	HMD Series Ball Screws for High-Speed Machine Tools
No.24	December 2014	Ball Screw for Motorcycle Brake Systems
No 25	Contour hou 201E	HMS Series Ball Screws for High-Speed Machine Tools
No.25	September 2015	Miniature Large-Lead Series of High-Speed, Low-Noise Ball Screws
		Development of a Nut Cooling Ball Screw
No.26	April 2016	Ball Screws with X1 Seals for Machine-Tool Applications
		HTF-SRE Large, High-Speed, High-Load Capacity Ball Screws
No.27	November 2016	Strategy for Frictional Behavior Control in Ball Screws
NO.27	November 2016	Ball Screws with Minimal Grease-Splatter L1 Seals
No.28	June 2017	Ultra-Large Ball Screws
No.30	June 2019	The Technical Trend of Machine Tool Components
No.31	luma 2020	Development of Long Life Ball Screw using Material with High Retained
10.31	June 2020	Austenite Amount γ R for High-Load Drive
		High Load Endurance Test Unit for Electric Injection Molding Machine Ball Screws
No.32	June 2021	Ball Screw Units for Electric Hydraulic Brake Systems
		High Durability Precision Ball Screw
No.33	June 2022	Ball Screw Technologies to Control Machine Tool Quadrant Glitches
No 24	luna 2022	Evaluation of Lubrication Performance in Ball Screws and Linear Guides by
No.34	June 2023	the Electrical Impedance Method

Titles reflect the original publication. Note that product names, expressions, etc. may have been changed/corrected since publication.

B-2-19 Guide to Technical Services

(1) CAD data

■Web page

http://www.jp.nsk.com/app01/en/ctrg/

(2) Telephone consultation with NSK engineers

This catalog contains technical explanations for each section. However, some descriptions and explanations may be insufficient due to page limitations, etc. To amend this shortcoming, NSK offers telephone assistance. NSK engineers are pleased to help you. Our local offices are listed in the last part of this catalog. Please do not hesitate to contact a NSK office or representative in your area.

(3) Additional machining (processing) of standard ball screws in stock

NSK processes standard ball screw blank shaft ends. NSK also cuts linear guide rails to required lengths. Service is available at NSK processing factories throughout the world. Requests are taken by branch offices and agencies.

B101 B102

B-2-20 Precautions When Handling Ball Screws

Ball screws are precision products. They require careful handling as described below.

Lubrication

(1) Confirm the state of lubrication before use. Insufficient lubrication causes loss of ball screw functions in a short period.

(2) Do not apply any lubrication if grease is already applied to the ball screws. Remove dust or swarf if stuck to the greased surface during handling. Wipe the surface with clean white kerosene, and then apply the same type of new lubricant before use. Avoid using different types of grease at the same time.

Consult NSK for special oil lubricant if it is required for your application.

(3) Check the grease after two to three months of operation. Wipe off the old grease if it is excessively contaminated, and apply a sufficient volume of fresh grease. After the initial check, check and replenish the grease approximately every year. Check more often if the environment requires. Note: Refer to pages B67 and D13 for lubrication.

Do not disassemble

Do not reassemble Watch out for falling objects

Handle with care

Do not apply shock

Handling

(1) Never disassemble the ball screw. It invites dust to enter and lowers precision and may cause an

(2) Once the ball screw is disassembled for some reason, the user should never reassemble the ball screw. Loss of ball screw function is apt to occur if a mistake is made. Please send the ball screw to NSK for repair or re-assembly. It will be reworked at a nominal fee.

(3) The ball screw shaft or nut may fall off due to its own weight. Watch out for such falling objects. If it falls, the ball groove or ball recirculation component may be damaged and their function might be lost. Make certain to return such items to NSK for checks. There will be a nominal fee for this service.

(4) If the recirculation component, the shaft outside, or the ball groove is scratched or damaged by impact, recirculation operation becomes deficient and may cause a loss of function.

Note: Refer to page B73 for assembling components.

Follow speed limits

Do not overrun

Do not exceed temperature limits

Precautions in use

(1) Ball screws should be used in a clean environment. Use a dust cover to keep dust and swarf from entering into the system. Insufficient dust protection causes not only the ball screw function to deteriorate, but also brings about damage to the recirculation components if dust plugs the system. This may result in more serious accidents such as a fall of the table.

(2) For rotational speed in operation, refer to the applicable section in this catalog which describes permissible rotational speeds or to specification drawings furnished by NSK. Exceeding permissible rotational speed damages recirculation components and may cause the table to fall. A system such as a safety nut is recommended for vertical use of ball screws. Please consult NSK for safety systems.

(3) Overrunning ball nuts (removed from the ball thread) causes the balls to fall out, damages recirculation components, and dents ball grooves, resulting in insufficient operation. Continued use under such conditions may cause premature wear and damages recirculation components. For these reasons, avoid overrun by all means. If overrun occurs, please request NSK to check. There will be a nominal fee for this service.

(4) Ball screws are designed to be used at a temperature of less than 80°C. Do not operate at temperatures higher than this limit. Use at a higher temperature may damage recirculation and seal components. Please consult NSK if it is necessary to use at a temperature higher than the limit.

When using NSK K1 lubrication units, the operating temperature should be 50°C or less. (Momentary maximum temperature in use: 80°C)

Note: Please read page B83 before designing.

Store in the correct position

Storage

(1) Store in the original NSK packaging. Do not unpack or tear the inner wrapping unnecessarily. This allows dust and moisture to enter, potentially causing rusting and/or deterioration of product performance.

(2) Store indoors in a cool, dry environment with little temperature variation. High temperature and high humidity environments significantly decrease the effectiveness of rust-inhibiting compounds.

- (3) The following position is recommended when storing ball screws.
- (1) Keep in the NSK original package, and place it flat.
- 2 Place flat on supports in a clean area.
- 3 Hang vertically in a clean place.

B-3 Ball Screw Dimension Tables

. Compact FA Model	B107
2. High-Speed SS Model	B147
3. Finished Shaft End	B157
MA Model, Miniature, Fine Lea	d B159
FA Model for Small Equipment	B181
SA Model for Machine Tools	B217
. Finished Shaft End	
Stainless Steel KA Model	B273
i. Blank Shaft End	B299
MS Model, Miniature, Fine Lead	d B301
FS Model for Small Equipment	B309
SS Model for Machine Tools	B321

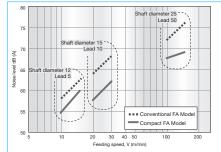
6. Ball Screws for Transfer Equipment B349

7. Accessories

NSK

B389

B-3-1 Dimension Tables and Reference Numbers for Standard Ball Screws


B-3-1.1 Compact FA-PSS, FA-USS, and FA-FSS Models

1. Features

NSK offers the compact FA model featuring end-deflector recirculation systems for highspeed and low-nose operation in a compact design. These exceptionally high performance ball screws are ready for use in a variety of fields such as semiconductor manufacturing equipment, flat panel display manufacturing equipment, chip mounting equipment, measuring apparatus, food and medical equipment, and automotive manufacturing equipment.

Quieter sound

The operating noise level of ball screws has been reduced by 6 dB(A), about half of what is sensed by the ear.

(Microphone was positioned at a distance of 400 mm for all noise levels)

Fig. 1 Comparison of noise level

Compact

The outside diameter of the ball nut is as much as 30% smaller than existing NSK products. This contributes to more compact designs of all sorts of equipment and devices such as lowprofile positioning stages.

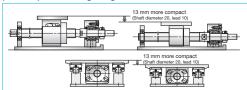


Fig. 2 Comparison of FA and compact FA-PSS models ●High speed

The permissible rotational speed up to 5 000 min⁻¹. This capability dramatically expands the range of service conditions.

Please refer to the dimension tables for details of the permissible rotational speed.

A grease fitting is provided as a standard equipment

The new ball screw is equipped with a grease fitting (M5 \times 0.8) as standard equipment. Two lubrication ports are provided to facilitate easy maintenance.

Storage seal

Compact, thin plastic seals are available. Nut outside diameter is compact compared with the tube recirculation system.

■Low-profile design

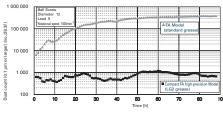

Low-profile support units especially compatible with the compact FA model are available for a superb space-saving design.

Fig. 3 Comparison of support units

Low dust generation LG2 grease FA-USS model

The dust count is approximately 1/100 that of the existing FA model. It is suitable for applications in clean environments.

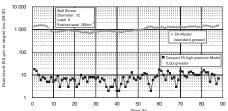


Fig.4 Comparison of dust count

Easy stroke setting FA-FSS model

Flexible stroke setting with fixed-simple support by mounting a support unit (simple support side) directly onto ball screw thread outside diameter. Proprietary support units (simple support side) are available from NSK.

2. Order of the dimension tables

Dimension tables are arranged by model in order of increasing shaft diameter.

3. Dimension tables

Dimension tables show shapes/sizes as well as specification factors for each shaft diameter/ lead combination. Tables also contain data as follows:

Stroke

Nominal stroke: A reference for your use. Maximum stroke: The limit stroke that the nut can move. The value is

obtained by subtracting the nut length from the effective

threaded length (L₁).

Lead accuracy

FA-PSS model: C5 grade; FA-USS model: C3 grade; FA-FSS model: Ct7 grade

T: Travel compensation

e_n: Tolerance on specified travel

υ...: Travel variation

See "Technical Description: Lead Accuracy" (page B37) for the details of the codes.

Fig.5 Flexible stroke setting

Permissible rotational speed

d • n:

Limited by the relative peripheral speed between the

screw shaft and the nut. Critical speed: Limited by the natural

frequency of the ball screw shaft. Critical speed depends on the support condition of the screw shaft.

The lower of the two criteria, the $d \cdot n$ and critical speed, will determine the overall permissible rotational speed of the ball screw. For details, see "Technical Description: Permissible Rotational Speed" (page B47).

4. Other

The seal of the ball screw and end deflector are made of synthetic resin. Consult NSK when using our ball screws under extreme environments, in special environments, or if using special lubricant or oil.

The NSK K1 cannot be mounted to the compact FA model.

For special environments, see pages B70 and D2. For lubrication, see pages B67 and D13.

Note: For details on standard stock products, contact NSK.

Table 1 Combinations of screw shaft diameter and lead

Lead Screw shaft diameter	5	8	10	12	15	20	25	30	40	50	60
6		B109		B109							
8			B111		B111						
10	B113 B133		B113								
12	B115 B135		B115 B139			B115		B115			
15	B117 B137		B117 B141			B119 B141		B119			
20	B121		B121 B143			B123 B143		B123	B125		B125
25	B127		B127 B145			B129 B145	B129 B145	B131		B131	

B107 B108

Screw shaft ø6

Lead 8, 12

Unit: mm

Unit: mm

Ball screw specifications								
Ball diameter/screw shaft root diameter	1.2 / 4.9							
Ball circle dia.	6.2							
Accuracy grade/axial play	C5 / 0.005 or less							
Factory-packed grease	NSK grease PS2							

Recommended support unit

For drive side (Fixed)
WBK04-01M (square)
WBK04-11M (round)

2- ϕ 3.4 drill thru (equally spaced)
7.5 7.5 15 Cross-section X-X

	Screw shaft	Lood	Lead Effective		Basic load ratings (N)		Nut	Screw shaft dimensions	
Reference No.	diameter	Lead		Dynamic	Static	Maximum stroke	length		
	d	l		$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$		L	L_{t}	L_1
PSS0608NAD0150		8	2	690	805	102.5	16	118.5	8.5
PSS0608NBD0150	6	0	4	1 480	1 940	94.5	24	118.5	8.5
PSS0612NAD0150		12	2	665	800	97.0	20	117	10
PSS0612NBD0150		12	4	1 430	1 970	85.0	32	117	10

φ 14 φ 27

150

√[0.005]E

23

M4×0.5

- ✓ 0.010 E

Notes: *1. Contact NSK if permissible rotational speed will be exceeded.

✓0.010 A

Lt (Hardened area)

127

	Lead accuracy		Dynamic	Mass	Permissible	Nut internal	Standard grease
Target value	Error	Variation	preload torque	IVIdSS	rotational speed	space	replenishment
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	(N·cm)	(kg)	(min ⁻¹) *1	(cm³)	(cm³)
	0.020			0.06		0.2	0.1
0		0.018	~0.5	0.06	5 000	0.3	0.2
U		0.020 0.018		0.06	5 000	0.2	0.1
					0.07		0.3

- 2. These ball screws are suitable for operating temperatures from 0 to 80 °C. 3. We recommend using NSK support units. Refer to Page B389 for details.

Screw shaft ø8

Lead 10, 15

Unit: mm

Unit: mm

Ball screw specifications							
Ball diameter/screw shaft root diameter	1.588 / 6.6						
Ball circle dia.	8.3						
Accuracy grade/axial play	C5 / 0.005 or less						
Factory-packed grease	NSK grease PS2						

Recommended support unit

For drive side (Fixed)
WBK06-01M (square)
WBK06-11M (round)

	2-¢3.4 drill thru (equally spaced)
9.5	9.5
Cross-section	1 X-X

	Screw shaft	Lood	Effective	Basic load	Basic load ratings (N)		Nut	Screw shaft dimensions			
Reference No.	diameter	Lead	ball turns	Dynamic	Static	Maximum stroke	length				
	d	l		$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$		L	L_{t}	L_1		
PSS0810NAD0150	- 8	10	2	1 150	1 420	91.5	18	109.5	10.5		
PSS0810NBD0150		0	'*	10	4	2 470	3 430	81.5	28	109.5	10.5
PSS0815NAD0150				15	2	1 130	1 430	85.0	22	107	13
PSS0815NBD0150		15	4	2 410	3 520	70.0	37	107	13		

AG

150

φ 18 φ 31

- ✓ 0.020 A

Ε

30

0.005 E

M6×0.75

Notes: *1. Contact NSK if permissible rotational speed will be exceeded.

✓ 0.010 A -

L_t (Hardened area)

120

	Lead accuracy		Dynamic	Mass	Permissible	Nut internal	Standard grease	
Target value	Error	Variation	preload torque	IVIdSS	rotational speed	space	replenishment	
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	(N·cm)	(kg)	(min ⁻¹) *1	(cm³)	(cm³)	
	0.020				0.09		0.4	0.2
0		0.018	~0.5	0.11	5 000	0.5	0.3	
U		0.020 0.018	0.018	0.5	0.1	3 000	0.4	0.2
				0.12		0.6	0.3	

- 2. These ball screws are suitable for operating temperatures from 0 to 80 °C. 3. We recommend using NSK support units. Refer to Page B389 for details.

4- φ4.5 drill thru φ8 c'bore, 4.5 depth

Plug (oil hole, M5×0.8 tap)

Cross-section X-X

(Medium, High helix lead)

Ball screw s	pecifications			
Preload	Oversize ball preload (P-preload)			
Ball diameter/screw shaft root diameter	2.000 / 8.2			
Ball circle dia.	10.3			
Accuracy grade/axial play	C5 / 0			
Factory-packed grease	NSK grease PS2			

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK08-01B (low-profile, square)	WBK08S-01B (low-profile, square)
WBK08-11 (round)	
WBK08-11B (round, high load)	

Unit: mm

	Lea	ad accuracy Shaft		Shaft	Dynamic preload Mass		Permissible rotational speed (min ⁻¹) *2	Nut internal	Standard grease
1	arget value	Error	Variation	run-out	torque	IVIdSS	Fired Circula	space	replenishment
	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	С	(N·cm) *1	(kg)	Fixed-Simple	(cm³)	(cm³)
		0.020	0.018	0.030	0.7 - 3.3	0.3			
		0.020	0.018	0.045	0.7 - 3.3	0.3	5 000	0.8	0.4
		0.023	0.018	0.060	0.6 - 4.3	0.3			
		0.025	0.020	0.070	0.6 - 4.3	0.4			
	0	0.027	0.020	0.085	0.4 - 4.9	0.5			
		0.020	0.018	0.045	0.7 - 3.3	0.3		0.7	0.4
		0.023	0.018	0.060	0.6 - 4.3	0.4	5 000		
		0.025	0.020	0.070	0.6 - 4.3	0.4	5 000		
		0.027	0.020	0.085	0.4 - 4.9	0.5			

- 4. We recommend using NSK support units. Refer to Page B389 for details.

 5. We recommend filling about 50% of the nut's internal space with grease. See Page D16 for details.

(10.018 A) (10.018 A) (10.01	2-thin plastic seal (synthetic plastic) 2 thin plastic seal (synthetic plastic) 3 thin plastic seal (synthetic plastic) 4 thin plastic seal (synthetic plastic) 5 thin plastic seal (synthetic plastic) 5 thin plastic seal (synthetic plastic) 6 thin plastic seal (synthetic plastic) 6 thin plastic seal (synthetic plastic) 7 thin plastic seal (synthetic plastic) 7 thin plastic seal (synthetic plastic) 8 thin plastic seal (synthetic plastic) 9 thin plastic seal (synthetic plastic) 1 thin plastic seal (synthetic plasti	10 2 3 2 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M8) 9	ंड्ड • • • • • • • • • • • • • • • • • • •
9	La	7- 7	37	_
	L _o	-]

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Screw s	shaft dim	ensions
Reference No.	diameter	Lead	Dynamic	Static	Nominal	Max.	length			
	d	l	C _a	C_{0a}	ivorninai	IVIdX.	L	$L_{\rm t}$	La	L。
PSS1005N1D0171					50	78		112	125	171
PSS1005N1D0221					100	128		162	175	221
PSS1005N1D0321		5	3 420	4 840	200	228	29	262	275	321
PSS1005N1D0421					300	328		362	375	421
PSS1005N1D0521	10				400	428		462	475	521
PSS1010N1D0221					100	125		162	175	221
PSS1010N1D0321		10	2 290	2 980	200	225	32	262	275	321
PSS1010N1D0421		10	2 290	2 980	300	325	32	362	375	421
PSS1010N1D0521					400	425		462	475	521

Notes: *1. Ball screw preload control values are shown. Approximately 2.0 N-cm of torque will be added due to thin plastic seals.

B113 B114

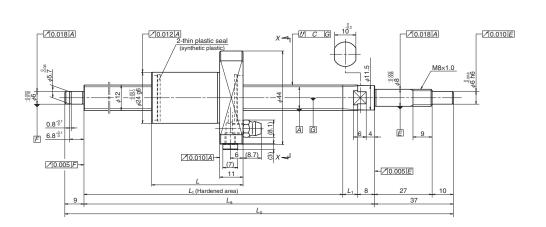
^{*2.} Contact NSK if permissible rotational speed will be exceeded.

^{3.} These ball screws are suitable for operating temperatures from 0 to 80 °C.

Screw shaft ø12 Lead 5, 10, 20, 30

Unit: mm

Ball screw s	pecifications
Preload	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	2.000 / 10.2
Ball circle dia.	12.3
Accuracy grade/axial play	C5 / 0
Factory-packed grease	NSK grease PS2


Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK08-01B (low-profile, square)	WBK08S-01B (low-profile, square)
WBK08-11 (round)	
WBK08-11B (round, high load)	

Unit: mm

	l accura Error	су	01 (
Target value E	Error		Shaft	Dynamic preload	Mass	Permissible rotational speed (min ⁻¹) *2	Nut internal	Standard grease
		Variation	run-out	torque	141000	Fixed-Simple	space	replenishment
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	С	(N·cm) *1	(kg)	r ixou cimpio	(cm³)	(cm³)
0	0.020	0.018	0.030	0.7 - 3.3	0.3			
0	0.020	0.018	0.045	0.7 - 3.3	0.3			
0	0.023	0.018	0.060	0.6 - 4.3	0.4	5 000	1.0	0.5
0	0.025	0.020	0.070	0.6 - 4.3	0.5	3 000	1.0	0.5
0	0.027	0.020	0.085	0.6 - 4.3	0.6			
0	0.030	0.023	0.085	0.4 - 4.9	0.7			
0	0.020	0.018	0.045	0.7 - 3.3	0.4			
0	0.023	0.018	0.060	0.6 - 4.3	0.5			
0	0.025	0.020	0.070	0.6 - 4.3	0.5	5 000	1.0	0.5
0	0.027	0.020	0.085	0.6 - 4.3	0.6			
0 0	0.030	0.023	0.085	0.4 - 4.9	0.7			
0	0.023	0.018	0.045	1.4 - 4.5	0.4	5 000		
0	0.023	0.018	0.060	0.9 - 4.9	0.5	5 000		
0	0.027	0.020	0.070	0.9 - 4.9	0.6	5 000	1.2	0.6
0	0.030	0.023	0.085	0.6 - 5.9	0.7	5 000		
0	0.030	0.023	0.110	0.6 - 5.9	0.8	4 480		
0	0.023	0.018	0.045	1.4 - 4.5	0.5	5 000		
0	0.023	0.018	0.060	0.9 - 4.9	0.6	5 000		
0	0.027	0.020	0.070	0.9 - 4.9	0.7	5 000	1.5	0.8
0	0.030	0.023	0.085	0.6 - 5.9	0.7	5 000		
0	0.030	0.023	0.110	0.6 - 5.9	0.8	4 720		

- 4. We recommend using NSK support units. Refer to Page B389 for details.
- 5. We recommend filling about 50% of the nut's internal space with grease. See Page D16 for details.

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Screv	v shaft	dimen	sions
Reference No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}	INOITIIIIai	IVIAX.	L	L_{t}	La	L。	L ₁
PSS1205N1D0171					50	75		110	125	171	
PSS1205N1D0221					100	125		160	175	221	
PSS1205N1D0321		5	3 750	E 010	200	225	30	260	275	321	-
PSS1205N1D0421		5	3 /50	5 810	300	325	30	360	375	421	'
PSS1205N1D0521					400	425		460	475	521	
PSS1205N1D0621					500	525		560	575	621	
PSS1210N1D0221					100	112		160	175	221	
PSS1210N1D0321				5 780	200	212	43	260	275	321	
PSS1210N1D0421		10	3 760		300	312		360	375	421	.
PSS1210N1D0521					400	412		460	475	521	
PSS1210N1D0621	12				500	512		560	575	621	
PSS1220N1D0271					100	153		208	225	271	
PSS1220N1D0371					200	253		308	325	371	
PSS1220N1D0471		20	2 330	3 600	300	353	50	408	425	471	,
PSS1220N1D0571					400	453		508	525	571	
PSS1220N1D0671					500	553		608	625	671	
PSS1230N1D0271					100	128		203	225	271	
PSS1230N1D0371					200	228		303	325	371	
PSS1230N1D0471		30	2 190	3 650	300	328	70	403	425	471	14
PSS1230N1D0571					400	428		503	525	571	
PSS1230N1D0671					500	528		603	625	671	

Notes: *1. Ball screw preload control values are shown. Approximately 2.0 N-cm of torque will be added due to thin plastic seals.

*2. Contact NSK if permissible rotational speed will be exceeded.

3. These ball screws are suitable for operating temperatures from 0 to 80 °C.

(Fine, Medium lead)

Screw shaft ø15

Lead 5, 10

Unit: mm

Ball screw s	pecifications
Preload	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	2.778 / 12.6
Ball circle dia.	15.5
Accuracy grade/axial play	C5 / 0
Factory-packed grease	NSK grease LR3

For drive side	For non-o	drive side
(Fixed)	(Fixed)	(Simple)
WBK12-01B (low-profile, square)	WBK10-01B (low-profile, square)	WBK12S-01B (low-profile, square)
WBK12-11 (round)	WBK10-11 (round)	

\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	/	5	3
	Recor	nmended suppo	ort unit
300	For drive side	For non-	drive side
15.5	(Fixed)	(Fixed)	(Simple)
	WBK12-01B (low-profile, square)	WBK10-01B (low-profile, square)	WBK12S-01B (low-profile, s
	WBK12-11 (round)	WBK10-11 (round)	
			_

Unit: mm

Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2	Nut internal	Standard grease	
shape	Target value	Error	Variation	run-out	preload torque	IVIdSS	Fixed-	Fixed-	space	replenishment	
(non-drive side)	T	$e_{\scriptscriptstyle p}$	บู	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)	
		0.020	0.018	0.035	0.2 - 6.9	0.5	5 000				PSS
		0.020	0.018	0.035	0.2 - 6.9	0.5	5 000				0.
		0.023	0.018	0.045	0.2 - 6.9	0.6	5 000				
П		0.025	0.020	0.050	0.4 - 9.8	0.8	5 000	_	2.0	1.0	
		0.027	0.020	0.060	0.4 - 9.8	0.9	5 000				
		0.030	0.023	0.075	0.4 - 9.8	1.0	5 000				
		0.035	0.025	0.075	0.4 - 11.8	1.1	4 130				
П	0	0.020	0.018	0.035	0.6 - 7.4	0.6	5 000	_			
П	0	0.023	0.018	0.045	0.6 - 7.4	0.7	5 000	_			
П		0.025	0.020	0.050	0.4 - 9.8	0.8	5 000	_			
П		0.027	0.020	0.060	0.4 - 9.8	1.0	5 000	_			
П		0.030	0.023	0.075	0.4 - 9.8	1.1	5 000	_	2.0	1.0	
П		0.035	0.025	0.075	0.4 - 11.8	1.2	4 210	_			
I		0.035	0.025	0.095	0.4 - 11.8	1.4	3 190	4 410			
I		0.040	0.027	0.095	0.4 - 11.8	1.5	2 500	3 470			
I		0.046	0.030	0.120	0.4 - 11.8	1.7	1 650	2 320			

- 4. We recommend using NSK support units. Refer to Page B389 for details.5. We recommend filling about 50% of the nut's internal space with grease. See Page D16 for details.

10 11 11 11 11 11 11 11	Z0010A - (Z) 11	12 12 12 13 18 15	E 10	≥x1.0
✓0.005F	L _t (Hardened area)	L ₁	30	15
30	La		45	
-	L _o			

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Scre	w shaft	dimens	ions
Reference No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}	INOITIIIIai	iviax.	L	$L_{\rm t}$	La	L _o	L ₁
PSS1505N1D0211					50	103		139	154	211	
PSS1505N1D0261					100	153		189	204	261	
PSS1505N1D0361					200	253		289	304	361	
PSS1505N1D0461		5	6 410	10 100	300	353	30	389	404	461	15
PSS1505N1D0561					400	453		489	504	561	
PSS1505N1D0661					500	553		589	604	661	
PSS1505N1D0761					600	653		689	704	761	
PSS1510N1D0261	15		100	140		189	204	261			
PSS1510N1D0361					200	240		289	304	361	
PSS1510N1D0461					300	340		389	404	461	
PSS1510N1D0561					400	440		489	504	561	
PSS1510N1D0661		10	6 530	10 200	500	540	43	589	604	661	15
PSS1510N1D0761					600	640		689	704	761	
PSS1510N1D0879					700	740		789	804	879	
PSS1510N1D0979					800	840		889	904	979	
PSS1510N1D1179					1 000	1 040		1 089	1 104	1 179	

Notes: *1. Ball screw preload control values are shown. Approximately 2.0 N-cm of torque will be added due to thin plastic seals.

*2. Contact NSK if permissible rotational speed will be exceeded.

3. These ball screws are suitable for operating temperatures from 0 to 80 °C.

B117 B118

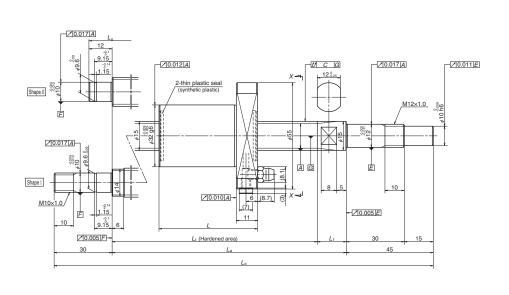
Screw shaft ø15

Lead 20, 30

Unit: mm

Ball screw specifications									
Preload	Oversize ball preload (P-preload)								
Ball diameter/screw shaft root diameter	3.175 / 12.2								
Ball circle dia.	15.5								
Accuracy grade/axial play	C5 / 0								
Factory-packed grease	NSK grease LR3								

unit


For drive side	For non-drive side						
(Fixed)	(Fixed)	(Simple)					
WBK12-01B (low-profile, square)	WBK10-01B (low-profile, square)	WBK12S-01B (low-profile, square)					
WBK12-11 (round)	WBK10-11 (round)						

Cross-section X-X

	Recommended support up					
	For drive side	For non-	drive			
16.5	(Fixed)	(Fixed)	(
	WBK12-01B (low-profile, square)	WBK10-01B (low-profile, square)	WBK12S			
	WBK12-11 (round)	WBK10-11 (round)				

Left shaft end	Le	ad accura	асу	Shaft Dynamic		Mass	Permissible rotation	nal speed (min ⁻¹) *2	Nut internal	Standard grease
shape	Target value	Error	Variation	run-out	preload torque	IVIdSS	Fixed-	Fixed-	space	replenishment
(non-drive side)	T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.020	0.018	0.035	0.8 - 8.8	0.7	5 000	_		
П		0.023	0.018	0.045	0.8 - 8.8	0.8	5 000	_		
П		0.025	0.020	0.050	0.8 - 10.8	0.9	5 000	_		
П		0.027	0.020	0.060	0.8 - 10.8	1.1	5 000	_		
П		0.030	0.023	0.075	0.8 - 10.8	1.2	5 000	_	2.8	1.4
П		0.035	0.025	0.075	0.8 - 13.8	1.3	4 170	_		·
I		0.035	0.025	0.095	0.8 - 13.8	1.5	3 150	4 310		
I		0.040	0.027	0.095	0.8 - 13.8	1.6	2 460	3 390		
I	0	0.046	0.030	0.120	0.8 - 13.8	1.9	1 620	2 260		
П		0.023	0.018	0.035	1.2 - 9.3	0.8	5 000	_		
П		0.025	0.020	0.050	0.8 - 10.8	1.0	5 000	_		
П		0.027	0.020	0.060	0.8 - 10.8	1.1	5 000	_		
П		0.030	0.023	0.060	0.8 - 10.8	1.2	5 000	_		
П		0.030	0.023	0.075	0.8 - 13.8	1.4	5 000	_	3.4	1.7
П		0.035	0.025	0.095	0.8 - 13.8	1.5	3 770	_		
I		0.040	0.027	0.095	0.8 - 13.8	1.6	2 880	3 910		
I		0.040	0.027	0.120	0.8 - 13.8	1.8	2 310	3 110		
I		0.046	0.030	0.120	0.8 - 13.8	2.0	1 540	2 100		

- 4. We recommend using NSK support units. Refer to Page B389 for details.
- 5. We recommend filling about 50% of the nut's internal space with grease. See Page D16 for details.

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Scre	Screw shaft dimensions			
Reference No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length					
	d	l	C _a	C_{0a}	INOITIIIIai	iviax.	L	$L_{\rm t}$	La	L。	L ₁	
PSS1520N1D0261					100	129		186	204	261		
PSS1520N1D0361					200	229		286	304	361		
PSS1520N1D0461					300	329		386	404	461		
PSS1520N1D0561					400	429		486	504	561		
PSS1520N1D0661		20	5 660	8 700	500	529	51	586	604	661	18	
PSS1520N1D0761	15				600	629		686	704	761		
PSS1520N1D0879					700	729		786	804	879		
PSS1520N1D0979					800	829		886	904	979		
PSS1520N1D1179					1 000	1 029		1 086	1 104	1 179		
PSS1530N1D0311		15	15				100	153		230	254	311
PSS1530N1D0411					200	253		330	354	411	24	
PSS1530N1D0511					300	353		430	454	511		
PSS1530N1D0611					400	453		530	554	611		
PSS1530N1D0711		30	5 500	8 580	500	553	71	630	654	711		
PSS1530N1D0811					600	653		730	754	811		
PSS1530N1D0929					700	753		830	854	929		
PSS1530N1D1029					800	853		930	954	1 029		
PSS1530N1D1229					1 000	1 053		1 130	1 154	1 229		

Notes: *1. Ball screw preload control values are shown. Approximately 2.0 N·cm of torque will be added due to thin plastic seals.

- *2. Contact NSK if permissible rotational speed will be exceeded.
- 3. These ball screws are suitable for operating temperatures from 0 to 80 °C.

B119 B120 ∕0.017 A

Shape II

Shape I

∕[0.017]**A**]-

1.15⁻⁸¹⁴ 10.15⁻⁸¹ - ✓ 0.012 E

✓0.017 A

Ė

-[∕]0.005[*E*]

M15×1.0

Screw shaft ø20

Lead 5, 10

Unit: mm

Unit: mm

Ball screw s	Ball screw specifications										
Preload	Oversize ball preload (P-preload)										
Ball diameter/screw shaft root diameter	3.175 / 17.2										
Ball circle dia.	20.5										
Accuracy grade/axial play	C5 / 0										
Factory-packed grease	NSK grease LR3										

Recommended support unit

For drive side	For non-drive side					
(Fixed)	(Fixed)	(Simple)				
WBK15-01B (low-profile, square)	WBK15-01B (low-profile, square)	WBK15S-01B (low-profile, square)				
WBK15-11 (round)	WBK15-11 (round)					

4- \$6.6 drill thru 4-11 c'bore, 6.5 depth
() () () () () () () () () ()
805 50 50 50 50 50 50 50 50 50 50 50 50 5
Grease fitting (oil hole, M5x0.8 tap) 19 19
Plug (oil hole, M5x0.8 tap) Cross-section X-X

	Screw shaft	11	Basic load	ratings (N)	Str	oke	Nut	Scre	Screw shaft dimensions			
Reference No.	diameter	Lead	Dynamic	Static	Nominal	Max.	length					
	d	l	C _a	C_{0a}	INOITIIIIai	IVIAX.	L	L_{t}	La	L _o	L ₁	
PSS2005N1D0323					150	191		228	250	323		
PSS2005N1D0373					200	241		278	300	373		
PSS2005N1D0473					300	341		378	400	473		
PSS2005N1D0573		5	10 400	18 500	400	441	31	478	500	573	22	
PSS2005N1D0673		5	10 400	16 500	500	541	31	578	600	673	22	
PSS2005N1D0773	20				600	641		678	700	773		
PSS2005N1D0873					700	741		778	800	873		
PSS2005N1D1000					800	839		878	900	1 000		
PSS2010N1D0387					200	241		292	314	387		
PSS2010N1D0487					300	341		392	414	487		
PSS2010N1D0587					400	441		492	514	587		
PSS2010N1D0687					500	541		592	614	687		
PSS2010N1D0787		10	10 200	18 600	600	641	45	692	714	787	22	
PSS2010N1D0887					700	741		792	814	887		
PSS2010N1D1014					800	839		892	914	1 014		
PSS2010N1D1214					1 000	1 039		1 092	1 114	1 214		
PSS2010N1D1414					1 200	1 239		1 292	1 314	1 414		

2-thin plastic seal (synthetic plastic)

Notes: *1. Ball screw preload control values are shown. Approximately 2.0 N-cm of torque will be added due to thin plastic seals.

*2. Contact NSK if permissible rotational speed will be exceeded.

3. These ball screws are suitable for operating temperatures from 0 to 80 °C.

Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotatio	nal speed (min ⁻¹) *2	Nut internal	Standard grease	
shape	Target value	Error	Variation	run-out	preload torque	IVIdSS	Fixed-	Fixed-	space	replenishment	
(non-drive side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)	
П		0.023	0.018	0.045	0.6 - 7.4	1.0	5 000	_			700
П		0.023	0.018	0.045	0.6 - 7.4	1.1	5 000	_		·	
П		0.025	0.020	0.050	0.6 - 7.4	1.3	5 000	_			
П		0.027	0.020	0.060	0.4 - 9.8	1.5	5 000	_	2.4	1 7	
П		0.030	0.023	0.075	0.4 - 9.8	1.7	5 000	_	3.4	1.7	
П		0.035	0.025	0.075	0.4 - 9.8	1.9	5 000	_			
П		0.035	0.025	0.095	0.4 - 9.8	2.2	4 410	_			
I		0.040	0.027	0.095	0.4 - 11.8	2.4	3 450	4 710			
П	0	0.023	0.018	0.045	1.2 - 9.3	1.2	5 000	_			
П		0.025	0.020	0.050	1.2 - 9.3	1.4	5 000	_			
П		0.027	0.020	0.060	0.8 - 10.8	1.7	5 000	_			
П		0.030	0.023	0.075	0.8 - 10.8	1.9	5 000	_			
П		0.035	0.025	0.075	0.8 - 10.8	2.1	5 000	_	3.2	1.6	
П		0.035	0.025	0.095	0.8 - 10.8	2.4	4 330	_			
I		0.040	0.027	0.120	0.8 - 13.8	2.6	3 400	4 640			
I		0.046	0.030	0.120	0.8 - 13.8	3.1	2 250	3 110			
I		0.054	0.035	0.160	0.8 - 13.8	3.6	1 600	2 220			

4. We recommend using NSK support units. Refer to Page B389 for details.

5. We recommend filling about 50% of the nut's internal space with grease. See Page D16 for details.

B121 B122

∕0.017 A

Shape II

Shape I

∕ 0.017 **A**

PSS2030N1D1235

PSS2030N1D1435

1.15⁻⁸¹⁴ 10.15⁻⁸¹ √0.012*E*

✓0.017 A

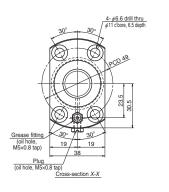
Ė

-[∕]0.005[*E*]

M15×1.0

Screw shaft ø20

Lead 20, 30


Unit: mm

Unit: mm

Ball screw specifications								
Preload	Oversize ball preload (P-preload)							
Ball diameter/screw shaft root diameter	3.175 / 17.2							
Ball circle dia.	20.5							
Accuracy grade/axial play	C5 / 0							
Factory-packed grease	NSK grease LR3							

Recommended support unit

For drive side	For non-drive side						
(Fixed)	(Fixed)	(Simple)					
WBK15-01B (low-profile, square)	WBK15-01B (low-profile, square)	WBK15S-01B (low-profile, square)					
WBK15-11 (round)	WBK15-11 (round)						

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Scre	w shaft	dimens	ions				
Reference No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length								
	d	l	C _a	C_{0a}	INOITIIIIai	iviax.	L	$L_{\rm t}$	La	L _o	L ₁				
PSS2020N1D0508					300	353		413	435	508					
PSS2020N1D0608					400	453		513	535	608					
PSS2020N1D0708					500	553		613	635	708					
PSS2020N1D0808					600	653		713	735	808					
PSS2020N1D0908		20	20	6 790	11 800	700	753	54	813	835	908	22			
PSS2020N1D1035					800	851		913	935	1 035					
PSS2020N1D1235					1 000	1 051		1 113	1 135	1 235					
PSS2020N1D1435					1 200	1 251		1 313	1 335	1 435					
PSS2020N1D1835	20	2			1 600	1 651		1 713	1 735	1 835					
PSS2030N1D0408	20	20	20	20	20				200	228		308	335	408	
PSS2030N1D0508						300	328		408	435	508				
PSS2030N1D0608					400	428		508	535	608					
PSS2030N1D0708					500	528		608	635	708					
PSS2030N1D0808			30	6 550	11 800	600	628	74	708	735	808	27			
PSS2030N1D0908					700	728		808	835	908					
PSS2030N1D1035					800	826		908	935	1 035					

2-thin plastic seal (synthetic plastic)

Notes: *1. Ball screw preload control values are shown. Approximately 2.0 N·cm of torque will be added due to thin plastic seals.

1 000

1 200

1 026

1 226

1 108 | 1 135 | 1 235

1 435

1 308 | 1 335 |

*2. Contact NSK if permissible rotational speed will be exceeded.

3. These ball screws are suitable for operating temperatures from 0 to 80 °C.

Left shaft end	Le	ad accura	эсу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2	Nut internal	Standard grease
shape	Target value	Error	Variation	run-out	preload torque	141033	Fixed-	Fixed-	space	replenishment
(non-drive side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.027	0.020	0.060	1.4 - 11.8	1.6	5 000	_		
П		0.030	0.023	0.060	1.4 - 11.8	1.8	5 000	_		
П		0.030	0.023	0.075	1.4 - 11.8	2.0	5 000	_		
П		0.035	0.025	0.095	1.4 - 11.8	2.3	5 000	_		
П		0.040	0.027	0.095	0.8 - 13.8	2.5	4 150	_	3.2	1.6
I		0.040	0.027	0.120	0.8 - 13.8	2.8	3 270	4 470		
I		0.046	0.030	0.120	0.8 - 13.8	3.3	2 180	3 010		
I		0.054 0.035 0.160 0.8 - 13.8 3	3.8	1 550	2 170					
I	0	0.065	0.040	0.200	0.8 - 13.8	4.7	900	1 270		
П		0.023	0.018	0.050	1.6 - 9.8	1.4	5 000	_		
П		0.027	0.020	0.060	1.4 - 11.8	1.7	5 000	_		
П		0.030	0.023	0.060	1.4 - 11.8	1.9	5 000	_		
П		0.030	0.023	0.075	1.4 - 11.8	2.1	5 000	_		
П		0.035	0.025	0.095	1.4 - 11.8	2.4	5 000	_	4.6	2.3
П		0.040	0.027	0.095	0.8 - 13.8	2.6	4 310	_		
I		0.040	0.027	0.120	0.8 - 13.8	2.9	3 380	4 570		
I		0.046	0.030	0.120	0.8 - 13.8	3.4	2 240	3 070		
I		0.054	0.035	0.160	0.8 - 13.8	3.9	1 590	2 200		

4. We recommend using NSK support units. Refer to Page B389 for details.

5. We recommend filling about 50% of the nut's internal space with grease. See Page D16 for details.

B123 B124

∕0.017 A

Shape II

Shape I

∕ 0.017|**A**|-

/0.017 A

Ė

_/0.012*E*

Screw shaft ø20

Lead 40, 60

Unit: mm

Ball screw s	specifications				
Preload	Oversize ball preload (P-preload)				
Ball diameter/screw shaft root diameter	3.175 / 17.2				
Ball circle dia.	20.5				
Accuracy grade/axial play	C5 / 0				
Factory-packed grease	NSK grease LR3				

For drive side	e For non-	For non-drive side						
(Fixed)	(Fixed)	(Simple)						
WBK15-01B (low-profile, squa	re) WBK15-01B (low-profile, square)	WBK15S-01B (low-profile, square)						
W/RK15 11 /round	I) W/RK15 11 (round)							

Recommended support unit

4- φ6.6 drill thru φ11 c'bore, 6.5 depth
POD 49
88
Grease fitting 30° 30° (oil hole, 19 19
M5x0.8 tap)
(oil hole, M5x0.8 tap) Cross-section X-X

	1.15% - 7 10.15% - 7 10.005 F	L ₁ (Hardened area)	<u>L</u> 1	40 60	20	Plug (oil hole, M5x0.8 tap) Cross-section X-X	 WBK15-01B (low-profile, square) WBK15-11 (round)	
Į.		L _o						
								Unit: mm

	Screw shaft	1	Basic load	ratings (N)	Str	oke	Nut	Scre	w shaft	dimens	ions
Reference No.	diameter	Lead	Dynamic	Static	Manainal	Max.	length				
	d	l	C _a	$C_{\scriptscriptstyle 0a}$	Nominal	iviax.	L	Lt	La	Lo	L ₁
PSS2040N1D0658					400	455		553	585	658	
PSS2040N1D0758					500	555		653	685	758	
PSS2040N1D0858					600	655		753	785	858	
PSS2040N1D0958					700	755		853	885	958	32
PSS2040N1D1085		40	6 380	11 600	800	853	92	953	985	1 085	
PSS2040N1D1285		1 000 1 053 1 200 1 253	1 053	1 153	1 185	1 285					
PSS2040N1D1485				1 353	1 385	1 485					
PSS2040N1D1885					1 600	1 653		1 753	1 785	1 885	
PSS2040N1D2285	20	2 000 2 053		2 153	2 185	2 285					
PSS2060N1D0708					400	458		593	635	708	42
PSS2060N1D0808					500	558		693	735	808	
PSS2060N1D0908					600	658		793	835	908	
PSS2060N1D1008					700	758		893	935	1 008	
PSS2060N1D1135		60	5 680	11 800	800	856	129	993	1 035	1 135	
PSS2060N1D1335					1 000	1 056		1 193	1 235	1 335	
PSS2060N1D1535					1 200	1 256		1 393	1 435	1 535	
PSS2060N1D1935				1 600	1 656		1 793	1 835	1 935		
PSS2060N1D2335					2 000	2 056		2 193	2 235	2 335	

2-thin plastic seal (synthetic plastic)

Notes: *1. Ball screw preload control values are shown. Approximately 2.0 N-cm of torque will be added due to thin plastic seals.

*2. Contact NSK if permissible rotational speed will be exceeded.

3. These ball screws are suitable for operating temperatures from 0 to 80 °C.

Left shaft end		ad accura	T '	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2	7	Standard grease
shape	Target value	Error	Variation	run-out	preload torque		Fixed-	Fixed-	space	replenishment
(non-drive side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.030	0.023	0.075	2.2 - 12.8	2.1	5 000	_		
П		0.035	0.025	0.075	2.2 - 12.8	2.4	5 000	_		
П		0.035	0.025	0.095	2.2 - 12.8	2.6	5 000	_		
П		0.040	0.027	0.095	1.8 - 14.8	2.8	3 940	_		
I		0.040	0.027	0.120	1.8 - 14.8	3.1	3 120	4 190	5.3	2.7
I		0.046	0.030	0.160	1.8 - 14.8	3.6	2 100	2 850		
I		0.054	0.035	0.160	1.8 - 14.8	4.1	1 500	2 070		
I		0.065	0.040	0.200	1.8 - 14.8	5.1	880	1 230		
I	0	0.077	0.046	0.240	1.8 - 14.8	6.0	580	810		
П		0.030	0.023	0.075	2.7 - 13.8	2.4	5 000	_		
П		0.035	0.025	0.095	2.7 - 13.8	2.6	5 000	_		
П		0.035	0.025	0.095	2.7 - 13.8	2.9	4 830	_		
П		0.040	0.027	0.120	1.8 - 14.8	3.1	3 740	_		
I		0.040	0.027	0.120	1.8 - 14.8	3.4	2 980	3 920	7.0	3.5
I		0.046	0.030	0.160	1.8 - 14.8	3.9	2 020	2 700		
I		0.054	0.035	0.160	1.8 - 14.8	4.4	1 460	1 970		
I		0.065	0.040	0.200	1.8 - 14.8	5.4	860	1 180		
I		0.077	0.046	0.240	1.8 - 14.8	6.3	570	790		

4. We recommend using NSK support units. Refer to Page B389 for details.

5. We recommend filling about 50% of the nut's internal space with grease. See Page D16 for details.

B125 B126 ∕0.005*F*

∕[0.011]**A**]-

Lt (Hardened area)

2-thin plastic seal (synthetic plastic)

/ 0.016 A

Shape ${\mathbb I}$

Shape I

M20×1.0

∕ 0.016 **A**

-10.022 A

-[∕]0.005[*E*]

M20×1.0

Screw shaft ø25

Lead 5, 10

Unit: mm

Unit: mm

Ball screw specifications									
Preload	Oversize ball preload (P-preload)								
Ball diameter/screw shaft root diameter	3.175 / 22.2								
Ball circle dia.	25.5								
Accuracy grade/axial play	C5 / 0								
Factory-packed grease	NSK grease LR3								

Recommended support unit

For drive side	For non-drive side						
(Fixed)	(Fixed)	(Simple)					
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)					
WBK20-11 (round)	WBK20-11 (round)						

	Screw shaft	Lead	Basic load ratings (N)		Stro	oke	Nut	Scre	Screw shaft dimensions			
Reference No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length					
	d	l	C _a	C_{0a}	INOITIIIIai	IVIAX.	L	Lt	La	L _o	L ₁	
PSS2505N1D0349					150	185		223	250	349		
PSS2505N1D0399					200	235		273	300	399		
PSS2505N1D0499					300	335		373	400	499		
PSS2505N1D0599		5	11 500	22 500	400	435	32	473	500	599	27	
PSS2505N1D0699		5	11 500	23 500	500	535	32	573	600	699	27	
PSS2505N1D0899					700	735		773	800	899		
PSS2505N1D0999					800	835		873	900	999		
PSS2505N1D1233	25				1 000	1 027		1 073	1 100	1 233		
PSS2510N1D0549	25				300	361		423	450	549		
PSS2510N1D0649					400	461		523	550	649		
PSS2510N1D0749					500	561		623	650	749		
PSS2510N1D0849		10	15 000	32 400	600	661	56	723	750	849		
PSS2510N1D0949		10	15 000	32 400	700	761	30	823	850	949		
PSS2510N1D1049					800	861		923	950	1 049		
PSS2510N1D1283					1 000	1 053		1 123	1 150	1 283		
PSS2510N1D1883					1 600	1 653		1 723	1 750	1 883		

Notes: *1. Ball screw preload control values are shown. Approximately 2.0 N·cm of torque will be added due to thin plastic seals.

*2. Contact NSK if permissible rotational speed will be exceeded.

3. These ball screws are suitable for operating temperatures from 0 to 80 °C.

Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotatio	nal speed (min ⁻¹) *2	Nut internal	Standard grease	
shape	Target value	Error	Variation	run-out	preload torque	IVIASS	Fixed-	Fixed-	space	replenishment	
(non-drive side)	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)	
П		0.023	0.018	0.035	1.2 - 9.3	1.5	5 000	_			9
П		0.023	0.018	0.035	1.2 - 9.3	1.6	5 000	_			ì
Π		0.025	0.020	0.040	1.2 - 9.3	2.0	5 000	_			
П		0.027	0.020	0.045	1.2 - 9.3	2.3	5 000	_	4.4	2.2	
П		0.030	0.023	0.055	0.8 - 10.8	2.7	5 000	_	4.4	2.2	
П		0.035	0.025	0.065	0.8 - 10.8	3.4	5 000	_			
П		0.040	0.027	0.065	0.8 - 10.8	3.7	4 490	_			
I	0	0.046	0.030	0.080	0.8 - 13.8	4.5	2 960	4 060			_
П	0	0.027	0.020	0.045	3.1 - 11.8	2.4	5 000	_			
П		0.030	0.023	0.055	2.2 - 12.8	2.7	5 000	_			
П		0.030	0.023	0.055	2.2 - 12.8	3.1	5 000	_			
П		0.035	0.025	0.065	2.2 - 12.8	3.5	5 000	_	4.7	2.4	
Π		0.040	0.027	0.065	2.2 - 12.8	3.8	5 000	_	4.7	2.4	
П		0.040	0.027	0.080	2.2 - 12.8	4.2	4 120	_			
I		0.046	0.030	0.100	1.8 - 14.8	5.0	2 760	3 790			
I		0.065	0.040	0.130	1.8 - 14.8	7.2	1 150	1 620			

4. We recommend using NSK support units. Refer to Page B389 for details.

5. We recommend filling about 50% of the nut's internal space with grease. See Page D16 for details.

B127 B128

∕0.005*F*

2-thin plastic seal (synthetic plastic)

Lt (Hardened area)

∕ 0.016 A

Shape ${\mathbb I}$

Shape I

M20×1.0

∕ 0.016 **A**

(Medium, High helix lead)

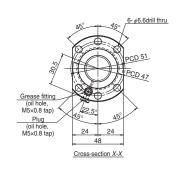
M20×1.0

-10.022 A

-[∕]0.005[*E*]

Screw shaft ø25

Lead 20, 25


Unit: mm

Unit: mm

Ball screw s	pecifications
Preload	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	3.175 / 22.2
Ball circle dia.	25.5
Accuracy grade/axial play	C5 / 0
Factory-packed grease	NSK grease LR3

Recommended support unit

For drive side	For non-drive side						
(Fixed)	(Fixed)	(Simple)					
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square					
WBK20-11 (round)	WBK20-11 (round)						

	Screw shaft	Lead	Basic load	ratings (N)	Str	oke	Nut	Scre	w shaft	dimens	ions
Reference No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}	INOITIIIIai	IVIAX.	L	$L_{\rm t}$	La	Lo	L_1
PSS2520N1D0729					500	544		604	630	729	
PSS2520N1D0829					600	644		704	730	829	
PSS2520N1D0929					700	744		804	830	929	
PSS2520N1D1029		20	7 650	14 800	800	844	54	904	930	1 029	26
PSS2520N1D1263		20	7 650	14 800	1 000	1 036	54	1 104	1 130	1 263	
PSS2520N1D1463					1 200	1 236		1 304	1 330	1 463	
PSS2520N1D1863					1 600	1 636		1 704	1 730	1 863	
PSS2520N1D2263	25				2 000	2 036		2 104	2 130	2 263	
PSS2525N1D0779	25				500	581		650	680	779	
PSS2525N1D0879					600	681		750	780	879	30
PSS2525N1D0979					700	781		850	880	979	
PSS2525N1D1079		25	7 490	14 600	800	881	63	950	980	1 079	
PSS2525N1D1313		20	7 430	14 000	1 000	1 073	03	1 150	1 180	1 313	
PSS2525N1D1513					1 200	1 273		1 350	1 380	1 513	
PSS2525N1D1913					1 600	1 673	73 1 750 1 78	1 780	1 913		
PSS2525N1D2313					2 000	2 073		2 150	2 180	2 313	

Notes: *1. Ball screw preload control values are shown. Approximately 2.0 N·cm of torque will be added due to thin plastic seals.

- *2. Contact NSK if permissible rotational speed will be exceeded.
- 3. These ball screws are suitable for operating temperatures from 0 to 80 °C.

Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2	Nut internal	Standard grease	
shape	Target value	Error	Variation	run-out	preload torque	iviass	Fixed-	Fixed-	space	replenishment	
(non-drive side)	T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)	
П		0.030	0.023	0.055	2.2 - 12.8	3.1	5 000	_			8
П		0.035	0.025	0.065	2.2 - 12.8	3.4	5 000	_			ľ
П		0.040	0.027	0.065	2.2 - 12.8	3.8	5 000	_			
П		0.040	0.027	0.080	2.2 - 12.8	4.2	4 280	_	3.9	2.0	
I		0.046	0.030	0.100	1.8 - 14.8	5.0	2 850	3 920	3.9	2.0	
I		0.054	0.035	0.100	1.8 - 14.8	5.8	2 030	2 820			H
I		0.065	0.040	0.130	1.8 - 14.8	7.3	1 180	1 650			
I	0	0.077	0.046	0.170	1.8 - 14.8	8.8	770	1 080			
П		0.035	0.025	0.055	2.7 - 13.8	3.3	5 000	_			
П		0.035	0.025	0.065	2.7 - 13.8	3.7	5 000	_			
П		0.040	0.027	0.065	2.7 - 13.8	4.1	4 910	_			
П		0.040	0.027	0.080	2.7 - 13.8	4.4	3 910	_	4.3	2.2	
I		0.046	0.030	0.100	1.8 - 14.8	5.3	2 640	3 620	4.3	2.2	
I		0.054	0.035	0.100	1.8 - 14.8	6.0	1 900	2 630			
I		0.065	0.040	0.130	1.8 - 14.8	7.5	1 120	1 570			
I		0.077	0.046	0.170	1.8 - 14.8	9.1	740	1 040			

- 4. We recommend using NSK support units. Refer to Page B389 for details.
- 5. We recommend filling about 50% of the nut's internal space with grease. See Page D16 for details.

B129

∕0.005*F*

2-thin plastic seal (synthetic plastic)

Lt (Hardened area)

∕ 0.016 A

Shape ${\mathbb I}$

Shape I

M20×1.0

∕ 0.016 **A**

(High helix, Ultra high helix lead)

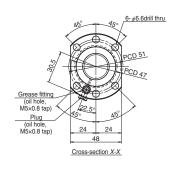
-10.022 A

M20×1.0

Screw shaft ø25

Lead 30, 50

Unit: mm


Unit: mm

Factory-packed grease NSK grease LR3

Recommended support unit

For drive side	For non-o	drive side
(Fixed)	(Fixed)	(Simple)
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)
WBK20-11 (round)	WBK20-11 (round)	

	Screw shaft	11	Basic load	ratings (N)	Stro	oke	Nut	Scre	w shaft	dimens	ions
Reference No.	diameter	Lead	Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}	Nominai	IVIAX.	L	$L_{\rm t}$	La	L _o	L_1
PSS2530N1D0779					500	570		650	680	779	
PSS2530N1D0879					600	670		750	780	879	
PSS2530N1D0979					700	770		850	880	979	
PSS2530N1D1079		30	7 490	14 600	800	870	74	950	980	1 079	30
PSS2530N1D1313		30	7 490		1 000	1 062	74	1 150	1 180	1 313	
PSS2530N1D1513					1 200	1 262		1 350	1 380	1 513	
PSS2530N1D1913					1 600	1 662		1 750	1 780	1 913	
PSS2530N1D2313	25				2 000	2 062		2 150	2 180	2 313	
PSS2550N1D0829	25				500	570		690	730	829	40
PSS2550N1D0929					600	670		790	830	929	
PSS2550N1D1029					700	770		890	930	1 029	
PSS2550N1D1129		50	6 910	14 700	800	870	114	990	1 030	1 129	
PSS2550N1D1363		50	0 910	14 700	1 000	1 062	114	1 190	1 230	1 363	
PSS2550N1D1563					1 200	1 262	2	1 390	1 430	1 563	
PSS2550N1D1963					1 600	1 662		1 790	1 830	1 963	
PSS2550N1D2363					2 000	2 062		2 190	2 230	2 363	

Notes: *1. Ball screw preload control values are shown. Approximately 2.0 N-cm of torque will be added due to thin plastic seals.

- *2. Contact NSK if permissible rotational speed will be exceeded.
- 3. These ball screws are suitable for operating temperatures from 0 to 80 °C.

										Offic. Iffiffi	
Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2	Nut internal	Standard grease	
shape	Target value	Error	Variation	run-out	preload torque	IVIASS	Fixed-	Fixed-	space	replenishment	
(non-drive side)	T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)	
П		0.035	0.025	0.055	2.7 - 13.8	3.4	5 000	_			700
П		0.035	0.025	0.065	2.7 - 13.8	3.7	5 000	_			Ĭ
П		0.040	0.027	0.065	2.7 - 13.8	4.1	4 980	_			
П		0.040	0.027	0.080	2.7 - 13.8	4.5	3 960	_		2.0	
I		0.046	0.030	0.100	1.8 - 14.8	5.3	2 670	3 650	5.5	2.8	
I		0.054	0.035	0.100	1.8 - 14.8	6.1	1 920	2 650			H
I		0.065	0.040	0.130	1.8 - 14.8	7.6	1 130	1 580			
I	0	0.077	0.046	0.170	1.8 - 14.8	9.1	740	1 040			
П		0.035	0.025	0.065	5.4 - 17.6	3.8	5 000	_			
П		0.035	0.025	0.065	5.4 - 17.6	4.1	5 000	_			
П		0.040	0.027	0.080	5.4 - 17.6	4.5	4 750	_			
П		0.040	0.027	0.080	5.4 - 17.6	4.9	3 790	_	7 7	2.0	
I		0.046	0.030	0.100	4.1 - 19.6	5.8	2 570	3 470	7.7	3.9	
I		0.054	0.035	0.100	4.1 - 19.6	6.5	1 860	2 540			
I		0.065	0.040	0.130	4.1 - 19.6	8.0	1 100	1 520			
I		0.077	0.046	0.170	4.1 - 19.6	9.6	730	1 020			

- 4. We recommend using NSK support units. Refer to Page B389 for details.
- 5. We recommend filling about 50% of the nut's internal space with grease. See Page D16 for details.

Grease fitting (oil hole, M5×0.8 tap) Plug (oil hole, M5×0.8 tap)

Cross-section X-X

Screw shaft ø10

Lead 5

Unit: mm

Ball screw specifications							
Preload	Oversize ball preload (P-preload)						
Ball diameter/screw shaft root diameter	2.000 / 8.2						
Ball circle dia.	10.3						
Accuracy grade/axial play	C3 / 0						
Factory-packed grease	NSK grease LG2						

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK08-01C (square, clean)	WBK08S-01C (square, clean)
WBK08-11C (round, clean)	WBK08S-01B (low-profile, square)
WBK08-01B (low-profile, square)	
WBK08-11 (round)	

Unit:	mm

L	_ead accuracy	/	Shaft run-out	Dynamic	Mass	Permissible rotational	Nut internal	Standard grease
Target value	Error	Variation	Shart run-out	preload torque	IVId55	speed (min ⁻¹) *2	space	replenishment
T	$e_{\scriptscriptstyle p}$	$V_{\scriptscriptstyle m u}$	С	(N·cm) *1	(kg)	Fixed-Simple	(cm³)	(cm³)
	0.010	0.008	0.035	0.2-1.8	0.3			
0	0.012	0.008	0.045	0.2-2.0	0.3	5 000	0.8	0.4
	0.015	0.010	0.070	0.2-3.0	0.5			

^{4.} We recommend using NSK support units. Refer to Page B389 for details.

9 L _a 37 L _a L _o	(10.003)F)	29 L₁ (Hardened area)	A G 5 (8)	9 9 27 10	1.0 899 999
L ₀	9	<u>L</u> a		37	-
		L_0			4

	Screw shaft	Lead	Basic load ratings (N)		Stroke		Screw shaft dimensions		
Reference No.	diameter		Dynamic	Static	Manainal	Max.			
	d	l	$C_{\scriptscriptstyle a}$	C_{0a}	Nominal	iviax.	$L_{\rm t}$	La	Lo
USS1005N1D0221					100	133	162	175	221
USS1005N1D0321	10	5	3 420	4 840	200	233	262	275	321
USS1005N1D0521					400	433	462	475	521

Notes: *1. Ball screw preload control values are shown. Approximately 0.5 N-cm of torque will be added due to thin plastic seals.

- *2. Contact NSK if permissible rotational speed will be exceeded.
- 3. These ball screws are suitable for operating temperatures from 0 to 80 °C.

Plug (oil hole, M5×0.8 tap)

Screw shaft ø12

Lead 5

Unit: mm

Ball screw specifications							
Preload	Oversize ball preload (P-preload)						
Ball diameter/screw shaft root diameter	2.000 / 10.2						
Ball circle dia.	12.3						
Accuracy grade/axial play	C3 / 0						
Factory-packed grease	NSK grease LG2						

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK08-01C (square, clean)	WBK08S-01C (square, clean)
WBK08-11C (round, clean)	WBK08S-01B (low-profile, square)
WBK08-01B (low-profile, square)	
WBK08-11 (round)	

Unit: mm

Lead accuracy			Chaft run aut	Dynamic	Mass	Permissible rotational	Nut internal	Standard grease
Target value	Error	Variation	Shart run-out	Dynamic preload torque	IVIASS	speed (min ⁻¹) *2	space	replenishment
T	$e_{\scriptscriptstyle p}$	$V_{\scriptscriptstyle m u}$	С	(N·cm) *1	(kg)	Fixed-Simple	(cm³)	(cm³)
	0.010	0.008	0.035	0.2-1.8	0.3			
0	0.012	0.008	0.045	0.2-2.0	0.3	5 000	1.0	0.5
	0.016	0.012	0.070	0.2-3.0	0.7			

^{4.} We recommend using NSK support units. Refer to Page B389 for details.

Z-thin plastic seal (synthetic plastic) (synthetic	M8×1.0 9 9 - 10.003E 27 10	08IE
9 La	37	
- <u>L</u> ₀	-	

	Screw shaft	Lood	Basic load ratings (N)		Stroke		Screw shaft dimensions		
Reference No.	diameter	Lead	Dynamic	Static	NIiI	N.4			
	d	l	C _a	$C_{\scriptscriptstyle 0a}$	Nominal	Max.	L_{t}	L _a	L _o
USS1205N1D0221			3 750	5 810	100	130	160	175	221
USS1205N1D0321	12	5			200	230	260	275	321
USS1205N1D0621					500	530	560	575	621

Notes: *1. Ball screw preload control values are shown. Approximately 0.5 N·cm of torque will be added due to thin plastic seals.

- *2. Contact NSK if permissible rotational speed will be exceeded.
- 3. These ball screws are suitable for operating temperatures from 0 to 80 °C.

B135 B136

Plug (oil hole, M5×0.8 tap)

Screw shaft ø15

Lead 5

Unit: mm

Pall corous si	pecifications
Dali Screw S	pecifications
Preload	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	2.778 / 12.6
Ball circle dia.	15.5
Accuracy grade/axial play	C3 / 0
Factory-packed grease	NSK grease LG2

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK12-01C (square, clean)	WBK12S-01C (square, clean)
WBK12-11C (round, clean)	WBK12-01B (low-profile, square)
WBK12S-01B (low-profile, square)	
WBK12-11 (round)	

Unit:	mm	

L	_ead accuracy	/	Shaft run-out	Dynamic	Mass	Permissible rotational	Nut internal	Standard grease
Target value	Error	Variation		preload torque	IVId55	speed (min ⁻¹) *2	space	replenishment
T	$e_{\scriptscriptstyle p}$	$V_{\scriptscriptstyle m u}$	С	(N·cm) *1	(kg)	Fixed-Simple	(cm³)	(cm³)
	0.010	0.008	0.025	0.2-5.0	0.5	5 000		
	0.012	0.008	0.035	0.2-5.0	0.6	5 000	2.0	1.0
0	0.015	0.010	0.045	0.2-6.0	0.9	5 000	2.0	1.0
	0.018	0.013	0.060	0.2-8.0	1.1	4 130		

^{4.} We recommend using NSK support units. Refer to Page B389 for details.

20.013IA 9.15 9.15 1.15 1.15	2-thin plastic seal (synthetic plastic) X (s	7 C G 6 8 8 8 5	E	M12×1.0	0.008 <i>E</i>
	L _t (Hardened area)	15	30	15	
_ 12	La		45		

	Screw shaft	Lood	Basic load ratings (N)		Stroke		Screw shaft dimensions		
Reference No.	diameter	Lead	Dynamic	Static	Manainal	Max.			
	d	l	$C_{\scriptscriptstyle a}$	C_{0a}	Nominal	iviax.	$L_{\rm t}$	L _a	L _o
USS1505N1D0261			6 410	10 100	100	159	189	204	261
USS1505N1D0361	15	5			200	259	289	304	361
USS1505N1D0561	15	5			400	459	489	504	561
USS1505N1D0761					600	653	689	704	761

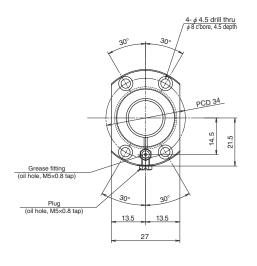
Notes: *1. Ball screw preload control values are shown. Approximately 0.5 N·cm of torque will be added due to thin plastic seals.

*2. Contact NSK if permissible rotational speed will be exceeded.

3. These ball screws are suitable for operating temperatures from 0 to 80 °C.

B137 B138

Screw shaft ø12


Lead 10

Unit: mm

Ball screw s	pecifications
Ball diameter/screw shaft root diameter	2.000 / 10.2
Accuracy grade/axial play	Ct7 / 0.010 or less
Factory-packed grease	NSK grease LR3

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK08-01B (low-profile, square)	WBK12SF-01B (low-profile, square)

Unit: mm

Le	Lead accuracy		Shaft	Dynamic preload		Permissible rotational speed (min ⁻¹) *5	Nut internal	Standard grease	
Target value		Variation	run-out	torque	Mass		space	replenishment	
T	$e_{\scriptscriptstyle m p}$	V ₃₀₀	С	(N·cm)	(kg)	Fixed-Simple	(cm³)	(cm³)	
	0.120		0.080		0.5	5 000			
0	0.195	0.052	0.120	_	0.7	5 000	1.0	0.5	
	0.310	0.180		1.0	2 300				

- 4. Stroke and permissible rotational speeds shown apply when using support units recommended by NSK in a Fixed-Simple configuration.
- *5. Permissible rotational speed changes when using cut screw shafts. In these cases, use the smaller of the following two values as the permissible rotational speed:
 - -Critical speed where shaft resonance is generated (see Page B47)
 - -5 000 min⁻¹ (maximum rotational speed)

2-thin plastic seal (synthetic plastic) 2-thin plastic seal (synthetic plastic) 3-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-	10 10 10 10 8	✓0.025	M8×1.0	20014E
L _t (Hardened area)	L ₁	27	10	
$\frac{L_{\mathrm{a}}}{L_{\mathrm{0}}}$	-	37	-	
			-	

	Reference No.	Screw shaft	Lood	Basic load	ratings (N)	Stro	Stroke Nut			Screw shaft dimensions			
		diameter	Lead	Dynamic			length						
		d	l	$C_{\scriptscriptstyle 0}$	$C_{\scriptscriptstyle 0a}$	Nominal	Max.	L	$L_{\rm t}$	La	L _o	L ₁	
	FSS1210N1D0400				5 780	250	287		348	363	400		
	FSS1210N1D0600	12	10	3 760		450	487	43	548	563	600	15	
	FSS1210N1D0900					750	787		848	863	900		

Notes: 1. Ball screw preload control values are shown. Approximately 2.0 N·cm of torque will be added due to thin plastic seals.

- 2. These ball screws are suitable for operating temperatures from 0 to 80 °C.
- 3. We recommend using NSK support units. Refer to Page B389 for details.

/0.020 A

Screw shaft

diameter

d

15

Reference No.

FSS1510N1D0500

FSS1510N1D1000

FSS1510N1D1450

FSS1520N1D0500

FSS1520N1D1000

FSS1520N1D1450

Lead

10

20

(Medium, High helix lead)

√ 0.025 A

Ė

✓ 0.006*E*

30

45

arget value | Error

0

10

∕ 0.014 E

 $M12\!\times\!1.0$

-*U* A G

À

Screw shaft dimensions

955 1 000

955 1 000

500

500

15

18

455

455

440

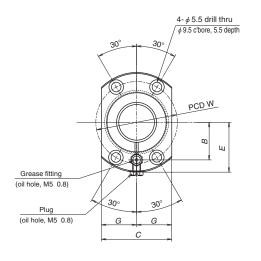
940

1 300|1 329|1 390|1 405|1 450

437

1 300|1 318|1 387|1 405|1 450

Screw shaft ø15


Lead 10, 20

Unit: mm

Ball screw s	pecification	s		
Lead	10	20		
Ball diameter/screw shaft root diameter	diameter 2.778 / 12.6 3.1			
Accuracy grade/axial play	Ct7 / 0.010 or less			
Factory-packed grease	NSK grease LR3			

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK12-01B (low-profile, square)	WBK15SF-01B (low-profile, square)

Unit: mm

Lea	d accur	асу
et value	Error	Variation
Τ	$e_{\scriptscriptstyle p}$	V ₃₀₀
	0.155	
	0.310	
0	0.490	0.052
U	0.155	0.052
	0.310	
	0.490	

Notes: 1. Ball screw preload control values are shown. Approximately 2.0 N·cm of torque will be added due to thin plastic seals.

Stroke

Nominal Max.

879

368

868 937

350 379

850

350

850

2. These ball screws are suitable for operating temperatures from 0 to 80 °C.

2-thin plastic seal (synthetic plastic)

∕0.014 A

Lt (Hardened area)

Basic load ratings (N)

Static

10 200

8 700

Dynamic

6 530

5 660

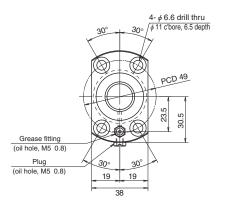
 $X \rightarrow$

3. We recommend using NSK support units. Refer to Page B389 for details.

	Nut dimensions							01 (1	ъ .		Permissible rotational speed (min ⁻¹) *5	NI of the latest	C	=		
		INU	t uii i	16113	10115			Shaft run-out	Dynamic preload torque	Mass		Nut internal space	Standard grease replenishment	ě		
L	D_1	D_2	W	В	С	Ε	G	С	(N·cm)	(kg)	Fixed-Simple	(cm³)	(cm³)			
	43 28 51 39 18 3°									0.070		0.9	5 000			
43		51	18	31	25	15.5	0.125		1.7	2 300	2.0	1.0				
										0.200	2.3	1 020				
		+					0.070	_	1.0	5 000						
51	32	55	43	20	33	27	7 16.5	0.125		1.7	2 260	2.8	1.4			
								0.200	2.3	1 000						

- 4. Stroke and permissible rotational speeds shown apply when using support units recommended by NSK in a Fixed-Simple configuration.
- *5. Permissible rotational speed changes when using cut screw shafts. In these cases, use the smaller of the following two values as the permissible rotational speed:
- -Critical speed where shaft resonance is generated (see Page B47)
- -5 000 min⁻¹ (maximum rotational speed)

Screw shaft ø20


Lead 10, 20

Unit: mm

Ball screw specifications							
Ball diameter/screw shaft root diameter	3.175 / 17.2						
Accuracy grade/axial play	Ct7 / 0.010 or less						
Factory-packed grease	NSK grease LR3						

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK15-01B (low-profile, square)	WBK20SF-01B (low-profile, square)

Unit: mm

Le	Lead accuracy			Dynamic preload	Mass	Permissible rotational speed (min ⁻¹) *5	Nut internal	Standard grease
Target value	Error	Variation	run-out	torque	IVIdSS	Fixed Cinemia	space	replenishment
T	$e_{\scriptscriptstyle p}$	V ₃₀₀	С	(N·cm)	(kg)	Fixed-Simple	(cm³)	(cm³)
	0.195		0.085		1.7	5 000		
	0.310		0.125		2.6	3 310		
0	0.490	0.052	0.200		3.6	1 450	3.2	1.6
	0.195	0.052	0.085	_	1.8	5 000	3.2	1.6
	0.310		0.125).125		3 350		
	0.490		0.200		3.8	1 460		

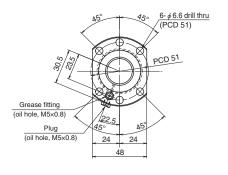
- 4. Stroke and permissible rotational speeds shown apply when using support units recommended by NSK in a Fixed-Simple configuration.
- *5. Permissible rotational speed changes when using cut screw shafts. In these cases, use the smaller of the following two values as the permissible rotational speed:
- -Critical speed where shaft resonance is generated (see Page B47)
- -5 000 min⁻¹ (maximum rotational speed)

\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	10 7	15 E 15 40	M15×1.0 op 100 pp 100 p
La	*	60	
Lo		-	

	Screw shaft	Lood	Basic load	ratings (N)	Str	oke	Nut	Screv	v shaft	dimen	sions
Reference No.	diameter	Lead	Dynamic	Static	Namainal	Max.	length				
	d	l	C _a	C_{0a}	Nominal	IVIAX.	L	L_{t}	La	L _o	L ₁
FSS2010N1D0600					400	451		518	540	600	
FSS2010N1D1000		10	10 200	18 600	800	851	45	918	940	1 000	22
FSS2010N1D1450	20				1 250	1 301		1 368	1 390	1 450	
FSS2020N1D0600	FSS2020N1D1000 20 6 790 11 800 FSS2020N1D1450		400	442		518	540	600	22		
FSS2020N1D1000		11 800	800	842	54	918	940	1 000			
FSS2020N1D1450					1 250	1 292		1 368	1 390	1 450	

Notes: 1. Ball screw preload control values are shown. Approximately 2.0 N-cm of torque will be added due to thin plastic seals.

- 2. These ball screws are suitable for operating temperatures from 0 to 80 °C.
- 3. We recommend using NSK support units. Refer to Page B389 for details.


Screw shaft ø25 Lead 10, 20, 25

Unit: mm

Ball screw specifications							
Ball diameter/screw shaft root diameter	3.175 / 22.2						
Accuracy grade/axial play	Ct7 / 0.010 or less						
Factory-packed grease	NSK grease LR3						

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK20-01 (square)	WBK25SF-01 (square)

Unit: mm

Le	ad accura	эсу	Shaft	Dynamic preload	Mass	Permissible rotational speed (min ⁻¹) *5	Nut internal	Standard grease
Target value	Error	Variation	run-out	torque	IVIdSS	Fixed-Simple	space	replenishment
T	$e_{\scriptscriptstyle \mathrm{p}}$	V ₃₀₀	С	(N·cm)	(kg)	r ixeu-sirripie	(cm³)	(cm³)
	0.155		0.065		2.6	5 000		
	0.310		0.090		4.0	4 590	4.7	2.4
	0.490		0.130		5.8	1 970		
	0.155		0.065		2.6	5 000		
0	0.310	0.052	0.090	-	4.0	4 570	3.9	2.0
	0.490		0.130		5.8	1 960		
	0.155		0.065		2.6	5 000		
	0.310		0.090		4.1	4 660	4.3	2.2
	0.490		0.130		5.8	1 990		

- 4. Stroke and permissible rotational speeds shown apply when using support units recommended by NSK in a Fixed-Simple configuration.
- *5. Permissible rotational speed changes when using cut screw shafts. In these cases, use the smaller of the following two values as the permissible rotational speed:

 - -5 000 min⁻¹ (maximum rotational speed)

2-thin plastic seal /(synthetic plastic)	7 A G 235		M20 × 1.0 □ 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$\frac{\phi}{\phi}\$\frac{\phi}	\$25	0.000 0.0145 0.0146	
20.018/A (8.7)	A G 12 10		
$\frac{L}{L_{t}} (\text{Hardened area})$	L ₁	53	27
$L_{\rm a}$		80	
L_0			

	Screw shaft	Lood	Basic load	ratings (N)	Str	oke	Nut	Screv	v shaft	dimen	sions
Reference No.	diameter	Lead	Dynamic	Static			length				
	d	l	C _a	C_{0a}	Nominal	Max.	L	$L_{\rm t}$	La	L _o	L ₁
FSS2510N1D0600					400	415		493	520	600	
FSS2510N1D1000		10	15 000	32 400	800	815	56	893	920	1 000	27
FSS2510N1D1450					1 250	1 265		1 343	1 370	1 450	
FSS2520N1D0600					400	418		494	520	600	
FSS2520N1D1000	25	20	7 650	14 800	800	818	54	894	920	1 000	26
FSS2520N1D1450					1 250	1 268		1 344	1 370	1 450	
FSS2525N1D0600	1				400	405		490	520	600	
FSS2525N1D1000		25	7 490	14 600	800	805	63	890	920	1 000	30
FSS2525N1D1450					1 250	1 255		1 340	1 370	1 450	

Notes: 1. Ball screw preload control values are shown. Approximately 2.0 N·cm of torque will be added due to thin plastic seals.

- 2. These ball screws are suitable for operating temperatures from 0 to 80 °C.
- 3. We recommend using NSK support units. Refer to Page B389 for details.

B145 B146

-Critical speed where shaft resonance is generated (see Page B47)

B-3-1.2 High-Speed SS (HSS) Model

♦ Features

The HMS and HMD models, originally developed for machine tools, are an addition to NSK's lineup of standard ball screws. They have a wide range of applications, from general machines to high performance machines such as those requiring high speed and precision.

High speed

A new recirculation system that utilizes NSK's high speed and low noise technology more than doubles the $d \cdot n$ value from 70 000 to 160 000.

To extend the range of the lead to 20 mm, high speed operation of over 60m/min. is possible.

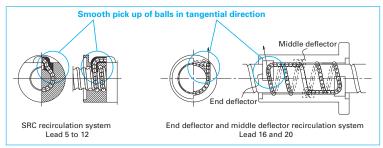


Fig 1 Ball recirculation system

Table 1 Allowable feed speed of combinations of shaft diameter and lead

shaft [mm] Lead shaft diameter [mm]	5	10	12	16	20
32	25m/min	50m/min			
40		40m/min	48m/min	64m/min	80m/min
45		35m/min			
50		32m/min	38m/min		

^{*} Allowable speed needs to be calculated. See the permissible rotational speed in the dimensions table.

Low noise and vibrations

Compared to our conventional products, the average noise level has been reduced by more than 6 dB(A), reducing the number of colliding balls and recirculation parts thanks to high speed, low noise technology.

The vibration level of the nut has also been reduced drastically.

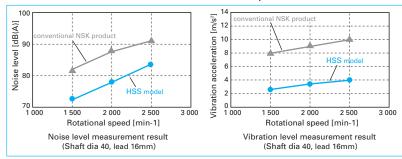


Table 2

Installation

Installation dimensions are the same as those of a conventional SS model.

Compact

Achieved high-level stiffness and high load capacity equivalent to that of double nut preload by changing the double nut preload to the offset preload of a single nut, and compact sized nut. Adopted thin seals axially and shorten nut length.

Blank shaft ends

The blank shaft ends can be customized according to customers' requests. See page B27 in NSK's recommended design when drawing up plans for a shaft end. The support units available on page B389 in the case of NSK's recommended design. See "Technical Description: Shaft End Processing" (page B86) for procedures of shaft end processing and precautions.

Oil supply

2 oil holes, M6×1.0, are provided in the nut flange periphery are the end of the nut flange. A plug is standardly screwed into the periphery of the nut flange.

♦ Specifications

Accuracy grade and axial play

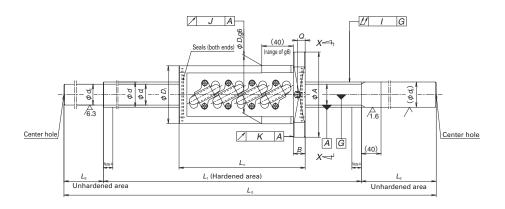
The available standard accuracy grade and axial play are shown in Table 2.

Table 2 Accuracy grade and axial play

Accuracy grade	C5
Axial play	0 mm (preloaded)

Dimension tables

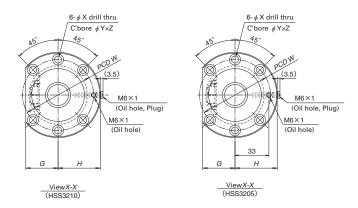
Dimensions, shapes, and specifications are listed by shaft diameter/lead combinations. See Table 3 for the relevant pages to reference.


♦ Other

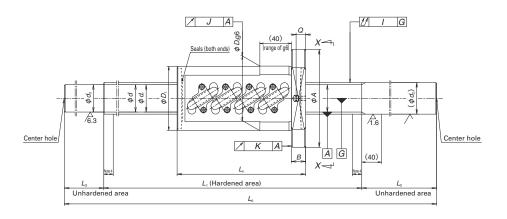
The seal of the ball screw and recirculation parts are made of synthetic resin. Consult NSK when using the ball screws under extreme environments or special environments, or using special lubricants or oil.

For special environments, see pages B70 and D2. See pages B67 and D13 for lubricants.

Table 3 Combinations of screw shaft diameter and lead


Screw shaft [mm] Lead [mm]	5	10	12	16	20
32	B149	B149			
40		B151	B151	B153	B153
45		B155			
50		B155	B155		

	Screw			Ball		Effective ball turns	Dania land	ratings/NI\		Dunamia					Pall	nut d	mono	iono
Reference No.	shaft dia.	Lead	Ball dia.	circle dia.	Root dia.	Turns ×	Dynamic	Static	Preload	Dynamic friction torque, standard	Dian	neter		Fla	nge	nut u	Overall length	10115
	d	l	D_{w}	d _m	d,	Circuits	C _a	$C_{\scriptscriptstyle \mathrm{OB}}$	(N)	(N·cm)	D_1	D_2	Α	G	Н	В	Ln	W
HSS3205N1D0650																		
HSS3205N1D0950																		
HSS3205N1D1250	32	5	3.175	32.5	29.2	2.5X2	21 800	56 000	920	17.0	57	58	85	32	42	13	89	71
HSS3205N1D1550																		
HSS3205N1D1850																		
HSS3210N1D0850																		
HSS3210N1D1050																		
HSS3210N1D1450	32	10	6.350	33.0	26.4	2.5X2	54 500	110 000	2 310	59.5	73	74	108	41	53.5	15	160	90
HSS3210N1D1850																		
HSS3210N1D2250																		


- Notes: 1. These ball screws are suitable for operating temperatures from 0 to 60 °C.
 - 2. We recommend using NSK support units. Refer to Page B389 for details.
 - 3. Only a rust preventive is applied before delivery. Apply lubricant (oil or grease) before use. See Page D13 for details.
 - 4. Note that hardening imperfections occur at both screw ends of one lead. Keep this in mind when setting the stroke.
 - 5. Permissible rotational speeds consider critical speeds for threaded lengths in the tables and NSK recommended shaft end designs (See Page B27).

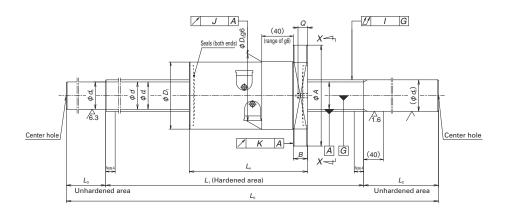
For details on critical speeds, see Page B47.

Unit:mm

				Ç	Screw	shaft	dime	nsion	S	Lea	d accu	racy	F	Run-ou	t		Permissible rotatio	nal speed (min ⁻¹)	Nut	Standard
Bolt	hole		Oil hole	Threaded length		t end, jht	Shaft le	end, ft	Overall length	Travel compensation	Deviation	Variation	Shaft straightness		dial -out	Mass	Config	uration	internal space	grease replenishment
Χ	Y	Ζ	Q	$L_{\rm t}$	d ₂	L ₂	d₃	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	$V_{\scriptscriptstyle \rm u}$	1	J	K	(kg)	Fixed-Simple	Fixed-Fixed	(cm³)	(cm³)
				400		200		50	650	-0.010	0.025	0.020	0.055			5.2	5 000	5 000		
				600		250		100	950	-0.014	0.030	0.023	0.065			7.0	5 000	5 000		,
6.6	11	6.5	8	900	32	250	29.2	100	1 250	-0.022	0.040	0.027	0.080	0.019	0.013	8.7	5 000	5 000	10	5
				1 150		300		100	1 550	-0.028	0.046	0.030	0.100			10.5	3 500	4 700		,
				1 450		300		100	1 850	-0.035	0.054	0.035	0.130			12.2	2 200	2 900		
				500		250		100	850	-0.012	0.027	0.020	0.065			8.9	5 000	5 000		
				700		250		100	1 050	-0.017	0.035	0.025	0.080			10.0	5 000	5 000		
9	14	8.5	10	1 050	32	300	26.4	100	1 450	-0.025	0.046	0.030	0.100	0.019	0.013	12.2	4 100	5 000	43	22
				1 450		300		100	1 850	-0.035	0.054	0.035	0.130			14.3	2 100	2 800		
				1 850		300		100	2 250	-0.045	0.065	0.040	0.170			16.5	1 200	1 700		

	Screw			Ball		Effective ball turns	Basic load	ratings(N)		Dynamic					Ball	nut d	imens	ions
Reference No.	shaft	Lead	Ball	circle	Root	Turns	Dynamic	Static	n	friction	Dian	neter		Ela	nge		Overall	
Helefelice No.	dia.		dia.	dia.	dia.	×	Dynanic	Jialic	Preload	torque, standard	Diali	iletei		I Ia	nye		length	
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d,	Circuits	C _a	C_{oa}	(N)	(N·cm)	D_1	D_2	Α	G	Н	В	Ln	W
HSS4010N1D0950																		
HSS4010N1D1450	40	10	6 250	41.0	24.4	2.5X2	61 200	137 000	2 600	74.5	81	82	124	47	61.5	18	100	100
HSS4010N1D2100	40	10	6.350	41.0	34.4	2.5/2	01 200	137 000	2 000	/4.5	81	82	124	4/	01.5	18	163	102
HSS4010N1D2900																		
HSS4012N1D1450																		
HSS4012N1D2100	40	12	7.144	41.5	34.1	2.5X2	71 700	154 000	3 050	96.0	85	86	128	48	63.5	18	187	106
HSS4012N1D2900																		

Notes: 1. These ball screws are suitable for operating temperatures from 0 to 60 °C.


- 2. We recommend using NSK support units. Refer to Page B389 for details.
- 3. Only a rust preventive is applied before delivery. Apply lubricant (oil or grease) before use. See Page D13 for details.
- 4. Note that hardening imperfections occur at both screw ends of one lead. Keep this in mind when setting the stroke.
- 5. Permissible rotational speeds consider critical speeds for threaded lengths in the tables and NSK recommended shaft end designs (See Page B27).

For details on critical speeds, see Page B47.

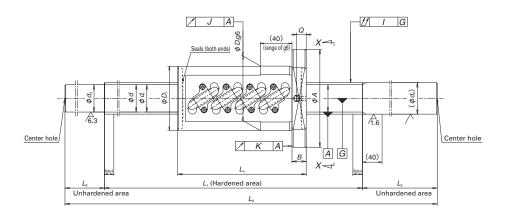
A5'	6- \(\psi \) X drill t C'bore \(\phi \) Y: 45	
G	Н >	
Vie	wX-X	

Unit:mm

				S	crew	shaft	dime	nsion	S	Lea	d accu	racy	F	Run-ou	t		Permissible rotation		Nut	Standard
Bolt	hole		Oil hole	Threaded length		t end, jht	Shaft le	end, ft		Travel compensation	Deviation	Variation	Shaft straightness		dial -out	Mass	Configu		internal space	grease replenishment
X	Y	Ζ	Q	Lt	d_2	L ₂	d₃	L ₃	Lo	T	$e_{\scriptscriptstyle \mathrm{p}}$	V _u	1	J	K	(kg)	Fixed-Simple	Fixed-Fixed	(cm³)	(cm³)
				600		250		100	950	-0.014	0.030	0.023	0.050			13.5	4 000	4 000		
11	17.5	11	12	1 050	40	300	24.4	100	1 450	-0.025	0.046	0.030	0.070	0.005	0.015	17.9	4 000	4 000	52	26
11	17.5	11	12	1 600	40	350	34.4	150	2 100	-0.039	0.054	0.035	0.110	0.025	0.015	23.5	2 200	3 000	52	20
				2 400		350		150	2 900	-0.058	0.077	0.046	0.140			30.5	900	1 300		
				1 050		300		100	1 450	-0.025	0.046	0.030	0.070			19.1	4 000	4 000		
11	17.5	11	12	1 600	40	350	34.1	150	2 100	-0.039	0.054	0.035	0.110	0.025	0.015	24.8	2 200	3 000	67	34
				2 400		350		150	2 900	-0.058	0.077	0.046	0.140			31.8	900	1 300		

	Screw			Ball		Effective ball turns	Basic load	ratings(N)		Dynamic					Ball	nut d	imens	ions
Reference No.	shaft dia.	Lead	Ball dia.	circle dia.	Root dia.	Turns ×	Dynamic	Static	Preload	friction torque, standard	Dian	neter		Fla	nge		Overall length	
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d,	Circuits	C _a	$C_{\scriptscriptstyle \mathrm{oa}}$	(N)	(N·cm)	D_1	D_2	Α	G	Н	В	Ln	W
HSS4016N1D1450																		
HSS4016N1D2100	40	16	7.144	41.5	34.1	3.7X1	66 900	131 000	2 850	104.0	85	86	128	48	63.5	18	160	106
HSS4016N1D2900																		
HSS4020N1D1450																		
HSS4020N1D2100	40	20	7.144	41.5	34.1	3.7X1	66 500	131 000	2 850	116.5	85	86	128	48	63.5	18	192	106
HSS4020N1D2900																		

Notes: 1. These ball screws are suitable for operating temperatures from 0 to 60 $^{\circ}$ C.


- 2. We recommend using NSK support units. Refer to Page B389 for details.
- 3. Only a rust preventive is applied before delivery. Apply lubricant (oil or grease) before use. See Page D13 for details.
- 4. Note that hardening imperfections occur at both screw ends of one lead. Keep this in mind when setting the stroke.
- 5. Permissible rotational speeds consider critical speeds for threaded lengths in the tables and NSK recommended shaft end designs (See Page B27).

For details on critical speeds, see Page B47.

6- ¢ X drill thru C'bore ¢ Y×Z 46° (3.5) M6×1 (Oil hole, Plug) M6×1 (Oil hole)
G H

Unit : mm

				S	crew	shaft	dime	nsion	S	Lea	d accu	racy	F	Run-ou	t		Permissible rotation		Nut	Standard
Bolt	hole		Oil hole	Threaded length		end, Iht	Shaft le	end, ft	Overall length	Travel compensation	Deviation	Variation	Shaft straightness		dial -out	Mass	Configu		internal space	grease replenishment
X	Y	Ζ	Q	Lt	d ₂	L ₂	d₃	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	V _u	1	J	K	(kg)	Fixed-Simple	Fixed-Fixed	(cm³)	(cm³)
				1 050		300		100	1 450	-0.025	0.046	0.030	0.070			19.2	4 000	4 000		
11	17.5	11	11	1 600	40	350	34.1	150	2 100	-0.039	0.054	0.035	0.110	0.025	0.015	25.0	2 200	3 000	40	20
				2 400		350		150	2 900	-0.058	0.077	0.046	0.140			32.2	900	1 300		
				1 050		300		100	1 450	-0.025	0.046	0.030	0.070			20.3	4 000	4 000		
11	17.5	11	11	1 600	40	350	34.4	150	2 100	-0.039	0.054	0.035	0.110	0.025	0.015	26.2	2 200	3 000	47	24
				2 400		350		150	2 900	-0.058	0.077	0.046	0.140			33.5	900	1 300		

	Screw			Ball		Effective ball turns	Racic Inad	ratinge/NI)		Dynamic					Rall	nut d	imens	ione
Reference No.	shaft dia.	Lead	Ball dia.	circle dia.	Root dia.	Turns	Dynamic	Static	Preload	friction torque, standard	Dian	neter		Fla	nge	nut u	Overall length	10113
	d	l	D_{w}	d _m	d,	Circuits	C _a	C_{oa}	(N)	(N·cm)	D_1	D_2	Α	G	Н	В	Ln	W
HSS4510N1D1450																		
HSS4510N1D2100	45	10	6.350	46.0	39.4	2.5X2	65 800	157 000	2 710	82.0	87	88	132	50	65.5	18	163	110
HSS4510N1D2900																		
HSS5010N1D1450																		
HSS5010N1D1850	50	10	6.350	51.0	44.4	2.5X2	60 100	174 000	2 880	92.0	92	93	135	51	67	18	163	113
HSS5010N1D2350	50	10	0.350	51.0	44.4	2.5/2	08 100	174 000	2 880	92.0	92	93	135	01	0/	10	103	113
HSS5010N1D2900																		
HSS5012N1D1450																		
HSS5012N1D2100	50	12	7.938	51.5	43.2	2.5X2	91 500	218 000	3 880	136.5	99	100	146	55	72.5	22	193	122
HSS5012N1D2900																		

- Notes: 1. These ball screws are suitable for operating temperatures from 0 to 60 °C.
 - 2. We recommend using NSK support units. Refer to Page B389 for details.
 - 3. Only a rust preventive is applied before delivery. Apply lubricant (oil or grease) before use. See Page D13 for details.
 - 4. Note that hardening imperfections occur at both screw ends of one lead. Keep this in mind when setting the stroke.
 - 5. Permissible rotational speeds consider critical speeds for threaded lengths in the tables and NSK recommended shaft end designs (See Page B27).

For details on critical speeds, see Page B47.

46	6- \$\psi \text{X drill thru} \\ C'bore \$\phi \text{YxZ} \\ 45^* \\ (3.5) \\ (0il hole, Plug) \\ M6 \times 1 \\ (0il hole)
G	Н
Vie	wX-X

Unit:mm

				5	Screw	shaft	dime	nsion	S	Lea	d accu	racy	F	Run-ou	t		Permissible rotatio	nal speed (min ⁻¹)	Nut	Standard
Bolt	hole		Oil hole	Threaded length		end, ht	Shaft le	end, ft	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Rad run-	dial -out	Mass	Config	uration	internal space	grease replenishment
Χ	Y	Ζ	Q	Lt	d ₂	L ₂	d₃	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	V _u	1	J	K	(kg)	Fixed-Simple	Fixed-Fixed	(cm³)	(cm³)
				1 050		300		100	1 450	-0.025	0.046	0.030	0.070			22.0	3 500	3 500		
11	17.5	11	12	1 600	45	350	39.4	150	2 100	-0.039	0.054	0.035	0.110	0.025	0.015	29.2	2 500	3 400	58	29
				2 400		350		150	2 900	-0.058	0.077	0.046	0.140			38.2	1 100	1 500		
				1 050		300		100	1 450	-0.025	0.046	0.030	0.070			26.3	3 200	3 200		
11	17.	11	12	1 450		300		100	1 850	-0.035	0.054	0.035	0.090	0.005	0.015	31.9	3 200	3 200		32
11	17.5	11	12	1 850	50	350	44.4	150	2 350	-0.045	0.065	0.040	0.110	0.025	0.015	38.8	2 100	2 900	64	32
				2 400		350		150	2 900	-0.058	0.077	0.046	0.140			46.5	1 200	1 700		
				1 050		300		100	1 450	-0.025	0.046	0.030	0.070			28.5	3 200	3 200		
14	20	13	12	1 600	50	350	43.2	150	2 100	-0.039	0.054	0.035	0.110	0.025	0.015	37.3	2 800	3 200	99	50
				2 400		350		150	2 900	-0.058	0.077	0.046	0.140			48.2	1 200	1 600		

B-3-1.3 Finished Shaft End MA, FA, and SA Models

1. Order of the dimension tables

Tables are arranged by model in order of increasing shaft diameter. If ball screws have the same shaft diameter, those with smaller leads appear first. Page numbers for shaft diameter and lead combinations are shown in Table 1.

2. Dimension tables

Lead (mm)

Dimensions, shapes, and specifications are listed by shaft diameter/lead combinations. The following tables also contain data regarding:

Stroke

Nominal stroke: A reference for use.

Maximum stroke: The limit stroke that the

nut can move. The value is obtained by subtracting the nut length from effective

threaded length.

Lead accuracy

Lead accuracy is either C3 or C5 grade.

T: Travel compensation

ep: Tolerance on specified travel

υ_u: Travel variation

See "Technical Description: Lead Accuracy" (page B37) for details of the codes.

Table 1 Combinations of screw shaft diameter and lead

Lead (mm) Screw shaft diameter (mm)	1	1.5	2	2.5	4	5	6
4	B159						
6	B161						
8	B163	B165	B167				
10			B169	B171	B181		
12			B173	B175		B183	
14						B187	
15							
16			B177	B179		B195	
20					B217	B219	
25					B221	B223	B225
28						B229	B233
20						B231	B235
32						B237	B241
						B239	B243
36							
40						B255	
45							
50							

Permissible rotational speed

 $d \cdot n$: Limited by the relative peripheral speed between the

screw shaft and nut.

Critical speed: Limited by the natural frequency of the ball screw shaft. Critical speed depends on the support configuration

of the screw shaft.

The lower of the two criteria, $d \cdot n$ and critical speed, will determine the overall permissible rotational speed of the ball screw. For details,

see "Technical Description: Permissible Rotational Speed" (page B47).

3. Other

The seal of the ball screw, ball recirculating deflector, and end cap are made of synthetic resin. Consult NSK when using our ball screws under extreme environments, in special environments, or if using special lubricants or oil.

For special environments, see pages B70 and D2. For lubricants, see pages B67 and D13.

Note: For details about standard stock products, contact NSK.

8	10	12	16	20	25	32	40	50
	D405							
D100	B185							
B189	B191			B193				
	B101		B197	B100		B199		
	B201		3.07	B203		3.00	B205	
	B227			B207	B209			B211
B245	B247				B213	B215		
	B249							
	B251							
	B253							
B257	B259	B263						
	B261	B265						
	B267							
	B269							
	B271							

B157 B158

Screw shaft ø4

Lead 1

Unit: mm

Ball screw specifications					
Product cl	assification	Preloaded	Precise clearand		
Shaft dia. x Lead	/ Direction of turn	4×1 / Right			
Preload / Bal	I recirculation	P-preload / Deflector (bridge)			
Ball dia. / B	all circle dia.	0.800 / 4.2			
Screw shaft	root diameter	3.2			
Effective	ball turns	1 :	< 2		
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T		
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	370			
(N)	Static C _{0a}	370			
Axia	Axial play		0.005 or less		
Preload (N)		19.6	_		
Dynamic friction torque (N·cm)		1.0 or less	0.3 or less		
Spacer ball		No	ne		

4-2.9 drill thru 30° 30° PCD 15

View X-X

Recommended support unit

Factory-packed grease

For drive side (Fixed)	1415
WBK06-01A (square)	
WBK06-11 (round)	

NSK grease PS2

Unit: mm

B160

Gille. Till								
Screw shaft length		Lead accuracy			Shaft run- out ** Mass	Mass (kg)	Permissible rotational speed N (min-1) Configuration	
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	LJ	(kg)	Fixed - Free
44	55	85	0	0.008	0.008	0.015	0.024	3 000
64	75	105	0	0.008	0.008	0.020	0.026	3 000
94	105	135	0	0.008	0.008	0.025	0.028	3 000

C0.2 4 0008 A X	A G 3	C0.2 C0.3 R0.2 max. E 7 M6×0.75	CO.3 90005 E
L _t (Hardened area	4 (7)	22.5 7.5	
L _a		30	
<	L _o	· 	

Refere	Stroke		
neieiei	Nominal	Maximum	
Preloaded (MPFD)	INOMINAL	iviaxiffluffi	
W0400MA-1PY-C3Z1	W0400MA-2Y-C3T1	20	32
W0400MA-3PY-C3Z1	W0400MA-4Y-C3T1	40	52
W0401MA-1PY-C3Z1	W0401MA-2Y-C3T1	70	82

Notes: 1. We recommend using NSK support units. See Page B389 for details.

We recommend using NSK Grease PS2. Apply the grease to the screw shaft surface during replenishment. See Page D16 for details.

3. These ball nuts do not have seals.

4. Contact NSK if permissible rotational speed N will be exceeded.

Lead 1

Unit: mm

4-\$\phi 3.4 \text{ drill thru} 30° 30° PCD 18 View X-X

Factory-packed grease NSK grease PS2 Recommended support unit

For drive side (Fixed)	
WBK06-01A (square)	
WBK06-11 (round)	

	U	nit:	mm	
--	---	------	----	--

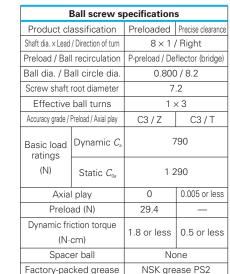
Uni								
Screw shaft length			Lead accuracy			Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Configuration
$L_{\rm t}$	La	L _o	T	$e_{\scriptscriptstyle p}$	υu		(Ng)	Fixed - Free
65	75	105	0	0.008	0.008	0.015	0.039	3 000
95	105	135	0	0.008	0.008	0.020	0.045	3 000
125	135	165	0	0.010	0.008	0.025	0.051	3 000

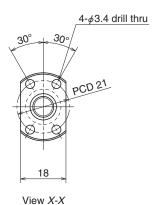
L_a C_o C_o C_o	C0.2 M2.5×0.45 Depth 5	0.009 A X 4 4 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	A G	(3)	0.00 0 0 0 0 0 0	Ç0.3 <i>C</i> 0.	P
		La	1		30		
	<		L _o	>	<	>	

Refere	Stroke			
neieiei	Nominal	Maximum		
Preloaded (MPFD)	Preloaded (MPFD) Precise clearance (MSFD)			
W0600MA-1PY-C3Z1	W0600MA-2Y-C3T1	40	50	
W0601MA-1PY-C3Z1	W0601MA-2Y-C3T1	70	80	
W0601MA-3PY-C3Z1	W0601MA-4Y-C3T1	100	110	

Notes: 1. We recommend using NSK support units. See Page B389 for details.

We recommend using NSK Grease PS2. Apply the grease to the screw shaft surface during replenishment. See Page D16 for details.


3. These ball nuts do not have seals.


4. Contact NSK if permissible rotational speed N will be exceeded.

B161 B162

Lead 1

Unit: mm

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)	
WBK08-01A (square)	WBK08S-01 (square)	
WBK08-11 (round)		

Unit: mm

Office this								
Screw shaft length			Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Configuration	
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	\sqcup	(kg)	Fixed - Simple
80	92	138	0	0.008	0.008	0.025	0.073	3 000
110	122	168	0	0.010	0.008	0.030	0.084	3 000
140	152	198	0	0.010	0.008	0.030	0.095	3 000
190	202	248	0	0.010	0.008	0.035	0.11	3 000

© 0.008 A	0.009 A	# * G A G	0.008 A 0.005 E 0.008 A 0.005 E 0.005
<	Lt (Hardened area)		4 (8) 27 10
9	La		37
- ·	Lo		·

Refere	Stroke		
neieiei	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	Norminal	IVIAXIITIUITI
W0800MA-1PY-C3Z1	W0800MA-2Y-C3T1	40	59
W0801MA-1PY-C3Z1	W0801MA-2Y-C3T1	70	89
W0801MA-3PY-C3Z1	W0801MA-4Y-C3T1	100	119
W0802MA-1PY-C3Z1	W0802MA-2Y-C3T1	150	169

Notes: 1. We recommend using NSK support units. See Page B389 for details.

We recommend using NSK Grease PS2. Apply the grease to the screw shaft surface during replenishment. See Page D16 for details.

3. These ball nuts do not have seals.

4. Contact NSK if permissible rotational speed N will be exceeded.

19

View X-X

<u>4-φ3.</u>4 drill thru

Screw shaft ø8

Lead 1.5

Unit: mm

	Ball screw specifications							
	Product cl	assification	Preloaded Precise clea					
	Shaft dia. x Lead	/ Direction of turn	8 × 1.5	/ Right				
	Preload / Bal	I recirculation	P-preload / De	flector (bridge)				
	Ball dia. / B	all circle dia.	1.000) / 8.3				
	Screw shaft	root diameter	7	.0				
	Effective	ball turns	1>	< 3				
	Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T				
	Basic load Dynamic C_a		1 270					
	ratings (N)	Static C _{0a}	1 9	970				
	Axia	Axial play		0.005 or less				
	Preload (N) Dynamic friction torque, (N·cm)		49.0	_				
			2.0 or less	0.5 or less				
	Spac	er ball	No	ne				
	Factory-pag	cked grease	NSK gre	ase PS2				

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)	
WBK08-01A (square)	WBK08S-01 (square)	
WBK08-11 (round)		

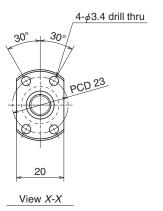
Unit: mm

Screw shaft length			Lead accuracy			Shaft run- out ** Mass f f (kg)		Permissible rotational speed M (min-1) Configuration
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple
80	92	138	0	0.008	0.008	0.025	0.082	3 000
110	122	168	0	0.010	0.008	0.030	0.093	3 000
140	152	198	0	0.010	0.008	0.030	0.10	3 000
190	202	248	0	0.010	0.008	0.035	0.12	3 000

0.00 0.00	0.8 +0.1 0.8 +0.1 6.8	1 0	Seals (two places) X 1 0.008 A X 18 4 22 ardened area)	# * G A G	20.000	90 90 00.5 C0.5
	9		$L_{\rm a}$		37	
	7		Lo			
	ı					,

Poforo	Reference No.			
	Nominal	Maximum		
Preloaded (MPFD)	Precise clearance (MSFD)	INOMINAL	iviaximum	
W0800MA-3PY-C3Z1.5	W0800MA-4Y-C3T1.5	40	53	
W0801MA-5PY-C3Z1.5	W0801MA-6Y-C3T1.5	70	83	
W0801MA-7PY-C3Z1.5	W0801MA-8Y-C3T1.5	100	113	
W0802MA-3PY-C3Z1.5	W0802MA-4Y-C3T1.5	150	163	

Notes: 1. We recommend using NSK support units. See Page B389 for details.


2. We recommend using NSK Grease PS2. Apply the grease to the screw shaft surface during replenishment. See Page D16 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

B165 B166

Lead 2

Unit: mm

ı	Ball screw specifications					
Product cl	assification	Preloaded Precise clearance				
Shaft dia. x Lead	/ Direction of turn	8 × 2 /	/ Right			
Preload / Bal	I recirculation	P-preload / De	flector (bridge)			
Ball dia. / B	all circle dia.	1.200	0 / 8.3			
Screw shaft	root diameter	6	.9			
Effective	ball turns	1 >	< 3			
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T			
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	1 5	560			
(N)	Static C _{0a}	2 2	200			
Axia	l play	0	0.005 or less			
Prelo	ad (N)	49.0	_			
Dynamic fri	ction torque,	2.0 or less	0.5 or less			
(N·cm)		2.0 or less	U.5 OF IESS			
Spac	er ball	None				
Factory-pag	cked grease	NSK gre	ase PS2			

Recommended support unit

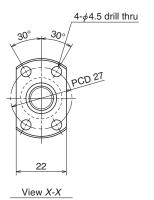
For drive side (Fixed)	For non-drive side (Simple)		
WBK08-01A (square)	WBK08S-01 (square)		
WBK08-11 (round)			

								Unit: mm
Screw shaft length		Lead accuracy		Shaft run- out ** Mass		Permissible rotational speed N (min-1) Configuration		
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle m p}$	υu		(kg)	Fixed - Simple
80	92	138	0	0.008	0.008	0.025	0.09	3 000
110	122	168	0	0.010	0.008	0.030	0.10	3 000
140	152	198	0	0.010	0.008	0.030	0.11	3 000
190	202	248	0	0.010	0.008	0.035	0.13	3 000

(0.008 A) (0.008 A) (0.0025 F) (0.0025 F)	max. Seals (two places X = 0.008 A = X = 22 4 26 Lt (Hardened area)	** * G	1 V V V	0.005 E C0.5
<		= 1 ⁴ (0)	* * *	
9	La		37	
<u> </u>	Lo			

Refere	Stroke		
nerere	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	INOMINAL	iviaximum
W0800MA-5PY-C3Z2	W0800MA-6Y-C3T2	40	49
W0801MA-9PY-C3Z2	W0801MA-10Y-C3T2	70	79
W0801MA-11PY-C3Z2	W0801MA-12Y-C3T2	100	109
W0802MA-5PY-C3Z2	W0802MA-6Y-C3T2	150	159

Notes: 1. We recommend using NSK support units. See Page B389 for details.


2. We recommend using NSK Grease PS2. Apply the grease to the screw shaft surface during replenishment. See Page

3. Contact NSK if permissible rotational speed N will be exceeded.

B167 B168

Lead 2

Unit: mm

Ball screw specifications						
Product cl	assification	Preloaded	Precise clearance			
Shaft dia. x Lead	/ Direction of turn	10 × 2	/ Right			
Preload / Bal	I recirculation	P-preload / De	flector (bridge)			
Ball dia. / B	all circle dia.	1.200	/ 10.3			
Screw shaft	root diameter	8	.9			
Effective	ball turns	1>	< 3			
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T			
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	1 800				
(N)	Static C _{0a}	2.9	970			
Axia	l play	0	0.005 or less			
Prelo	ad (N)	58.8	_			
Dynamic friction torque, (N·cm)		0.1 – 2.4	0.5 or less			
Spac	er ball	None				
Factory-page	cked grease	NSK grease PS2				

Recommended support unit

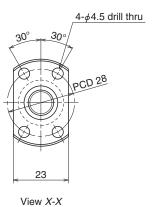
For drive side (Fixed)	For non-drive side (Simple)		
WBK08-01A (square)	WBK08S-01 (square)		
WBK08-11 (round)			

								Unit: mm
Scre	Screw shaft length		Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed M (min-1) Configuration	
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	Ш	(kg)	Fixed - Simple
100	112	158	0	0.008	0.008	0.020	0.13	3 000
150	162	208	0	0.010	0.008	0.030	0.16	3 000
200	212	258	0	0.010	0.008	0.030	0.19	3 000
250	262	308	0	0.012	0.008	0.030	0.22	3 000

C0.2 C0.5 F0.2 max C0.8 C0.5 F0.0025 F	23 5 28	# * G A G	10 ⁻⁰² 0.007 A 0.005 E 0.005
<	$L_{\rm t}$ (Hardened area)		4 (8) 27 10
9	La		37
· ·	Lo		· · · · · · · · · · · · · · · · · · ·

Poforo	Reference No.			
neieiei	Nominal	Maximum		
Preloaded (MPFD)	Precise clearance (MSFD)	NOMINAL	iviaximum	
W1001MA-1PY-C3Z2	W1001MA-2Y-C3T2	50	67	
W1001MA-3PY-C3Z2	W1001MA-4Y-C3T2	100	117	
W1002MA-1PY-C3Z2	W1002MA-2Y-C3T2	150	167	
W1002MA-3PY-C3Z2	W1002MA-4Y-C3T2	200	217	

Notes: 1. We recommend using NSK support units. See Page B389 for details.


2. We recommend using NSK Grease PS2. Apply the grease to the screw shaft surface during replenishment. See Page D16 for details.

3. Contact NSK if permissible rotational speed *N* will be exceeded.

B169 B170

Lead 2.5

Unit: mm

Ball screw specifications						
Product cl	assification	Preloaded	Precise clearance			
Shaft dia. x Lead	/ Direction of turn	10 × 2.5	5 / Right			
Preload / Ball recirculation		P-preload / Deflector (bridge)				
Ball dia. / Ball circle dia.		1.588	/ 10.4			
Screw shaft	root diameter	8	.6			
Effective ball turns		1 >	< 3			
Accuracy grade / Preload / Axial play		C3 / Z	C3 / T			
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	2 500				
(N)	Static C _{0a}	3 630				
Axia	l play	0	0.005 or less			
Prelo	ad (N)	98.1	_			
Dynamic fri	ction torque,	0.2 – 2.9	0.5 or less			
(N·	cm)	0.2 - 2.9	0.5 of less			
Spac	er ball	None				
Factory-page	cked grease	NSK grease PS2				

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK08-01A (square)	WBK08S-01 (square)
WBK08-11 (round)	

	Unit: mm							
Scre	Screw shaft length			Lead accuracy			Mass (kg)	Permissible rotational speed N (min-1) Configuration
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple
100	112	158	0	0.008	0.008	0.020	0.14	3 000
150	162	208	0	0.010	0.008	0.030	0.17	3 000
200	212	258	0	0.010	0.008	0.030	0.20	3 000
250	262	308	0	0.012	0.008	0.030	0.23	3 000

C0.5 R0.2 max.	27 5 32 X J	A G	112	2.2 C0 888 00 P0.2 P0.2 P0.2 P0.2 P0.2 P0.0025 E	.5 C0.5
	L _t (Hardened area)		4 (8)	27	10_
9	La		· ' -	37	
	Lo				

Refere	Stroke		
neieiei	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	INOMINAL	IVIAXIITIUITI
W1001MA-5PY-C3Z2.5	W1001MA-6Y-C3T2.5	50	63
W1001MA-7PY-C3Z2.5	W1001MA-8Y-C3T2.5	100	113
W1002MA-5PY-C3Z2.5	W1002MA-6Y-C3T2.5	150	163
W1002MA-7PY-C3Z2.5	W1002MA-8Y-C3T2.5	200	213

Notes: 1. We recommend using NSK support units. See Page B389 for details.

2. We recommend using NSK Grease PS2. Apply the grease to the screw shaft surface during replenishment. See Page

3. Contact NSK if permissible rotational speed N will be exceeded.

B171 B172 **1** 0.007 A

67.6

C0.5

/ 0.0025 **F** →

10

R0.2 max.

6.00 **8** 4.00 4.00 4.00 4.00

F

Seals (two places)

Ø 0.008 A →

23

Lt (Hardened area)

-11 * * G

Ġ

√ 0.005 E

C0.5

✓ 0.007 A

10

M10×1

45

15

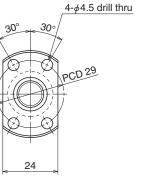
C0.2

Ř0.2 max.

(5)

5 (10)

Ė


√ 0.003 E

30

Screw shaft ø12

Lead 2

Unit: mm

	4-φ4.5 drill thru
30° 30°	7
	PCD 29
24	
× 24	

View X-X

Ball screw s _l	pecification	s		
assification	Preloaded	Precise clearance		
/ Direction of turn	12 × 2	/ Right		
I recirculation	P-preload / De	flector (bridge)		
all circle dia.	1.200	/ 12.3		
root diameter	10).9		
ball turns	1:	× 3		
Accuracy grade / Preload / Axial play		C3 / T		
c load Dynamic C _a		1 960		
Static C _{0a}	3 6	520		
l play	0	0.005 or less		
ad (N)	98.1	_		
Dynamic friction torque, (N·cm)		1.0 or less		
er ball	None			
cked grease	NSK gre	ase PS2		
	assification / Direction of turn I recirculation all circle dia. root diameter ball turns Preload / Axial play Dynamic C _a Static C _{oa} I play ad (N) ction torque,	Direction of turn		

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)		
WBK10-01A (square)	WBK10S-01 (square)		
WBK10-11 (round)			

Unit: mm

								Onit. min
Screw shaft length		Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Configuration		
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple
110	125	180	0	0.010	0.008	0.020	0.20	3 000
160	175	230	0	0.010	0.008	0.030	0.24	3 000
210	225	280	0	0.012	0.008	0.030	0.28	3 000
260	275	330	0	0.012	0.008	0.040	0.32	3 000
310	325	380	0	0.012	0.008	0.040	0.36	3 000

Defere	Stroke			
nerere	Reference No.			
Preloaded (MPFD)	Precise clearance (MSFD)	Nominal	Maximum	
W1201MA-1PY-C3Z2	W1201MA-2Y-C3T2	50	75	
W1201MA-3PY-C3Z2	W1201MA-4Y-C3T2	100	125	
W1202MA-1PY-C3Z2	W1202MA-2Y-C3T2	150	175	
W1202MA-3PY-C3Z2	W1202MA-4Y-C3T2	200	225	
W1203MA-1PY-C3Z2	W1203MA-2Y-C3T2	250	275	

Notes: 1. We recommend using NSK support units. See Page B389 for details.

2. We recommend using NSK Grease PS2. Apply the grease to the screw shaft surface during replenishment. See Page D16 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

B173 B174 √ 0.007 A

C0.2

R0.2 max.

φ7.6

C0.5

∕ 0.003 F

7.9

10

F

∕ 0.010 A

Seals (two places)

1 0.008 A →

27

32

Lt (Hardened area)

11 * * G

A G □ 0.005 E

C0.5

√0.007 A

C0.2

R0.2 max.

E/_10_

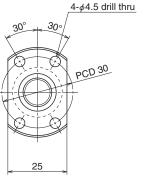
< 1 0.003 E

30

M10×1

45

-0.009 **∳8h6**


C0.5

15

Screw shaft ø12

Lead 2.5

Unit: mm

4-φ4.5 drill thru
30° 30° PCD 30
25
View X-X

Ball screw spassification / Direction of turn I recirculation	Preloaded	
/ Direction of turn		Precise clearance
,	12 × 2.5	
l recirculation		5 / Right
	P-preload / De	flector (bridge)
all circle dia.	1.588	/ 12.4
root diameter	10).6
Effective ball turns		< 3
Preload / Axial play	C3 / Z	C3 / T
Dynamic $C_{\scriptscriptstyle a}$	2 790	
Static C _{0a}	4 530	
l play	0	0.005 or less
ad (N)	98.1	_
Dynamic friction torque, (N·cm)		1.0 or less
er ball	None	
ked grease	NSK gre	ase PS2
	oot diameter ball turns Preload / Axial play Dynamic C _a Static C _{oa} play ad (N) ction torque, cm) er ball	Department Dep

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)				
WBK10-01A (square)	WBK10S-01 (square)				
WBK10-11 (round)					

Unit: mm								
Scre	Screw shaft length			Lead accuracy			Mass (kg)	Permissible rotational speed N (min-1) Configuration
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple
110	125	180	0	0.010	0.008	0.020	0.21	3 000
160	175	230	0	0.010	0.008	0.030	0.25	3 000
210	225	280	0	0.012	0.008	0.030	0.29	3 000
260	275	330	0	0.012	0.008	0.040	0.33	3 000
310	325	380	0	0.012	0.008	0.040	0.37	3 000

Refere	Stroke		
neiele	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	NOTTIITIAI	iviaximum
W1201MA-5PY-C3Z2.5	W1201MA-6Y-C3T2.5	50	71
W1201MA-7PY-C3Z2.5	W1201MA-8Y-C3T2.5	100	121
W1202MA-5PY-C3Z2.5	W1202MA-6Y-C3T2.5	150	171
W1202MA-7PY-C3Z2.5	W1202MA-8Y-C3T2.5	200	221
W1203MA-3PY-C3Z2.5	W1203MA-4Y-C3T2.5	250	271

Notes: 1. We recommend using NSK support units. See Page B389 for details.

2. We recommend using NSK Grease PS2. Apply the grease to the screw shaft surface during replenishment. See Page D16 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

B175 B176

M6×1

(oil hole)

29

View X-X

 $4-\phi 5.5$ drill thru

Screw shaft ø16

Lead 2

Unit: mm

ı	Ball screw s _l	pecification	S	
Product cl	assification	Preloaded Precise clearance		
Shaft dia. x Lead	/ Direction of turn	16×2	/ Right	
Preload / Bal	I recirculation	P-preload / De	flector (bridge)	
Ball dia. / B	all circle dia.	1.588	/ 16.4	
Screw shaft	root diameter	14	1.6	
Effective	ball turns	1>	< 4	
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T	
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	4 1	50	
(N)	Static C _{0a}	8 4	150	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	147	_	
Dynamic friction torque (N·cm)		0.5 – 4.9	1.5 or less	
Spacer ball		None		
Factory-pag	cked grease	NSK grease PS2		
Nut internal	space (cm³)	1.6		
Standard grease r	eplenishment (cm³)	0.8		

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

Sorov	w shaft le	\nath	Lo	ad accur	201/	Shaft run-	N 4 = = =	Permissible rotation	nal speed N (min-1)
30161	vv Siidil it	ziigiii	Le.	ad accura	acy	out **	ıt ** Mass ' † (kg)	Configu	uration
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Ng)	Fixed - Simple	Fixed - Fixed
139	154	221	0	0.010	0.008	0.020	0.41	3 000	3 000
189	204	271	0	0.010	0.008	0.020	0.48	3 000	3 000
239	254	321	0	0.012	0.008	0.030	0.55	3 000	3 000
289	304	371	0	0.012	0.008	0.030	0.62	3 000	3 000
389	404	471	0	0.013	0.010	0.035	0.77	3 000	3 000

(0.007 A) (0.007 A)	90.2 max.	Seals (two places) X 10.008 A 30 40 (Hardened area)	# * G A G	0.2 CO.: The state of the st	C0.5
22		L _a		 45	→
<		Lo			->

Refere	Stroke			
neielei	Nominal	Maximum		
Preloaded (MPFD)	Precise clearance (MSFD)	NOMINAL	Iviaximum	
W1601MA-1PY-C3Z2	W1601MA-2Y-C3T2	50	93	
W1601MA-3PY-C3Z2	W1601MA-4Y-C3T2	100	143	
W1602MA-1PY-C3Z2	W1602MA-2Y-C3T2	150	193	
W1602MA-3PY-C3Z2	W1602MA-4Y-C3T2	200	243	
W1603MA-1PY-C3Z2	W1603MA-2Y-C3T2	300	343	

Notes: 1. We recommend using NSK support units. See Page B389 for details.

- 2. We recommend using NSK Grease PS2. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.
- 3. Contact NSK if permissible rotational speed *N* will be exceeded.
- 4. The user must design the support bearing structure if the non-drive side is fixed.
- 5. See Pages B51 and B52 for details on support configurations (Fixed-Simple, Fixed-Fixed, etc.)

B177

B178

.

M61

(oil hole)

29

View X-X

4-φ5.5 drill thru

Screw shaft ø16

Lead 2.5

Unit: mm

ı	Ball screw sp	pecification	s	
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	16 × 2.5 / Right		
Preload / Bal	I recirculation	P-preload / De	flector (bridge)	
Ball dia. / B	all circle dia.	1.588	/ 16.4	
Screw shaft	root diameter	14	1.6	
Effective	ball turns	1:	× 4	
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T	
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	4 1	50	
(N)	Static C _{0a}	8 4	140	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	147	_	
Dynamic friction torque (N·cm)		0.5 – 4.9	1.5 or less	
Spacer ball		None		
Factory-pag	cked grease	NSK grease PS2		
Nut internal	space (cm³)	1.6		
Standard grease r	eplenishment (cm³)	0.8		

Recommended support unit

For drive side (Fixed)	non-drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

Screw shaft length		\nath	Load accuracy		Shaft run-	out ** Mass	Permissible rotational speed N (min-1)		
Screw snaft length		ength .	Lead accuracy				out **	Configuration	
L_{t}	La	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	Fixed - Fixed
139	154	221	0	0.010	0.008	0.020	0.42	3 000	3 000
189	204	271	0	0.010	0.008	0.020	0.49	3 000	3 000
239	254	321	0	0.012	0.008	0.030	0.57	3 000	3 000
289	304	371	0	0.012	0.008	0.030	0.64	3 000	3 000
389	404	471	0	0.013	0.010	0.035	0.79	3 000	3 000

√ 0.007 A ∕ 0.010 A Seals (two places) 0.009 ≱10h6 C0.5 C0.5 R0.2 R0.2 max. max. G E _10_ À **1** 0.008 A → M5×0.8 Depth 12 M12×1 9.15 34 10 - 1 0.003 E 44 1 0.003 F → Lt (Hardened area) 30 15 45 22

Refere	Stroke		
neierei	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	NOMINAL	IVIAXIITIUITI
W1601MA-5PY-C3Z2.5	W1601MA-6Y-C3T2.5	50	89
W1601MA-7PY-C3Z2.5	W1601MA-8Y-C3T2.5	100	139
W1602MA-5PY-C3Z2.5	W1602MA-6Y-C3T2.5	150	189
W1602MA-7PY-C3Z2.5	W1602MA-8Y-C3T2.5	200	239
W1603MA-3PY-C3Z2.5	W1603MA-4Y-C3T2.5	300	339

Notes: 1. We recommend using NSK support units. See Page B389 for details.

- 2. We recommend using NSK Grease PS2. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.
- 3. Contact NSK if permissible rotational speed N will be exceeded.
- 4. The user must design the support bearing structure if the non-drive side is fixed.
- 5. See Pages B51 and B52 for details on support configurations (Fixed-Simple, Fixed-Fixed, etc.)

B179

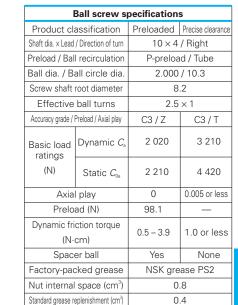
M6×1

(oil hole)

28

View X-X

 $4-\phi 4.5$ drill thru


c'bore ∮8×4.5

M3N

Screw shaft ø10

Lead 4

Unit: mm

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK10-01A (square)	WBK10S-01 (square)
WBK10-11 (round)	

Unit: mm

Scre	Screw shaft length			Lead accuracy			Mass	Permissible rotational speed N (min-1) Configuration
$L_{\rm t}$	L _a	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple
110	125	180	0	0.010	0.008	0.020	0.26	3 000
160	175	230	0	0.010	0.008	0.030	0.28	3 000
210	225	280	0	0.012	0.008	0.030	0.31	3 000
260	275	330	0	0.012	0.008	0.040	0.34	3 000
310	325	380	0	0.012	0.008	0.040	0.37	3 000
360	375	430	0	0.013	0.010	0.050	0.39	3 000

7000- 7000-	(0.007 A) (0.007 A) (0.003 F) (0.003 F)	Seals (two places) X 0.008 A 24 10 34 4 (Hardened area)	# * G A G	5 (10)	R0.2 max. E 10 M10x1 30	0.005 E
	10	L _a L _o		•	45	

Refere	Stroke		
neielei	Nominal	Maximum	
Preloaded (PFT)	Precise clearance (SFT)	NOTTIITIAI	IVIdXIITIUITI
W1001FA-1P-C3Z4	W1001FA-2-C3T4	50	69
W1001FA-3P-C3Z4	W1001FA-4-C3T4	100	119
W1002FA-1P-C3Z4	W1002FA-2-C3T4	150	169
W1002FA-3P-C3Z4	W1002FA-4-C3T4	200	219
W1003FA-1P-C3Z4	W1003FA-2-C3T4	250	269
W1003FA-3P-C3Z4	W1003FA-4-C3T4	300	319

Notes: 1. We recommend using NSK support units. See Page B389 for details.

2. We recommend using NSK Grease PS2. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

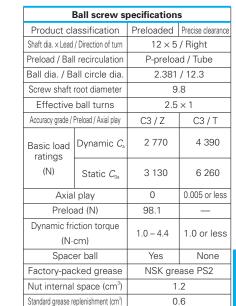
B181 B182

M6×1

(oil hole)

32

View X-X


 $4-\phi 4.5$ drill thru

c'bore $\phi 8 \times 4.5$

Screw shaft ø12

Lead 5

Unit: mm

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK10-01A (square)	WBK10S-01 (square)
WBK10-11 (round)	

Unit: mm

B184

Scre	Screw shaft length			Lead accuracy			Mass	Permissible rotational speed N (min-1) Configuration
$L_{\rm t}$	La	L _o	Т	$e_{\scriptscriptstyle p}$	υ _u	(kg)		Fixed - Simple
110	125	180	0	0.010	0.008	0.020	0.35	3 000
160	175	230	0	0.010	0.008	0.030	0.38	3 000
210	225	280	0	0.012	0.008	0.030	0.42	3 000
260	275	330	0	0.012	0.008	0.040	0.46	3 000
310	325	380	0	0.012	0.008	0.040	0.50	3 000
410	425	480	0	0.015	0.010	0.050	0.58	3 000
510	525	580	0	0.016	0.012	0.065	0.66	3 000

(0.007 A	Seals (two places) X	C0.2 C0.5 C0.5 R0.2 max. E 10 M10x1
	Lt (Hardened area)	5 (10) 30 15
10	La	45
-	Lo	·

Refere	Stroke		
	Nominal	Maximum	
Preloaded (PFT)	Precise clearance (SFT)	NOTTIITIAI	IVIdXIIIIUIII
W1201FA-1P-C3Z5	W1201FA-2-C3T5	50	63
W1201FA-3P-C3Z5	W1201FA-4-C3T5	100	113
W1202FA-1P-C3Z5	W1202FA-2-C3T5	150	163
W1202FA-3P-C3Z5	W1202FA-4-C3T5	200	213
W1203FA-1P-C3Z5	W1203FA-2-C3T5	250	263
W1204FA-1P-C3Z5	W1204FA-2-C3T5	350	363
W1205FA-1P-C3Z5	W1205FA-2-C3T5	450	463

Notes: 1. We recommend using NSK support units. See Page B389 for details.

We recommend using NSK Grease PS2. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

32

View X-X

 $4-\phi 4.5$ drill thru

c'bore φ8×4.5

M6×1

(oil hole)

15

Screw shaft ø12

Lead 10

Unit: mm

l	Ball screw s _l	pecification	s	
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	12 × 10 / Right		
Preload / Bal	I recirculation	P-preloa	id / Tube	
Ball dia. / B	all circle dia.	2.381	/ 12.5	
Screw shaft	root diameter	10	0.0	
Effective	ball turns	2.5	×1	
Accuracy grade /	Preload / Axial play	C5 / Z	C5/T	
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	2 790	4 430	
(N)	Static C _{0a}	3 220	6 430	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	98.1	_	
Dynamic friction torque (N·cm)		1.0 – 4.9	1.5 or less	
Spac	er ball	Yes	None	
Factory-page	cked grease	NSK grease LR3		
Nut interna	space (cm³)	1.4		

Standard grease replenishment (cm³) 0.7

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK10-01A (square)	WBK10S-01 (square)
WBK10-11 (round)	

Unit: mm

Scre	Screw shaft length			Lead accuracy			Mass	Permissible rotational speed N (min-1) Configuration
L _t	La	L _o	Т	$e_{\scriptscriptstyle p}$	υu	<i>f_f</i> (kg)		Fixed - Simple
160	175	230	0	0.020	0.018	0.035	0.43	3 000
210	225	280	0	0.023	0.018	0.035	0.47	3 000
310	325	380	0	0.023	0.018	0.050	0.56	3 000
410	425	480	0	0.027	0.020	0.060	0.64	3 000
510	525	580	0	0.030	0.023	0.075	0.72	3 000

(0.010 A) (0.012	Seals (two places) X A G 10.010 A 40 50 L ₁ (Hardened area)	9 17	C0.2 C0.003 E 10 M10x1	φ 8h6 φ
_10 _	$L_{\rm a}$		45	
=	Lo		-	

Refere	Stroke			
Tiererer	Nominal	Maximum		
Preloaded (LPFT)	Preloaded (LPFT) Precise clearance (LSFT)			
W1201FA-5P-C5Z10	W1201FA-5P-C5Z10 W1201FA-6-C5T10			
W1202FA-5P-C5Z10	W1202FA-5P-C5Z10 W1202FA-6-C5T10			
W1203FA-3P-C5Z10	W1203FA-4-C5T10	250	253	
W1204FA-3P-C5Z10	W1204FA-3P-C5Z10 W1204FA-4-C5T10			
W1205FA-3P-C5Z10	W1205FA-3P-C5Z10 W1205FA-4-C5T10			

Notes: 1. We recommend using NSK support units. See Page B389 for details.

2. We recommend using NSK Grease LR3. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.

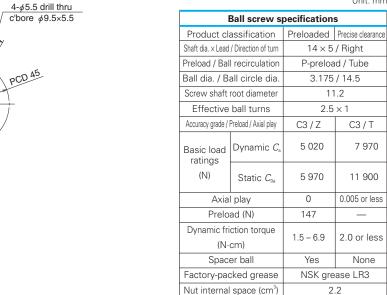
3. Contact NSK if permissible rotational speed N will be exceeded.

B185

M6×1

(oil hole)

34


View X-X

7

Screw shaft ø14

Lead 5

Unit: mm

Recommended support unit

Standard grease replenishment (cm3)

For drive side (Fixed)	For non-drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

1.1

Coro	Screw shaft length		Lo	ad aggur	201	Shaft run-Permissible rotational speed N (mi		nal speed N (min-1)		
30167	v Shart it	engui	Lead accuracy		Lead accuracy ₀₀		out **	Mass (kg)	Configuration	
$L_{\rm t}$	L _a	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	LI	(kg)	Fixed - Simple	Fixed - Fixed	
189	204	271	0	0.010	0.008	0.020	0.52	3 000	3 000	
239	254	321	0	0.012	0.008	0.030	0.57	3 000	3 000	
339	354	421	0	0.013	0.010	0.035	0.67	3 000	3 000	
439	454	521	0	0.015	0.010	0.045	0.77	3 000	3 000	
539	554	621	0	0.016	0.012	0.045	0.87	3 000	3 000	
689	704	771	0	0.018	0.013	0.055	1.0	3 000	3 000	

Notes: 4. The user must design the support bearing structure if the non-drive side is fixed.

5. See Pages B51 and B52 for details on support configurations (Fixed-Simple, Fixed-Fixed, etc.)

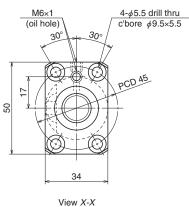
Refere	Stroke			
neielei	Nominal	Maximum		
Preloaded (PFT)	Preloaded (PFT) Precise clearance (SFT)			
W1401FA-1P-C3Z5	W1401FA-1P-C3Z5 W1401FA-2-C3T5			
W1402FA-1P-C3Z5	W1402FA-2-C3T5	150	193	
W1403FA-1P-C3Z5	W1403FA-2-C3T5	250	293	
W1404FA-1P-C3Z5	W1404FA-2-C3T5	350	393	
W1405FA-1P-C3Z5	450	493		
W1406FA-1P-C3Z5	W1406FA-2-C3T5	600	643	

Notes: 1. We recommend using NSK support units. See Page B389 for details.

2. We recommend using NSK Grease LR3. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

(Medium lead)


Nut: LPFT, LSFT

Screw shaft ø14

Unit: mm

Lead 8

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)		
WBK12-01A (square)	WBK12S-01 (square)		
WBK12-11 (round)			

Offic. Hilli							
Ball screw specifications							
Product cla	assification	Preloaded Precise clearance					
Shaft dia. x Lead	/ Direction of turn	14×8	/ Right				
Preload / Bal	l recirculation	P-preloa	d / Tube				
Ball dia. / Ba	all circle dia.	3.175	/ 14.5				
Screw shaft	root diameter	11	.2				
Effective	ball turns	2.5	×1				
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T				
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	4 960	7 880				
(N)	Static C _{0a}	5 920	11 800				
Axia	l play	0	0.005 or less				
Prelo	ad (N)	147	_				
	ction torque cm)	1.5 – 7.8	2.4 or less				
Space	er ball	Yes None					
Factory-pag	cked grease	NSK grease LR3					
Nut internal	space (cm³)	2.1					
Standard grease re	eplenishment (cm³)	1	.1				

Unit: mm

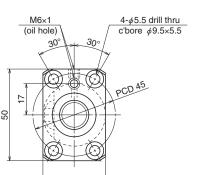
Coro	Screw shaft length		Lo	Lead accuracy		Shaft run-	N 4	Permissible rotational speed N (min-1)		
30161	sciew shall length		Lead accuracy		асу	out ** Mas:	out ivides		Config	uration
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple	Fixed - Fixed	
189	204	271	0	0.020	0.018	0.025	0.56	3 000	3 000	
239	254	321	0	0.023	0.018	0.035	0.61	3 000	3 000	
289	304	371	0	0.023	0.018	0.035	0.67	3 000	3 000	
339	354	421	0	0.025	0.020	0.040	0.72	3 000	3 000	
389	404	471	0	0.025	0.020	0.040	0.78	3 000	3 000	
439	454	521	0	0.027	0.020	0.050	0.83	3 000	3 000	
489	504	571	0	0.027	0.020	0.050	0.88	3 000	3 000	
539	554	621	0	0.030	0.023	0.050	0.94	3 000	3 000	
589	604	671	0	0.030	0.023	0.065	0.99	3 000	3 000	
639	654	721	0	0.035	0.025	0.065	1.0	3 000	3 000	
689	704	771	0	0.035	0.025	0.065	1.1	3 000	3 000	
789	804	871	0	0.035	0.025	0.085	1.2	2 830	3 000	

Notes: 4. The user must design the support bearing structure if the non-drive side is fixed.

5. See Pages B51 and B52 for details on support configurations (Fixed-Simple, Fixed-Fixed, etc.)

M5x0.8 Depth 12 9.15	70.011 A G 35 11 46 L ₁ (Hardened area)	G 12 0.014 A 0.009 E 89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<	L _a L _o	* "

Poforo	Stroke				
nerere	Reference No.				
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	Maximum		
W1401FA-3P-C5Z8	W1401FA-4-C5T8	100	137		
W1402FA-3P-C5Z8	W1402FA-4-C5T8	150	187		
W1402FA-5P-C5Z8	W1402FA-6-C5T8	200	237		
W1403FA-3P-C5Z8	W1403FA-3P-C5Z8 W1403FA-4-C5T8				
W1403FA-5P-C5Z8	W1403FA-6-C5T8	300	337		
W1404FA-3P-C5Z8	W1404FA-4-C5T8	350	387		
W1404FA-5P-C5Z8	W1404FA-6-C5T8	400	437		
W1405FA-3P-C5Z8	W1405FA-4-C5T8	450	487		
W1405FA-5P-C5Z8	W1405FA-5P-C5Z8 W1405FA-6-C5T8				
W1406FA-3P-C5Z8	W1406FA-3P-C5Z8 W1406FA-4-C5T8				
W1406FA-5P-C5Z8	W1406FA-5P-C5Z8 W1406FA-6-C5T8				
W1407FA-1P-C5Z8	W1407FA-2-C5T8	700	737		


Notes: 1. We recommend using NSK support units. See Page B389 for details.

2. We recommend using NSK Grease LR3. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

B189 B190

Unit: mm Lead 10

View X-X

34

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)		
WBK12-01A (square)	WBK12S-01 (square)		
WBK12-11 (round)			

Ball screw specifications								
Product cla	assification	Preloaded Precise clearance						
Shaft dia. x Lead	/ Direction of turn	15 × 10	/ Right					
Preload / Bal	I recirculation	P-preloa	d / Tube					
Ball dia. / Ba	all circle dia.	3.175	/ 15.5					
Screw shaft	root diameter	12	2.2					
Effective	ball turns	2.5	× 1					
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T					
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	5 130	8 140					
(N)	Static C _{0a}	6 420	12 800					
Axia	l play	0	0.005 or less					
Prelo	ad (N)	147	_					
,	ction torque cm)	1.5 – 7.8	2.4 or less					
Space	er ball	Yes	None					
Factory-pag	cked grease	NSK grease LR3						
Nut internal	space (cm³)	2.3						
Standard grease re	eplenishment (cm³)	1	.2					
<u> </u>								

Unit: mm

									Ollit. Illill
Screy	Screw shaft length		۵	Lead accuracy		Shaft run-	Permissible rotational speed N (min-1)		
30161	/v Silait it	engui	L	au accur	асу	out **	Mass (kg)	Configuration	
L_{t}	L _a	L _o	Τ	$e_{\scriptscriptstyle \mathrm{p}}$	υu		(ivg)	Fixed - Simple	Fixed - Fixed
189	204	271	0	0.020	0.018	0.025	0.61	3 000	3 000
239	254	321	0	0.023	0.018	0.035	0.67	3 000	3 000
289	304	371	0	0.023	0.018	0.035	0.74	3 000	3 000
339	354	421	0	0.025	0.020	0.040	0.80	3 000	3 000
389	404	471	0	0.025	0.020	0.040	0.86	3 000	3 000
439	454	521	0	0.027	0.020	0.050	0.93	3 000	3 000
489	504	571	0	0.027	0.020	0.050	1.0	3 000	3 000
539	554	621	0	0.030	0.023	0.050	1.1	3 000	3 000
589	604	671	0	0.030	0.023	0.065	1.1	3 000	3 000
639	654	721	0	0.035	0.025	0.065	1.2	3 000	3 000
689	704	771	0	0.035	0.025	0.065	1.2	3 000	3 000
789	804	871	0	0.035	0.025	0.085	1.4	3 000	3 000
889	904	971	0	0.040	0.027	0.085	1.5	2 430	3 000
1 089	1 104	1 171	0	0.046	0.030	0.110	1.8	1 600	2 250

Notes: 4. The user must design the support bearing structure if the non-drive side is fixed.

5. See Pages B51 and B52 for details on support configurations (Fixed-Simple, Fixed-Fixed, etc.)

M5×0.8 Depth 12	0.014 A 0.014 A 0.014 A R0.2 0.15 0.004 F	0.015 A	Seals (two place) 1	6 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# * G	12 12 12 5 (10)	R0.2 C0. R0.2 max. E 10 M12×1	410h6
				Lo				_

Poforo	Stroke			
nerere	Reference No.			
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	Maximum	
W1501FA-1P-C5Z10	W1501FA-2-C5T10	100	132	
W1502FA-1P-C5Z10	W1502FA-2-C5T10	150	182	
W1502FA-3P-C5Z10	W1502FA-4-C5T10	200	232	
W1503FA-1P-C5Z10	W1503FA-2-C5T10	250	282	
W1503FA-3P-C5Z10	W1503FA-4-C5T10	300	332	
W1504FA-1P-C5Z10	W1504FA-2-C5T10	350	382	
W1504FA-3P-C5Z10	W1504FA-4-C5T10	400	432	
W1505FA-1P-C5Z10	W1505FA-2-C5T10	450	482	
W1505FA-3P-C5Z10	W1505FA-4-C5T10	500	532	
W1506FA-1P-C5Z10	W1506FA-2-C5T10	550	582	
W1506FA-3P-C5Z10	W1506FA-4-C5T10	600	632	
W1507FA-1P-C5Z10	W1507FA-2-C5T10	700	732	
W1508FA-1P-C5Z10	W1508FA-2-C5T10	800	832	
W1510FA-1P-C5Z10	W1510FA-2-C5T10	1 000	1 032	

Notes: 1. We recommend using NSK support units. See Page B389 for details.

2. We recommend using NSK Grease LR3. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

B191 B192

M6×1

(oil hole)

Screw shaft ø15

Unit: mm Lead 20

 $4-\phi 5.5$ drill thru

View X-X

36

Recommended support unit						
For drive side (Fixed)	For non-drive side (Simple)					
WBK12-01A (square)	WBK12S-01 (square)					
WBK12-11 (round)						

	Ball screw s	pecification	s			
Product cl	assification	Preloaded	Precise clearan			
Shaft dia. x Lead	/ Direction of turn	15 × 20	/ Right			
Preload / Bal	I recirculation	P-preload	/ End cap			
Ball dia. / B	all circle dia.	3.175	/ 15.5			
Screw shaft	root diameter	12	2.2			
Effective	ball turns	1.7	× 1			
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T			
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	4 320	5 660			
(N)	Static C _{0a}	5 800	8 700			
Axia	l play	0	0.005 or les			
Prelo	ad (N)	147	_			
Dynamic friction torque (N·cm) Spacer ball		1.5 – 7.8	2.4 or les			
		Yes	None			
Factory-page	cked grease	NSK grease LR3				
Nut interna	space (cm³)	1.9				
Standard grease r	eplenishment (cm³)	1	.0			

									Unit: mm
Screw shaft length		Lead accuracy		Shaft run-	N 4	Permissible rotational speed N (min-1)			
Screv	w Slidit it	engin	Le	au accur	acy	out **	Mass (kg)	Config	uration
$L_{\rm t}$	La	Lo	Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Ng)	Fixed - Simple	Fixed - Fixed
186	204	271	0	0.020	0.018	0.025	0.61	3 000	3 000
236	254	321	0	0.023	0.018	0.035	0.68	3 000	3 000
286	304	371	0	0.023	0.018	0.035	0.75	3 000	3 000
336	354	421	0	0.025	0.020	0.040	0.81	3 000	3 000
386	404	471	0	0.025	0.020	0.040	0.88	3 000	3 000
436	454	521	0	0.027	0.020	0.050	0.95	3 000	3 000
486	504	571	0	0.027	0.020	0.050	1.0	3 000	3 000
536	554	621	0	0.030	0.023	0.050	1.1	3 000	3 000
586	604	671	0	0.030	0.023	0.065	1.1	3 000	3 000
636	654	721	0	0.035	0.025	0.065	1.2	3 000	3 000
686	704	771	0	0.035	0.025	0.065	1.3	3 000	3 000
786	804	871	0	0.035	0.025	0.085	1.4	3 000	3 000
886	904	971	0	0.040	0.027	0.085	1.5	2 440	3 000
1 086	1 104	1 171	0	0.046	0.030	0.110	1.8	1 610	2 240

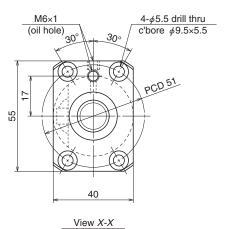
Notes: 4. The user must design the support bearing structure if the non-drive side is fixed.

5. See Pages B51 and B52 for details on support configurations (Fixed-Simple, Fixed-Fixed, etc.)

L ₀	(0.014 A	5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	A G 55	R0.2 Max. M12x1 M12x1
		Lo		

Refere	St	Stroke		
Tierere	Nominal	Maximum		
Preloaded (UPFC)	Precise clearance (USFC)	NOTTIITIAI	IVIdXIIIIUIII	
W1501FA-3PG-C5Z20	W1501FA-4G-C5T20	100	135	
W1502FA-5PG-C5Z20	W1502FA-6G-C5T20	150	185	
W1502FA-7PG-C5Z20	W1502FA-8G-C5T20	200	235	
W1503FA-5PG-C5Z20	W1503FA-6G-C5T20	250	285	
W1503FA-7PG-C5Z20	W1503FA-8G-C5T20	300	335	
W1504FA-5PG-C5Z20	W1504FA-6G-C5T20	350	385	
W1504FA-7PG-C5Z20	W1504FA-8G-C5T20	400	435	
W1505FA-5PG-C5Z20	W1505FA-6G-C5T20	450	485	
W1505FA-7PG-C5Z20	W1505FA-8G-C5T20	500	535	
W1506FA-5PG-C5Z20	W1506FA-6G-C5T20	550	585	
W1506FA-7PG-C5Z20	W1506FA-8G-C5T20	600	635	
W1507FA-3PG-C5Z20	W1507FA-4G-C5T20	700	735	
W1508FA-3PG-C5Z20	W1508FA-4G-C5T20	800	835	
W1510FA-3PG-C5Z20	W1510FA-4G-C5T20	1 000	1 035	

Notes: 1. We recommend using NSK support units. See Page B389 for details.


2. We recommend using NSK Grease LR3. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

B193 B194

Lead 5

Unit: mm

ı	Ball screw s	pecification	s	
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	16 × 5	/ Right	
Preload / Bal	I recirculation	P-preloa	d / Tube	
Ball dia. / B	all circle dia.	3.175	/ 16.5	
Screw shaft	root diameter	13	3.2	
Effective	ball turns	2.5	×1	
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T	
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	5 430	8 620	
(N)	Static C _{0a}	6 890	13 800	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	147	_	
Dynamic friction torque (N·cm) Spacer ball		1.5 – 7.8	2.0 or less	
		Yes Non-		
Factory-pag	cked grease	NSK grease LR3		
Nut internal	space (cm³)	2.6		
Standard grease r	eplenishment (cm³)	1	.3	

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

Unit: mm									
Screw shaft length		Lo	Lood coorrect		Shaft run-	N 4	Permissible rotational speed N (min-1)		
Sciev	v Silait it	engui	Le	_ead accuracy		out **	Mass (kg)	Config	uration
$L_{\rm t}$	La	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple	Fixed - Fixed
189	204	271	0	0.010	0.008	0.020	0.70	3 000	3 000
289	304	371	0	0.012	0.008	0.030	0.83	3 000	3 000
389	404	471	0	0.013	0.010	0.035	0.97	3 000	3 000
489	504	571	0	0.015	0.010	0.045	1.1	3 000	3 000
689	704	771	0	0.018	0.013	0.055	1.4	3 000	3 000
889	904	971	0	0.021	0.015	0.075	1.6	2 570	3 000

- Notes: 4. The user must design the support bearing structure if the non-drive side is fixed.
 - 5. See Pages B51 and B52 for details on support configurations (Fixed-Simple, Fixed-Fixed, etc.)

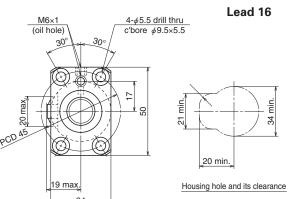
M5x0.8 Depth 12 Depth	5	Seals (two places) 6 X 10.008 A 31 11 X 42 (Hardened area)		 900 000 000 000 000 000 000 000 000 000
	•	Lo	-11-	

Refere	Stroke			
neieiei	Nominal	Maximum		
Preloaded (PFT)	Preloaded (PFT) Precise clearance (SFT)		Iviaximum	
W1601FA-1P-C3Z5	W1601FA-2-C3T5	100	141	
W1602FA-1P-C3Z5	W1602FA-2-C3T5	200	241	
W1603FA-1P-C3Z5	W1603FA-2-C3T5	300	341	
W1604FA-1P-C3Z5	W1604FA-2-C3T5	400	441	
W1606FA-1P-C3Z5	W1606FA-2-C3T5	600	641	
W1608FA-1P-C3Z5	W1608FA-2-C3T5	800	841	

Notes: 1. We recommend using NSK support units. See Page B389 for details.

- 2. We recommend using NSK Grease LR3. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.
- 3. Contact NSK if permissible rotational speed N will be exceeded.

B195


B196

Z

View X-X

Unit: mm

Screw shaft ø16

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)				
WBK12-01A (square)	WBK12S-01 (square)				
WRK12-11 (round)					

Ball screw specifications Product classification Preloaded Precise clearance 16×16 / Right Shaft dia. x Lead / Direction of turn Preload / Ball recirculation P-preload / Tube Ball dia. / Ball circle dia. 3.175 / 16.75 13.4 Screw shaft root diameter 1.5×1 Effective ball turns Accuracy grade / Preload / Axial play C5 / Z C5 / T 4 180 5 480 Dynamic C_a Basic load ratings (N) 5 390 8 080 Static Co. Axial play 0 0.005 or less 147 Preload (N) _ Dynamic friction torque 1.5 - 7.82.4 or less (N·cm)

Yes

NSK grease LR3

2.1

1.1

Spacer ball

Factory-packed grease

Nut internal space (cm³)

Standard grease replenishment (cm³)

Unit: mm

None

Onit: mm										
Screw shaft length		Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)				
30161	N SHAIL R	engui	Le	au accur	асу	out **	Mass (kg)	Config	guration	
L_{t}	La	L。	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(Kg)	Fixed - Simple	Fixed - Fixed	
184	204	271	0	0.020	0.018	0.025	0.69	3 000	3 000	
234	254	321	0	0.023	0.018	0.035	0.77	3 000	3 000	
284	304	371	0	0.023	0.018	0.035	0.84	3 000	3 000	
334	354	421	0	0.025	0.020	0.040	0.92	3 000	3 000	
384	404	471	0	0.025	0.020	0.040	0.99	3 000	3 000	
434	454	521	0	0.027	0.020	0.050	1.1	3 000	3 000	
484	504	571	0	0.027	0.020	0.050	1.1	3 000	3 000	
534	554	621	0	0.030	0.023	0.050	1.2	3 000	3 000	
584	604	671	0	0.030	0.023	0.065	1.3	3 000	3 000	
634	654	721	0	0.035	0.025	0.065	1.4	3 000	3 000	
684	704	771	0	0.035	0.025	0.065	1.4	3 000	3 000	
784	804	871	0	0.035	0.025	0.085	1.6	3 000	3 000	
884	904	971	0	0.040	0.027	0.085	1.7	2 720	3 000	
1 084	1 104	1 171	0	0.046	0.030	0.110	2.0	1 790	2 480	

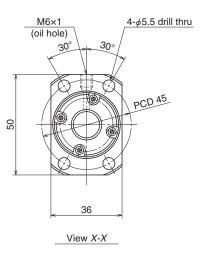
Notes: 4. The user must design the support bearing structure if the non-drive side is fixed.

5. See Pages B51 and B52 for details on support configurations (Fixed-Simple, Fixed-Fixed, etc.)

M5×0.8 Depth 12		0.015 A	Seals (two places) 1	8 X - 12 X - 12	# * G	0 0 0 25 12 12 (5)	20.2		
	22		L _i (nardened area	.)		-10-1(10)	45	15	
				Lo			1-		

Stroke							
Refere	Reference No.						
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	Maximum				
W1601FA-3P-C5Z16	W1601FA-4-C5T16	100	122				
W1602FA-3P-C5Z16	W1602FA-4-C5T16	150	172				
W1602FA-5P-C5Z16	W1602FA-6-C5T16	200	222				
W1603FA-3P-C5Z16	W1603FA-4-C5T16	250	272				
W1603FA-5P-C5Z16	W1603FA-6-C5T16	300	322				
W1604FA-3P-C5Z16	W1604FA-4-C5T16	350	372				
W1604FA-5P-C5Z16	W1604FA-6-C5T16	400	422				
W1605FA-1P-C5Z16	W1605FA-2-C5T16	450	472				
W1605FA-3P-C5Z16	W1605FA-4-C5T16	500	522				
W1606FA-3P-C5Z16	W1606FA-4-C5T16	550	572				
W1606FA-5P-C5Z16	W1606FA-6-C5T16	600	622				
W1607FA-1P-C5Z16	W1607FA-2-C5T16	700	722				
W1608FA-3P-C5Z16	W1608FA-4-C5T16	800	822				
W1610FA-1P-C5Z16	W1610FA-2-C5T16	1 000	1 022				

Notes: 1. We recommend using NSK support units. See Page B389 for details.


2. We recommend using NSK Grease LR3. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

B197 B198

Lead 32

Unit: mm

Ball screw specifications							
Product cl	assification	Preloaded	Precise clearance				
Shaft dia. x Lead	/ Direction of turn	16 × 32	2 / Right				
Preload / Bal	I recirculation	P-preload	/ End cap				
Ball dia. / B	all circle dia.	3.175	/ 16.75				
Screw shaft	root diameter	13	3.4				
Effective	ball turns	0.7	× 2				
Accuracy grade /	Preload / Axial play	C5 / Z	C5/T				
Basic load ratings		4 800					
(N)	Static C _{0a}	7.5	510				
Axia	l play	0	0.005 or less				
Prelo	ad (N)	118	_				
,	ction torque cm)	1.5 – 9.8	2.4 or less				
Spac	er ball	None					
Factory-pag	cked grease	NSK grease LR3					
Nut internal	space (cm³)	2.0					
Standard grease r	eplenishment (cm³)	1	.0				

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

									Onit. mm
Coro	Screw shaft length Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)				
Screv			Lead accuracy		v snart length Le		out **	Mass (kg)	Config
$L_{\rm t}$	La	L。	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	Fixed - Fixed
382	404	471	0	0.025	0.020	0.040	0.90	3 000	3 000
582	604	671	0	0.030	0.023	0.065	1.2	3 000	3 000
882	904	971	0	0.040	0.027	0.085	1.7	2 670	3 000
1 282	1 304	1 371	0	0.054	0.035	0.150	2.3	1 250	1 740

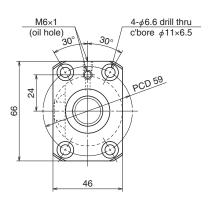
Notes: 5. The user must design the support bearing structure if the non-drive side is fixed.

6. See Pages B51 and B52 for details on support configurations (Fixed-Simple, Fixed-Fixed, etc.)

L ₀	M5×0.8 Depth 12 Depth 12 Depth 12	π0.2 max.	rea)	C0.2 C0.2 R0.2 R0.2 R0.2	
		-	Lo	7	

Refere	Stroke		
	Nominal	Maximum	
Preloaded (UPFC)	NOTTIITIAI	IVIAXIITIUITI	
W1603FA-7PGX-C5Z32	W1603FA-8GX-C5T32	300	342
W1605FA-5PGX-C5Z32	W1605FA-6GX-C5T32	500	542
W1608FA-5PGX-C5Z32	W1608FA-6GX-C5T32	800	842
W1612FA-1PGX-C5Z32	W1612FA-2GX-C5T32	1 200	1 242

Notes: 1. We recommend using NSK support units. See Page B389 for details.


2. We recommend using NSK Grease LR3. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.

- 3. These ball nuts do not have seals.
- 4. Contact NSK if permissible rotational speed N will be exceeded.

B199 B200

Lead 10

Unit: mm

View X-X

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK15-01A (square)	WBK15S-01 (square)
WBK15-11 (round)	

Ball screw specifications							
Product cl	assification	Preloaded Precise clearan					
Shaft dia. x Lead	/ Direction of turn	20 × 10	/ Right				
Preload / Bal	I recirculation	P-preloa	d / Tube				
Ball dia. / B	all circle dia.	3.969	9 / 21				
Screw shaft	root diameter	16	6.9				
Effective	ball turns	2.5	×1				
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T				
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	8 350	13 300				
(N)	Static C _{0a}	11 000	21 900				
Axia	l play	0 0.005 or le					
Prelo	ad (N)	196	_				
l '	ction torque	2.0 – 11.8	2.9 or less				
Spac	er ball	Yes	None				
Factory-page	cked grease	NSK grease LR3					
Nut interna	space (cm³)	4.7					
Standard grease r	eplenishment (cm³)	2.4					

Unit: mm 😾

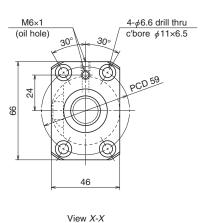
Sorov	Screw shaft length		Lead accuracy		Shaft run-		Permissible rotational speed N (min-		
Sciev	v Silail It		Le	au accur	acy	out **	Mass (kg)	Config	uration
$L_{\rm t}$	La	L。	Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Ng)	Fixed - Simple	Fixed - Fixed
289	314	399	0	0.023	0.018	0.035	1.4	3 000	3 000
389	414	499	0	0.025	0.020	0.040	1.6	3 000	3 000
489	514	599	0	0.027	0.020	0.050	1.9	3 000	3 000
589	614	699	0	0.030	0.023	0.065	2.1	3 000	3 000
689	714	799	0	0.035	0.025	0.065	2.3	3 000	3 000
789	814	899	0	0.035	0.025	0.085	2.5	3 000	3 000
889	914	999	0	0.040	0.027	0.085	2.8	3 000	3 000
989	1 014	1 099	0	0.040	0.027	0.110	3.0	2 710	3 000
1 089	1 114	1 199	0	0.046	0.030	0.110	3.2	2 220	3 000
1 189	1 214	1 299	0	0.046	0.030	0.150	3.4	1 860	2 570
1 289	1 314	1 399	0	0.054	0.035	0.150	3.7	1 580	2 190

Notes: 4. The user must design the support bearing structure if the non-drive side is fixed.

5. See Pages B51 and B52 for details on support configurations (Fixed-Simple, Fixed-Fixed, etc.)

CO.:		00 00 00 00 00 00 00 00 00 00 00 00 00	Seals (two	6 X 1 13 13	# * G	10 (15)	#850 P0.2 max.	9421 C0.5 C0.5
	25		L	-a			60	>
	<			Lo				

Poforo	nce No.	St	roke
	nice No.	Nominal	Maximum
Preloaded (LPFT)	Precise clearance (LSFT)	INOTTIITIAI	IVIAXIIIIUIII
W2002FA-1P-C5Z10	W2002FA-2-C5T10	200	229
W2003FA-1P-C5Z10	W2003FA-2-C5T10	300	329
W2004FA-1P-C5Z10	W2004FA-2-C5T10	400	429
W2005FA-1P-C5Z10	W2005FA-2-C5T10	500	529
W2006FA-1P-C5Z10	W2006FA-2-C5T10	600	629
W2007FA-1P-C5Z10	W2007FA-2-C5T10	700	729
W2008FA-1P-C5Z10	W2008FA-2-C5T10	800	829
W2009FA-1P-C5Z10	W2009FA-2-C5T10	900	929
W2010FA-1P-C5Z10	W2010FA-2-C5T10	1 000	1 029
W2011FA-1P-C5Z10	W2011FA-2-C5T10	1 100	1 129
W2012FA-1P-C5Z10	W2012FA-2-C5T10	1 200	1 229


Notes: 1. We recommend using NSK support units. See Page B389 for details.

2. We recommend using NSK Grease LR3. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

Lead 20

Unit: mm

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK15-01A (square)	WBK15S-01 (square)
WBK15-11 (round)	

Ball screw specifications							
Product cl	assification	on Preloaded Precise clearance					
Shaft dia. x Lead	/ Direction of turn	20 × 20	/ Right				
Preload / Bal	I recirculation	P-preloa	preload / Tube 3.969 / 21				
Ball dia. / B	all circle dia.	3.969 / 21					
Screw shaft	root diameter	16	3.9				
Effective	ball turns	1.5	×1				
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T				
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	6 250	8 190				
(N)	Static C _{0a}	8 760	13 100				
Axia	l play	0	0.005 or less				
Prelo	ad (N)	196	_				
l '	ction torque cm)	2.0 – 11.8	2.9 or less				
Spac	er ball	Yes	None				
Factory-page	cked grease	NSK gre	ase LR3				
Nut interna	space (cm³)	4	.2				
Standard grease r	eplenishment (cm³)	2	.1				

										Unit: mm
	Coro	oboft la	anath				Shaft run-	N 4	Permissible rotatio	nal speed N (min-1)
	Screv	v shaft le	ength	Lea	ad accura	асу	out **	Mass (kg)	Config	uration
	$L_{\rm t}$	La	Lo	Т	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	Fixed - Fixed
	310	335	420	0	0.023	0.018	0.040	1.6	3 000	3 000
	410	435	520	0	0.027	0.020	0.050	1.8	3 000	3 000
	510	535	620	0	0.030	0.023	0.050	2.0	3 000	3 000
	610	635	720	0	0.030	0.023	0.065	2.3	3 000	3 000
	710	735	820	0	0.035	0.025	0.085	2.5	3 000	3 000
_	810	835	920	0	0.040	0.027	0.085	2.7	3 000	3 000
	910	935	1 020	0	0.040	0.027	0.110	3.0	3 000	3 000
	1 010	1 035	1 120	0	0.046	0.030	0.110	3.2	2 630	3 000
	1 110	1 135	1 220	0	0.046	0.030	0.110	3.4	2 160	2 970
	1 210	1 235	1 320	0	0.046	0.030	0.150	3.7	1 810	2 500
	1 510	1 535	1 620	0	0.054	0.035	0.180	4.4	1 150	1 610

Notes: 4. The user must design the support bearing structure if the non-drive side is fixed.

5. See Pages B51 and B52 for details on support configurations (Fixed-Simple, Fixed-Fixed, etc.)

M6x1.0 Depth 15 Depth 16 Depth 16 Depth 17 Depth 17 Depth 17 Depth 17 Depth 18 Depth 18	5
L ₀	

Rafar	ence No	Stroke		
THE FET		Nominal	Maximum	
Preloaded (LPFT)	Precise clearance (LSFT)	NOTTIITIAI	IVIAXIITIUITI	
W2003FA-3P-C5Z20	W2003FA-4-C5T20	200	241	
W2004FA-3P-C5Z20	W2004FA-4-C5T20	300	341	
W2005FA-3P-C5Z20	W2005FA-4-C5T20	400	441	
W2006FA-3P-C5Z20	W2006FA-4-C5T20	500	541	
W2007FA-3P-C5Z20	W2007FA-4-C5T20	600	641	
W2008FA-3P-C5Z20	W2008FA-4-C5T20	700	741	
W2009FA-3P-C5Z20	W2009FA-4-C5T20	800	841	
W2010FA-3P-C5Z20	W2010FA-4-C5T20	900	941	
W2011FA-3P-C5Z20	W2011FA-4-C5T20	1 000	1 041	
W2012FA-3P-C5Z20	W2012FA-4-C5T20	1 100	1 141	
W2015FA-1P-C5Z20	W2015FA-2-C5T20	1 400	1 441	

Notes: 1. We recommend using NSK support units. See Page B389 for details.

2. We recommend using NSK Grease LR3. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

Lead 40

Unit: mm

M6×1	e) 30 30	$4-\phi 5.5$ drill thru
76	40	PCD 48

View X-X

1	Ball screw s _l	pecification	s
Product cl	assification	Preloaded	Precise clearance
Shaft dia. x Lead	/ Direction of turn	20 × 40) / Right
Preload / Bal	I recirculation	P-preload	/ End cap
Ball dia. / B	all circle dia.	3.175	/ 20.75
Screw shaft	root diameter	17	7.4
Effective	ball turns	0.7	× 2
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	5 4	110
(N)	Static C _{0a}	93	360
Axia	l play	0	0.005 or less
Prelo	ad (N)	148	_
'	ction torque	2.0 – 11.8	2.9 or less
Spac	er ball	No	ne
Factory-page	cked grease	NSK gre	ase LR3
Nut interna	space (cm³)	2	.8
Standard grease r	eplenishment (cm³)	1	.4

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK15-01A (square)	WBK15S-01 (square)
WBK15-11 (round)	

Unit: mm

Screv	v shaft le	enath	یم ا	ad accura	acv.	Shaft run-	Mass	Permissible rotational speed N (mir	
	V SHALL IC	ziigtii	Loc	ad accure	асу	out **	(kg)	Configuration	
$L_{\rm t}$	La	L。	Т	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple	Fixed - Fixed
506	535	620	0	0.030	0.023	0.050	1.7	3 000	3 000
706	735	820	0	0.035	0.025	0.085	2.2	3 000	3 000
906	935	1 020	0	0.040	0.027	0.110	2.7	3 000	3 000
1 106	1 135	1 220	0	0.046	0.030	0.110	3.1	2 210	3 000
1 306	1 335	1 420	0	0.054	0.035	0.150	3.6	1 570	2 160
1 706	1 735	1 820	0	0.065	0.040	0.230	4.6	910	1 270

Notes: 5. The customer must design the support bearing structure if the non-drive side is fixed.

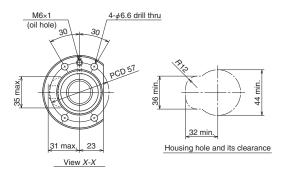
6. See Pages B51 and B52 for details on support configurations (Fixed-Simple, Fixed-Fixed, etc.)

∠ L _o	M6x1.0 Depth 15 0.014 A	15 20 10	ea) ,	C0.3	2	0.009 E
	<		Lo		>	

Refere	Stroke		
	Nominal	Maximum	
Preloaded (UPFC)	Precise clearance (USFC)	Norminal	Maximum
W2005FA-5PGX-C5Z40	W2005FA-6GX-C5T40	400	459
W2007FA-5PGX-C5Z40	W2007FA-6GX-C5T40	600	659
W2009FA-5PGX-C5Z40	W2009FA-6GX-C5T40	800	859
W2011FA-5PGX-C5Z40	W2011FA-6GX-C5T40	1 000	1 059
W2013FA-1PGX-C5Z40	W2013FA-2GX-C5T40	1 200	1 259
W2017FA-1PGX-C5Z40	W2017FA-2GX-C5T40	1 600	1 659

Notes: 1. We recommend using NSK support units. See Page B389 for details.

2. We recommend using NSK Grease LR3. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.


- 3. These ball nuts do not have seals.
- 4. Contact NSK if permissible rotational speed N will be exceeded.

B205 B206

굔

Lead 20

Unit: mm

Ball screw specifications					
Product cl	assification	Preloaded	Precise clearance		
Shaft dia. x Lead	/ Direction of turn	25 × 20) / Right		
Preload / Bal	I recirculation	P-preloa	ad / Tube		
Ball dia. / B	all circle dia.	4.762	/ 26.25		
Screw shaft	root diameter	2	1.3		
Effective	ball turns	2.5	×1		
Accuracy grade / Preload / Axial play		C5 / Z	C5 / T		
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	11 700	18 600		
(N)	Static C _{0a}	16 300	32 600		
Axia	l play	0	0.005 or less		
Prelo	ad (N)	343	_		
Dynamic friction torque (N·cm)		3.9 – 24.5	4.9 or less		
Spacer ball		Yes	None		
Factory-packed grease		NSK gre	ease LR3		
Nut internal	space (cm³)	12			
Standard grease r	eplenishment (cm³)		6		

Recommended support unit

For drive side	For non-drive side			
(Fixed)	(Fixed)	(Simple)		
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)		
WBK20-11 (round)	WBK20-11 (round)			

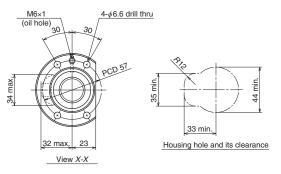
Unit: mm

Caro	v shaft le	anath	Lo	ad aggur	201	Shaft run-		Permissible rotational speed N (min-1)	
Sciev	v Silait it	engui	Le	ad accura	асу	out **	Mass (kg)	Config	uration
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	Fixed - Fixed
750	780	913	0	0.035	0.025	0.055	4.0	2 800	2 800
950	980	1 113	0	0.040	0.027	0.070	4.7	2 800	2 800
1 150	1 180	1 313	0	0.046	0.030	0.090	5.4	2 590	2 800
1 350	1 380	1 513	0	0.054	0.035	0.090	6.2	1 860	2 550
1 550	1 580	1 713	0	0.054	0.035	0.120	6.9	1 400	1 940
1 750	1 780	1 913	0	0.065	0.040	0.120	7.6	1 090	1 520
2 150	2 180	2 313	0	0.077	0.046	0.160	9.1	720	1 000

C0.5 \$\frac{90}{97} \frac{10}{97} \frac{10}{	3 88 80 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	A G (10)	70.018 A 10.018	0.010 <i>E</i>
53	La		80	
	L _o		-	

Poforo	Stroke		
neielei	Reference No.		
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	Maximum
W2507FA-1P-C5Z20	W2507FA-2-C5T20	600	640
W2509FA-1P-C5Z20	W2509FA-2-C5T20	800	840
W2511FA-1P-C5Z20	W2511FA-2-C5T20	1 000	1 040
W2513FA-1P-C5Z20	W2513FA-2-C5T20	1 200	1 240
W2515FA-1P-C5Z20	W2515FA-2-C5T20	1 400	1 440
W2517FA-1P-C5Z20	W2517FA-2-C5T20	1 600	1 640
W2521FA-1P-C5Z20	W2521FA-2-C5T20	2 000	2 040

Notes: 1. We recommend using NSK support units. See Page B389 for details.


2. We recommend using NSK Grease LR3. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

B207 B208

Lead 25

Unit: mm

Ball screw specifications					
Product cl	assification	Preloaded	Precise clearance		
Shaft dia. x Lead	/ Direction of turn	25 × 25	/ Right		
Preload / Bal	I recirculation	P-preloa	ıd / Tube		
Ball dia. / B	all circle dia.	4.762	/ 26.25		
Screw shaft	root diameter	21	.3		
Effective	ball turns	1.5	× 1		
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T		
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	8 970	11 700		
(N)	Static C _{0a}	13 100	19 700		
Axia	l play	0	0.005 or less		
Prelo	ad (N)	294	_		
Dynamic friction torque (N.cm)		3.9 – 24.5	4.9		
Spacer ball		Yes	None		
Factory-pag	cked grease	NSK grease LR3			
Nut internal	space (cm³)	7.5			
Standard grease r	eplenishment (cm³)	3	.8		

Recommended support unit

For drive side	For non-drive side			
(Fixed)	(Fixed)	(Simple)		
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)		
WBK20-11 (round)	WBK20-11 (round)			

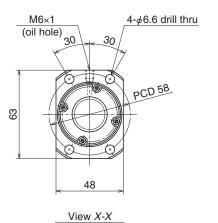
Unit: mm

The state of the s									
Screy	w shaft le	anath	Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)		
	vv Silait i	engui	Le	au accure	асу	out **	Mass (kg)	Config	uration
$L_{\rm t}$	La	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple	Fixed - Fixed
750	780	913	0	0.035	0.025	0.055	4.0	2 800	2 800
950	980	1 113	0	0.040	0.027	0.070	4.7	2 800	2 800
1 150	1 180	1 313	0	0.046	0.030	0.090	5.4	2 580	2 800
1 350	1 380	1 513	0	0.054	0.035	0.090	6.2	1 850	2 550
1 550	1 580	1 713	0	0.054	0.035	0.120	7.0	1 400	1 930
1 750	1 780	1 913	0	0.065	0.040	0.120	7.7	1 090	1 510
2 150	2 180	2 313	0	0.077	0.046	0.160	9.1	710	1 000

M20×1 16 F 1	35 <u>/0.01</u>	11A X J	-70.	C0.5 C0.5 C0.5 C0.5 C0.5 C0.5 C0.5 C0.5
. 53		La	> <1	80
	-1-	Lo		

Refere	Stroke		
Tiererer	Reference No.		
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	Maximum
W2507FA-3P-C5Z25	W2507FA-4-C5T25	600	646
W2509FA-3P-C5Z25	W2509FA-4-C5T25	800	846
W2511FA-3P-C5Z25	W2511FA-4-C5T25	1 000	1 046
W2513FA-3P-C5Z25	W2513FA-4-C5T25	1 200	1 246
W2515FA-3P-C5Z25	W2515FA-4-C5T25	1 400	1 446
W2517FA-3P-C5Z25	W2517FA-4-C5T25	1 600	1 646
W2521FA-3P-C5Z25	W2521FA-4-C5T25	2 000	2 046

Notes: 1. We recommend using NSK support units. See Page B389 for details.


2. We recommend using NSK Grease LR3. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

B209

Lead 50

Unit: mm

I	Ball screw specifications					
Product cl	assification	Preloaded	Precise clearance			
Shaft dia. x Lead	/ Direction of turn	25 × 50	/ Right			
Preload / Bal	I recirculation	P-preload	/ End cap			
Ball dia. / B	all circle dia.	3.969	9 / 26			
Screw shaft	root diameter	21	.9			
Effective	ball turns	0.7	× 2			
Accuracy grade / Preload / Axial play		C5 / Z	C5 / T			
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	8 090				
(N)	Static C _{0a}	14 600				
Axia	l play	0	0.005 or less			
Prelo	ad (N)	196	_			
Dynamic friction torque (N.cm)		2.9 – 21.5	4.9 or less			
Spacer ball		None				
Factory-packed grease		NSK grease LR3				
Nut internal	space (cm³)	4.2				
Standard grease r	eplenishment (cm³)	2.1				

Recommended support unit

For drive side	drive side	
(Fixed)	(Fixed)	(Simple)
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)
WBK20-11 (round)	WBK20-11 (round)	

Unit: mm

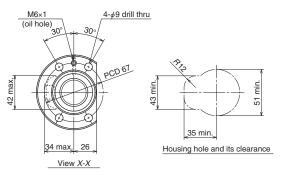
									Offic. ITIIII
Soro	w shaft le	anath	Lo	ad accura	201	Shaft run-	N 4	Permissible rotatio	nal speed N (min-1)
30161	v Shart it		Lec			out **	Mass (kg)	Config	uration
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple	Fixed - Fixed
844	880	1 013	0	0.040	0.027	0.070	4.1	2 800	2 800
1 144	1 180	1 313	0	0.046	0.030	0.090	5.3	2 600	2 800
1 644	1 680	1 813	0	0.065	0.040	0.120	7.2	1 250	1 720
2 144	2 180	2 313	0	0.077	0.046	0.160	9.1	730	1 010

C0.5 0.013 A CO	25 12 13 50		(10)	R0.2 max. E 16 M20x	100-100-100-100-100-100-100-100-100-100	(0.010 E)
50	L _t (Hardened area	1) 1	[20]	< 53	< 27 >	
< 53	< L _a	1	>	< 80	>	
*		Lo			>	

Referen	Stroke		
Hererei	Reference No.		
Preloaded (UPFC)	Precise clearance (USFC)	Nominal	Maximum
W2508FA-1PGX-C5Z50	W2508FA-2GX-C5T50	700	780
W2511FA-5PGX-C5Z50	W2511FA-6GX-C5T50	1 000	1 080
W2516FA-1PGX-C5Z50	W2516FA-2GX-C5T50	1 500	1 580
W2521FA-5PGX-C5Z50	W2521FA-6GX-C5T50	2 000	2 080

Notes: 1. We recommend using NSK support units. See Page B389 for details.

2. We recommend using NSK Grease LR3. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.


3. These ball nuts do not have seals.

4. Contact NSK if permissible rotational speed N will be exceeded.

B211 B212

Lead 25

Unit: mm

Ball screw specifications				
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	32 × 25	/ Right	
Preload / Bal	I recirculation	P-preloa	ıd / Tube	
Ball dia. / B	all circle dia.	4.762	/ 33.25	
Screw shaft	root diameter	28	3.3	
Effective	ball turns	2.5	× 1	
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T	
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	12 900	20 400	
(N)	Static C _{0a}	21 100	42 200	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	441	_	
'	ction torque	6.8 – 31.5	7.8 or less	
Spac	er ball	Yes	None	
Factory-pag	cked grease	NSK grease LR3		
Nut internal	space (cm³)	17.5		
Standard grease r	eplenishment (cm³)	8	3.8	

Recommended support unit

For drive side	For non-drive side		
(Fixed)	(Fixed)	(Simple)	
WBK25-01W (square)	WBK25-01W (square)	WBK25S-01W (square)	
WBK25-11 (round)	WBK25-11 (round)		

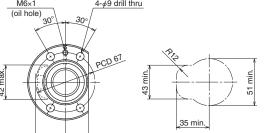
Unit: mm

Coro	w shaft le	onath	Lo	ad accur	201/	Shaft run-	N 4	Permissible rotation	nal speed N (min-1)
Screv	N Shart i	engtn	Le	ad accur	acy	out **	Mass (kg)	Config	uration
$L_{\rm t}$	L _a	L。	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple	Fixed - Fixed
1 180	1 219	1 376	0	0.046	0.030	0.090	9.3	2 180	2 180
1 680	1 719	1 876	0	0.065	0.040	0.120	12.3	1 600	2 180
2 180	2 219	2 376	0	0.077	0.046	0.160	15.4	930	1 300
2 780	2 819	2 976	0	0.093	0.054	0.200	19.1	570	800

M25×1.5 20 F 1 35	A0.3 max. 10.013 A 117	A G (12)	2 E 20 M25×1.5
	L _t (Hardened area)	12 (27)	62 33
62	∠ La		95
*	L	0	

Poforo	Stroke		
neielei	Reference No.		
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	Maximum
W3211FA-1P-C5Z25	W3211FA-2-C5T25	1 000	1 046
W3216FA-1P-C5Z25	W3216FA-2-C5T25	1 500	1 546
W3221FA-1P-C5Z25	W3221FA-2-C5T25	2 000	2 046
W3227FA-1P-C5Z25	W3227FA-2-C5T25	2 600	2 646

Notes: 1. We recommend using NSK support units. See Page B389 for details.


2. We recommend using NSK Grease LR3. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

B213 B214

Lead 32

Unit: mm

M6×1 (oil hole) 30° 30° PCI 34 max, 26 View X-X	e drill thru Off William 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

I	Ball screw s	pecification	s	
Product cla	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	32 × 32	2 / Right	
Preload / Bal	I recirculation	P-preloa	ad / Tube	
Ball dia. / B	all circle dia.	4.762	/ 33.25	
Screw shaft	root diameter	28	3.3	
Effective	ball turns	1.5	×1	
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T	
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	10 100	13 300	
(N)	Static C _{0a}	16 800	25 200	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	392	_	
'	iction torque cm)	6.9 – 31.5	7.8 or less	
Spac	er ball	Yes	None	
Factory-pag	cked grease	NSK grease LR3		
Nut internal space (cm³)		14		
Standard grease r	eplenishment (cm³)		7	
Nut internal	space (cm³)		4	

Recommended support unit

For drive side	For non-drive side				
(Fixed)	(Fixed)	(Simple)			
WBK25-01W (square)	WBK25-01W (square)	WBK25S-01W (square)			
WBK25-11 (round)	WBK25-11 (round)				

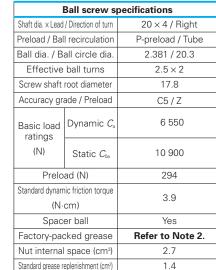
Unit: mm

Screv	w shaft le	ength	Lead accuracy		Shaft run- out **	Mass	Permissible rotatio		
L_{t}	La	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	Fixed - Fixed
1 180	1 219	1 376	0	0.046	0.030	0.090	9.3	2 180	2 180
1 680	1 719	1 876	0	0.065	0.040	0.120	12.3	1 590	2 180
2 180	2 219	2 376	0	0.077	0.046	0.160	15.4	930	1 290
2 780	2 819	2 976	0	0.093	0.054	0.200	19.1	570	790

M25×1.5 / 20 F 1.35	0.5 S S S S S S S S S S S S S S S S S S S	A G (12)	900.5 C1	Ø 0.010 E
62	L _a		95	
-	Lo		*	

Referer	Stroke		
heielei	Manainal	Marriage	
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	Maximum
W3211FA-3P-C5Z32	W3211FA-4-C5T32	1 000	1 054
W3216FA-3P-C5Z32	W3216FA-4-C5T32	1 500	1 554
W3221FA-3P-C5Z32	W3221FA-4-C5T32	2 000	2 054
W3227FA-3P-C5Z32	W3227FA-4-C5T32	2 600	2 654

Notes: 1. We recommend using NSK support units. See Page B389 for details.


2. We recommend using NSK Grease LR3. The standard quantity for replenishment is about 50% of the nut's internal space. See Page D16 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

B215

Lead 4

Unit: mm

6-∳5.5 drill thru
c'bore
45°
PCD 51
(Q) POD
111111111111
M6×1.0
(oil hole)
24

View X-X

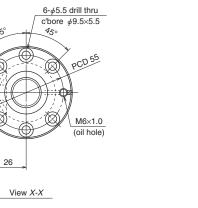
Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)		
WBK15-01A (square)	WBK15S-01 (square)		
WBK15-11 (round)			

						Offic. Hilli
Lead accuracy		Shaft run-	Mass (kg)	Permissible rotational speed N (min-1) Configuration		
Lead accuracy		out **				
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	Fixed - Fixed
-0.005	0.023	0.018	0.045	1.1	3 000	3 000
-0.007	0.023	0.018	0.045	1.2	3 000	3 000
-0.009	0.025	0.020	0.055	1.5	3 000	3 000
-0.011	0.027	0.020	0.070	1.7	3 000	3 000
-0.014	0.030	0.023	0.085	1.9	3 000	3 000
-0.016	0.035	0.025	0.085	2.1	3 000	3 000

(0.014 A	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Seals (two places) X - 1	# * G	9.61.6	C0.3 R0.2 max. M15×1	100° CO.5 CO.5	Ø 0.012 E
-		Lt (Hardened area)		25	40	20	_
25		La		-	60	•	-
-		Lo					4

	Stro	oke	Sarow shaft langth		
Reference No.	Nominal	Maximum	Screw shaft length		
	INOMINAL	IVIAXIITIUITI	$L_{\rm t}$	La	L。
W2002SA-1P-C5Z4	150	170	225	250	335
W2002SA-2P-C5Z4	200	220	275	300	385
W2003SA-1P-C5Z4	300	320	375	400	485
W2004SA-1P-C5Z4	400	420	475	500	585
W2005SA-1P-C5Z4	500	520	575	600	685
W2006SA-1P-C5Z4	600	620	675	700	785


Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.

- 2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details.
- 3. Contact NSK if permissible rotational speed N will be exceeded.
- 4. If the non-drive side is fixed, the user must design the configuration of the support bearing area.
- 5. See Pages B51 and B52 for details on support configurations (Fixed-Simple, Fixed-Fixed, etc.)

B217 B218

Lead 5

Unit: mm

45°	6-\psi 5.5 drill thru c'bore \psi 9.5\times 5.5
	PCD 55
	M6×1.0 (oil hole)
26	

Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	20 × 5 / Right			
Preload / Bal	II recirculation	P-preload / Tube			
Ball dia. / B	all circle dia.	3.175 / 20.5			
Screw shaft	root diameter	17.2			
Effective	ball turns	2.5 × 2			
Accuracy gr	ade / Preload	C5 / Z			
Basic load ratings	Dynamic C _a	11 100			
(N)	Static C _{0a}	17 100			
Prelo	ad (N)	490			
,	nic friction torque cm)	7.8			
Spacer ball		Yes			
Factory-pag	cked grease	Refer to Note 2.			
Nut interna	l space (cm³)	4.3			
Standard grease r	eplenishment (cm³)	2.2			

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)	OA
WBK15-01A (square)	WBK15S-01 (square)	
WBK15-11 (round)		

Unit: mm

Load acquiracy		Shaft run-	Mass	Permissible rotational speed N (min-1)		
Lead accuracy		out **		Config	uration	
Т	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	Fixed - Fixed
-0.005	0.023	0.018	0.045	1.3	3 000	3 000
-0.007	0.023	0.018	0.045	1.4	3 000	3 000
-0.009	0.025	0.020	0.055	1.6	3 000	3 000
-0.011	0.027	0.020	0.070	1.8	3 000	3 000
-0.014	0.030	0.023	0.085	2.0	3 000	3 000
-0.019	0.035	0.025	0.110	2.5	3 000	3 000

C0.5 C0.3 C0.5 C0.3 R0.2 ma R0.2 ma 1.15 10.15	Seals (two places) X Q Q Q Q Q Q Q Q Q Q Q Q	A G	\$19.5	CO.3 RO.2 M15×1 M15×1	A 0.012 E
	L _t (Hardened area)		25	40	20
25	La		,	60	'
	L_{\circ}			1	

	Str	oke	Screw shaft length			
Reference No.	,					
	Nominal	Maximum	$L_{\rm t}$	L _a	L _o	
W2002SA-3P-C5Z5	150	163	225	250	335	
W2002SA-4P-C5Z5	200	213	275	300	385	
W2003SA-2P-C5Z5	300	313	375	400	485	
W2004SA-2P-C5Z5	400	413	475	500	585	
W2005SA-2P-C5Z5	500	513	575	600	685	
W2007SA-1P-C5Z5	700	713	775	800	885	

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.

2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details.

- 3. Contact NSK if permissible rotational speed N will be exceeded.
- 4. If the non-drive side is fixed, the user must design the configuration of the support bearing area.
- 5. See Pages B51 and B52 for details on support configurations (Fixed-Simple, Fixed-Fixed, etc.)

B219 B220

Lead 4

Unit: mm

		OTHE. THE
	Ball screw sp	oecifications
Shaft dia. x Lead	/ Direction of turn	25 × 4 / Right
Preload / Bal	I recirculation	P-preload / Tube
Ball dia. / B	all circle dia.	2.381 / 25.3
Screw shaft	root diameter	22.8
Effective	ball turns	2.5 × 2
Accuracy gr	ade / Preload	C5 / Z
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	7 110
(N)	Static C _{0a}	13 600
Prelo	ad (N)	290
Standard dynamic friction torque (N·cm)		4.9
Spacer ball		Yes
Factory-page	cked grease	Refer to Note 2.
Nut internal	space (cm³)	3.2
Standard grease r	eplenishment (cm³)	1.6

Г	6-φ5.5 drill thru c'bore φ9.5×5.5
45°	PCD 57 M6×1.0 (oil hole)
26	

View X-X

Recommended support unit

or drive side	For non-drive side				
(Fixed)	(Fixed)	(Simple)	٤		
VBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	ľ		
NBK20-11 (round)	WBK20-11 (round)				

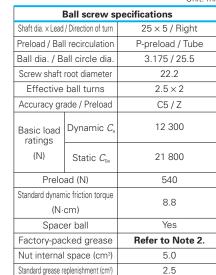
Unit: mm

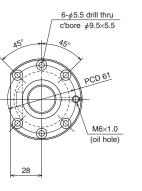
Left	Lead accuracy		Shaft run-		Permissible rotational speed N (min-1) Configuration		
shaft end			ıcy	out ** Mass			
shape	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple	Fixed - Fixed
П	-0.005	0.023	0.018	0.035	1.6	2 800	_
П	-0.006	0.023	0.018	0.035	1.8	2 800	_
П	-0.009	0.025	0.020	0.040	2.2	2 800	_
П	-0.011	0.027	0.020	0.050	2.5	2 800	_
I	-0.014	0.030	0.023	0.060	3.0	2 800	2 800
I	-0.018	0.035	0.025	0.075	3.7	2 800	2 800

1 05Z 1 21c	L ₀ 15.35 15.35 10.015 A	20.35	8102 999 8027 9996	7 0.012 E
10.005 F →	L _t (Hardened area)	30	53	27 ⇒
53	<u>La</u>		80	
<	L _o		•	

	Str	oke	Screw shaft length			
Reference No.	Namainal	Maximum	Sciew shart length			
	Nominal	IVIaximum	$L_{\rm t}$	La	L。	
W2502SA-1P-C5Z4	150	166	220	250	349	
W2502SA-2P-C5Z4	200	216	270	300	399	
W2503SA-1P-C5Z4	300	316	370	400	499	
W2504SA-1P-C5Z4	400	416	470	500	599	
W2505SA-1P-C5Z4	500	516	570	600	733	
W2507SA-1P-C5Z4	700	716	770	800	933	

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.
2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13


3. Contact NSK if permissible rotational speed N will be exceeded.


4. The maximum stroke is -8 mm when a Fixed-Fixed configuration is used with left shaft end shape I.

B221 B222

Lead 5

Unit: mm

View X-X

For drive side	For non-drive side					
(Fixed)	(Fixed)	(Simple)	9			
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	ľ			
WBK20-11 (round)	WBK20-11 (round)					

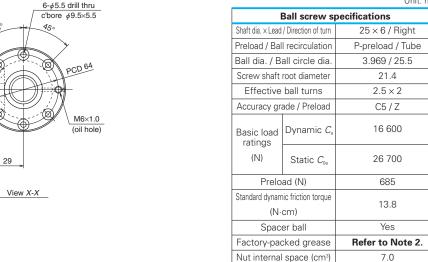
Unit: mm

	Onit. Hill								
Left Lead accuracy		acv.	Shaft run-	N 4	Permissible rotational speed N				
shaft end		out ** Wass			Configuration				
shape	Т	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	<i>t1</i>	(kg)	Fixed - Simple	Fixed - Fixed		
П	-0.005	0.023	0.018	0.035	1.8	2 800	_		
П	-0.006	0.023	0.018	0.035	2.0	2 800	_		
П	-0.009	0.025	0.020	0.040	2.3	2 800	_		
П	-0.011	0.027	0.020	0.050	2.7	2 800			
I	-0.014	0.030	0.023	0.060	3.1	2 800	2 800		
I	-0.016	0.035	0.025	0.075	3.4	2 800	2 800		
I	-0.018	0.035	0.025	0.075	3.8	2 800	2 800		
Ι	-0.023	0.040	0.027	0.090	4.5	2 800	2 800		
I	-0.028	0.046	0.030	0.120	5.2	2 520	2 800		
1	-0.028	0.046	0.030	0.120	5.2	2 520	2 800		

°22 <	L ₀ 15.35 35.614 CO.3 R0.2 max. Seals (two places) X A G V 10.015 A Seals (two places) X A G V 10.011 A T T T T T T T T T T T T T	10 14	8510 802 80.2 max.	0.012 E
1 0.005 F	L ₁ (Hardened area)	30	53	27
53	_ L _a		80	
	L _o		'	

	Stroke		Screw shaft length			
Reference No.	Nieneinel		Screw shart length			
	Nominal	Maximum	$L_{\rm t}$	$L_{\rm a}$	L。	
W2502SA-3P-C5Z5	150	159	220	250	349	
W2502SA-4P-C5Z5	200	209	270	300	399	
W2503SA-2P-C5Z5	300	309	370	400	499	
W2504SA-2P-C5Z5	400	409	470	500	599	
W2505SA-2P-C5Z5	500	509	570	600	733	
W2506SA-1P-C5Z5	600	609	670	700	833	
W2507SA-2P-C5Z5	700	709	770	800	933	
W2509SA-1P-C5Z5	900	909	970	1 000	1 133	
W2511SA-1P-C5Z5	1 100	1 109	1 170	1 200	1 333	

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.


2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details

- 3. Contact NSK if permissible rotational speed N will be exceeded.
- 4. The maximum stroke is -8 mm when a Fixed-Fixed configuration is used with left shaft end shape I.

B223 B224

Lead 6

Unit: mm

Recommended support unit

Standard grease replenishment (cm3)

For drive side	For non-drive side		
(Fixed)	(Fixed)	(Simple)	!
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	ľ
WBK20-11 (round)	WBK20-11 (round)		

3.5

Unit: mm

	and annura	2) (Shaft run-		Permissible rotatio	Permissible rotational speed N (min-1)		
Lead accuracy		out ** Mass		Configuration				
Т	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	Fixed - Fixed		
-0.009	0.025	0.020	0.050	2.5	2 800	2 800		
-0.014	0.030	0.023	0.060	3.2	2 800	2 800		
-0.018	0.035	0.025	0.075	3.9	2 800	2 800		
-0.028	0.046	0.030	0.120	5.2	2 450	2 800		

C0.5 950 50 50 50 50 50 50 50 50 50 50 50 50 5	70.2 max.	90 0.019 A	Seals (two places) X - 1 0.013 A	## * G	10 14	C0.3 R0.2 max. E 16 M20x1	1100 CO.5 CO.5	C0.5
			L _t (Hardened area)	,	30	53	27	
_ 53			La		-	80		
-			Lo				-	

	Stro	oke	Screw shaft length			
Reference No.	Nisasiasi	ninal Maximum				
	Nominal		$L_{\rm t}$	La	L _o	
W2503SA-3P-C5Z6	250	302	370	400	533	
W2505SA-3P-C5Z6	450	502	570	600	733	
W2507SA-3P-C5Z6	650	702	770	800	933	
W2511SA-2P-C5Z6	1 050	1 102	1 170	1 200	1 333	

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.

Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

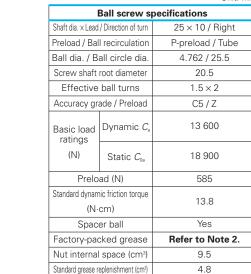
4. The maximum stroke is -8 mm when a Fixed-Fixed configuration is used with left shaft end shape I.

B225 B226

32

View X-X

 $6-\phi6.6$ drill thru


c'bore *ϕ*11×6.5

M6×1.0

Screw shaft ø25

Lead 10

Unit: mm

Recommended support unit

For drive side	For non-drive side			
(Fixed)	(Fixed)	(Simple)	9	
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	1	
WBK20-11 (round)	WBK20-11 (round)			

Unit: mm

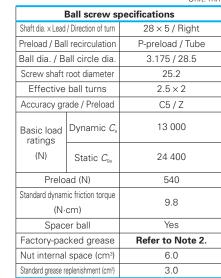
	Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)		
L	ead accurad	СУ	out ** Mass		Configuration		
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	Fixed - Fixed	
-0.009	0.025	0.020	0.050	3.2	2 800	2 800	
-0.014	0.030	0.023	0.060	3.8	2 800	2 800	
-0.018	0.035	0.025	0.075	4.5	2 800	2 800	
-0.023	0.040	0.027	0.090	5.2	2 800	2 800	
-0.028	0.046	0.030	0.120	5.9	2 390	2 800	
-0.035	0.054	0.035	0.150	6.9	1 490	2 060	

C0.5	\$50 50 CO.3	0.019 A 0.0019 A 0.00	Ø // (0.013/A)	X =	20.35	CO.3 RO.2 M20x A0.005 E	CO.5	Ø 0.012 E
	-		L _t (Hardened area)		30	53	27	
	53		L _a			80	-	
			Lo				-	

	Str	oke	Screw shaft length			
Reference No.	Nominal	Maximum	Sciew shart length			
	Nominai	Iviaximum	$L_{\rm t}$	La	L _o	
W2503SA-4P-C5Z10	250	283	370	400	533	
W2505SA-4P-C5Z10	450	483	570	600	733	
W2507SA-4P-C5Z10	650	683	770	800	933	
W2509SA-2P-C5Z10	850	883	970	1 000	1 133	
W2511SA-3P-C5Z10	1 050	1 083	1 170	1 200	1 333	
W2514SA-1P-C5Z10	1 350	1 383	1 470	1 500	1 633	

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.

Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
for details.


3. Contact NSK if permissible rotational speed N will be exceeded.

4. The maximum stroke is -8 mm when a Fixed-Fixed configuration is used with left shaft end shape I.

B227 B228

Lead 5

Unit: mm

$ \frac{6-\phi 6.6 \text{ drill thru}}{\text{c'bore } \phi 11 \times 6.5} $
45° 45°
PCD 69
M6×1.0 (oil hole)
31

View X-X

Recommended	support u	nit
-------------	-----------	-----

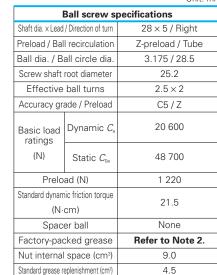
For drive side	For non-drive side			
(Fixed)	(Fixed)	(Simple)		
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)		
WBK20-11 (round)	WBK20-11 (round)			

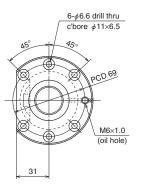
Unit: mm

B230

Left	Lead accuracy			Shaft run-	Mass		nal speed N (min-1)
shaft end				out **	(1,0)	Configuration	
shape	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	Fixed - Fixed
П	-0.006	0.023	0.018	0.035	2.5	2 500	_
П	-0.009	0.025	0.020	0.040	2.9	2 500	_
П	-0.011	0.027	0.020	0.050	3.3	2 500	_
Ι	-0.014	0.030	0.023	0.060	3.8	2 500	2 500
I	-0.018	0.035	0.025	0.075	4.7	2 500	2 500
I	-0.024	0.040	0.027	0.090	5.6	2 500	2 500
I	-0.028	0.046	0.030	0.120	6.5	2 500	2 500

Shape II	Seals (two places) X 1 0.019 A Seals (two places) X 1 0.013 A Seals (two places) X 44	# * G 225 225 A G 10 14	C0.3 C0.5 R0.2 max. E 16 M20x1	Ø 0.012 E
70.005F→12	L _t (Hardened area)	30	53 27	→
53	La	· · · · · · · · · · · · · · · · · · ·	80	-
<	Lo			→


	Str	oke	Screw shaft length		
Reference No.	Nisasiasi	N day digay yaa			
	Nominal	Maximum	$L_{\rm t}$	$L_{\rm a}$	L。
W2802SA-1P-C5Z5	200	208	270	300	399
W2803SA-1P-C5Z5	300	308	370	400	499
W2804SA-1P-C5Z5	400	408	470	500	599
W2805SA-1P-C5Z5	450	502	558	600	733
W2807SA-1P-C5Z5	650	702	758	800	933
W2809SA-1P-C5Z5	850	902	958	1 000	1 133
W2811SA-1P-C5Z5	1 050	1 102	1 158	1 200	1 333


Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.

- Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
 for details.
- 3. Contact NSK if permissible rotational speed N will be exceeded.
- 4. The maximum stroke is -2 mm when a Fixed-Fixed configuration is used with left shaft end shape I.

Lead 5

Unit: mm

View	X-X

Recommended support	t unit	
---------------------	--------	--

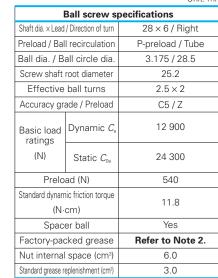
For drive side	For non-drive side				
(Fixed)	(Fixed)	(Simple)			
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)			
WBK20-11 (round)	WBK20-11 (round)				

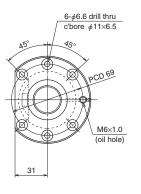
Unit: mm

Left shaft end shape	Lead accuracy			Shaft run- out **	Mass	Permissible rotatio Config	nal speed <i>N</i> (min-1) uration
	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	Fixed - Fixed
П	-0.006	0.023	0.018	0.035	2.8	2 500	_
П	-0.009	0.025	0.020	0.040	3.2	2 500	_
П	-0.011	0.027	0.020	0.050	3.7	2 500	_
I	-0.013	0.030	0.023	0.060	4.2	2 500	2 500
I	-0.018	0.035	0.025	0.075	5.1	2 500	2 500
I	-0.023	0.040	0.027	0.090	5.9	2 500	2 500
I	-0.028	0.046	0.030	0.120	6.8	2 500	2 500

Shape II	L ₀ 15.35**** 0.019 A	Seals (two places) [10.013 A] 74 86	AG	10 14	1000 - 10	0.012 E
	12	Lt (Hardened area)	>	30	53	27
53	•	La		-	80	
-		L _o				

	Str	oke	Screw shaft length			
Reference No.	Nisasiasi	Maximum	Screw share length			
	Nominal	Iviaximum	$L_{\rm t}$	$L_{\rm a}$	L。	
W2802SA-2Z-C5Z5	150	178	270	300	399	
W2803SA-2Z-C5Z5	250	278	370	400	499	
W2804SA-2Z-C5Z5	350	378	470	500	599	
W2805SA-2Z-C5Z5	450	472	558	600	733	
W2807SA-2Z-C5Z5	650	672	758	800	933	
W2809SA-2Z-C5Z5	850	872	958	1 000	1 133	
W2811SA-2Z-C5Z5	1 050	1 072	1 158	1 200	1 333	


Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.


- 2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
- Contact NSK if permissible rotational speed N will be exceeded.
- 4. The maximum stroke is -2 mm when a Fixed-Fixed configuration is used with left shaft end shape I.

B231 B232

Lead 6

Unit: mm

View	X-X

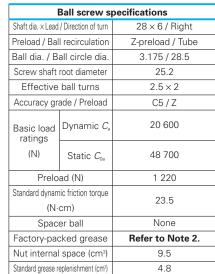
Recommended support unit

For drive side	For non-	drive side	
(Fixed)	(Fixed)	(Simple)	9
WBK20-01 (square) WBK20-01 (square)	WBK20S-01 (square)	1
WBK20-11 (round	WBK20-11 (round)		

Unit: mm

Left	Lo	ad accura	201	Shaft run-		Permissible rotatio	nal speed N (min-1)	
shaft end		au accure		out **	Mass	Configuration		
shape	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple	Fixed - Fixed	
П	-0.009	0.025	0.020	0.040	3.0	2 500	_	
П	-0.014	0.030	0.023	0.060	3.9	2 500	_	
I	-0.018	0.035	0.025	0.075	4.9	2 500	2 500	
I	-0.023	0.040	0.027	0.090	5.8	2 500	2 500	
I	-0.028	0.046	0.030	0.120	6.6	2 500	2 500	

Shape II \$\begin{array}{c} \begin{array}{c} \ldots \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Seals (two places) X Q Q Q Q Q Q Q Q Q Q Q Q	A G 10 14	80.2 max.	C0.5 C0.5
12 12 12 12	L _t (Hardened area)	30	53	27
53	L _a		80	<u></u>
	Lo		1	


	Str	oke	Screw shaft length			
Reference No.	Nissaissai			Screw Shart length		
	Nominal	Maximum	$L_{\rm t}$	L _a	L。	
W2803SA-3P-C5Z6	250	301	370	400	499	
W2805SA-3P-C5Z6	450	501	570	600	699	
W2807SA-3P-C5Z6	650	695	758	800	933	
W2809SA-3P-C5Z6	850	895	958	1 000	1 133	
W2811SA-3P-C5Z6	1 050	1 095	1 158	1 200	1 333	

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.

- Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details.
- 3. Contact NSK if permissible rotational speed N will be exceeded.
- 4. The maximum stroke is -2 mm when a Fixed-Fixed configuration is used with left shaft end shape I.

Lead 6

Unit: mm

Γ	6-\phi6.6 drill thru c'bore \phi11×6.5
45°	450
	PCD 69
	M6×1.0 (oil hole)
31	

View X-X

Recommended support unit

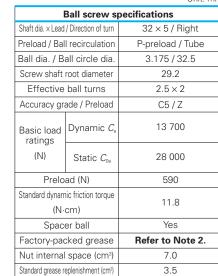
For drive side	For non-drive side				
(Fixed)	(Fixed)	(Simple)			
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)			
WBK20-11 (round)	WBK20-11 (round)				

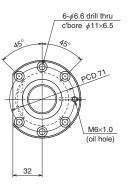
Unit: mm

Left	Sh.		Shaft run-		Permissible rotational speed N (min-1)		
shaft end		ad accuracy		out **	Mass	Config	uration
shape	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple	Fixed - Fixed
П	-0.009	0.025	0.020	0.040	3.4	2 500	_
П	-0.014	0.030	0.023	0.060	4.3	2 500	_
I	-0.018	0.035	0.025	0.075	5.3	2 500	2 500
I	-0.023	0.040	0.027	0.090	6.2	2 500	2 500
I	-0.028	0.046	0.030	0.120	7.1	2 500	2 500

Shape II \$\frac{35}{27} \frac{6}{27} \frac{1}{2}\$\$ \$\frac{1}{2}\$\$ \$\frac{1}{	R0.2 max.	Ø 0.013 A →	X-4	22 22 10 14	80.2 max.	0.00 1000 1000 1000 1000	Ø 0.012 E
10.005 F →	12	Lt (Hardened area)		30	53	27	
53	<u> </u>	La		•	80	-	
-		Lo				-	

	Str	Stroke		Screw shaft length		
Reference No.	Namainal	Marriagnus	3016		igtii	
	Nominal	Maximum	$L_{\rm t}$	La	L _o	
W2803SA-4Z-C5Z6	250	265	370	400	499	
W2805SA-4Z-C5Z6	450	465	570	600	699	
W2807SA-4Z-C5Z6	650	659	758	800	933	
W2809SA-4Z-C5Z6	850	859	958	1 000	1 133	
W2811SA-4Z-C5Z6	1 050	1 059	1 158	1 200	1 333	


Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.


- Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
 for details.
- 3. Contact NSK if permissible rotational speed N will be exceeded.
- 4. The maximum stroke is -2 mm when a Fixed-Fixed configuration is used with left shaft end shape I.

B235 B236

Lead 5

Unit: mm

View	X-X

For drive side	For non-drive side			
(Fixed)	(Fixed)	(Simple)		
WBK25-01W (square)	WBK25-01W (square)	WBK25S-01W (square)		
WBK25-11 (round)	WBK25-11 (round)			

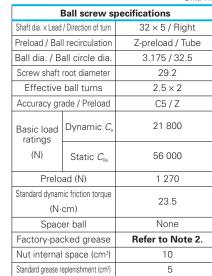
Unit: mm

Left shaft end	Lead accuracy			Shaft run- out **	Mass	Permissible rotational speed <i>N</i> (min-1) Configuration		
shape	Т	$e_{\scriptscriptstyle p}$	υu		(kg)	Fixed - Simple	Fixed - Fixed	
П	-0.006	0.023	0.018	0.040	3.1	2 180	_	
П	-0.009	0.025	0.020	0.050	3.7	2 180	_	
П	-0.011	0.027	0.020	0.050	4.2	2 180	_	
П	-0.014	0.030	0.023	0.060	4.8	2 180	_	
I	-0.016	0.035	0.025	0.075	5.6	2 180	2 180	
I	-0.018	0.035	0.025	0.075	6.1	2 180	2 180	
I	-0.023	0.040	0.027	0.090	7.3	2 180	2 180	
I	-0.028	0.046	0.030	0.120	8.5	2 180	2 180	
I	-0.035	0.054	0.035	0.150	10.2	2 100	2 180	

Shape II	27	4 25	19402¢
	35	62	< 33 →
62 L _a L _o		95	

	Str	oke	Screw shaft length			
Reference No.	Nisasiasi	Maximum	Screw shart length			
	Nominal	IVIaximum	$L_{\rm t}$	La	L。	
W3202SA-1P-C5Z5	150	201	265	300	415	
W3203SA-1P-C5Z5	250	301	365	400	515	
W3204SA-1P-C5Z5	350	401	465 500		615	
W3205SA-1P-C5Z5	450	501	565	600	715	
W3206SA-1P-C5Z5	550	601	665	700	857	
W3207SA-1P-C5Z5	650	701	765	800	957	
W3209SA-1P-C5Z5	850	901	965	1 000	1 157	
W3211SA-1P-C5Z5	1 050	1 101	1 165	1 200	1 357	
W3214SA-1P-C5Z5	1 350	1 401	1 465	1 500	1 657	

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.


2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details

- 3. Contact NSK if permissible rotational speed N will be exceeded.
- 4. The maximum stroke is -9 mm when a Fixed-Fixed configuration is used with left shaft end shape I.

B237 B238

Lead 5

Unit: mm

_	6-\phi6.6 drill thru c'bore \phi11×6.5
45°	4 5°
	PCD 71
	M6×1.0 (oil hole)
32	

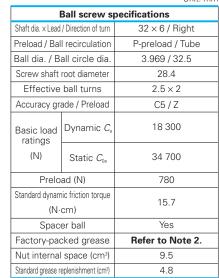
1-1-1-	Accuracy gro	auc / i
M6×1.0	Basic load ratings	Dyna
(oil hole)	(N)	Stat
32	Prelo	ad (N)
٦	Standard dynam	nic frictio
View X-X	(N-	cm)
	Space	er ball

Recommended	support	unit
-------------	---------	------

For drive side, for non-drive side (Fixed)	
WBK25DF-31H (round)	

Unit: mm

Citie IIIII								
Left	Lead accuracy		Shaft run- out **	Mass	Permissible rotational speed N (min-1) Configuration			
shaft end		Lead accuracy						
shape	Т	$e_{\scriptscriptstyle m p}$	υ _u	<i>\</i>	(kg)	Fixed - Simple	Fixed - Fixed	
П	-0.007	0.023	0.018	0.040	3.5	2 180	_	
П	-0.009	0.025	0.020	0.050	4.1	2 180	_	
П	-0.012	0.027	0.020	0.060	4.7	2 180	_	
П	-0.014	0.030	0.023	0.060	5.3	2 180	_	
I	-0.016	0.035	0.025	0.075	6.1	2 180	2 180	
I	-0.019	0.035	0.025	0.090	6.7	2 180	2 180	
I	-0.024	0.040	0.027	0.090	7.9	2 180	2 180	
I	-0.028	0.046	0.030	0.120	9.0	2 180	2 180	
I	-0.036	0.054	0.035	0.150	10.8	2 100	2 180	


Shape II	CO.5 X-1	G	00.5		0.013 E
 10.006	L _t (Hardened area)	20	89	51	
89	L _a	•	140		

	Stro	oke	Screw shaft length			
Reference No.	Nominal	Maximum	Screw shart length			
		Iviaximum	$L_{\rm t}$	La	L。	
W3202SA-2Z-C5Z5	150	186	280	300	460	
W3203SA-2Z-C5Z5	250	286	380	400	560	
W3204SA-2Z-C5Z5	350	386	480	500	660	
W3205SA-2Z-C5Z5	450	486	580	600	760	
W3206SA-2Z-C5Z5	550	586	680	700	929	
W3207SA-2Z-C5Z5	650	686	780	800	1 029	
W3209SA-2Z-C5Z5	850	886	980	1 000	1 229	
W3211SA-2Z-C5Z5	1 050	1 086	1 180	1 200	1 429	
W3214SA-2Z-C5Z5	1 350	1 386	1 480 1 500 1 729		1 729	

- Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.
 - Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
 for details.
 - 3. Contact NSK if permissible rotational speed N will be exceeded.
 - 4. The maximum stroke is -9 mm when a Fixed-Fixed configuration is used with left shaft end shape I.

Lead 6

Unit: mm

6-\phi6.6 drill thru c'bore \phi11\times6.5	-
A5°	
34	

View X-X

Recommended support unit

For drive side	For non-drive side			
(Fixed)	(Fixed)	(Simple)	9	
WBK25-01W (square)	WBK25-01W (square)	WBK25S-01W (square)	ľ	
WBK25-11 (round)	WBK25-11 (round)			

Unit: mm

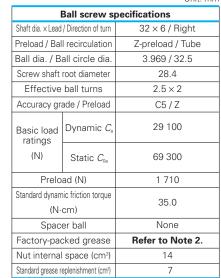
Left	10	Lead accuracy				Permissible rotational speed N (min-1)			
shaft end				out **	Mass	Configuration			
shape	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple	Fixed - Fixed		
П	-0.009	0.025	0.020	0.050	3.8	2 180	_		
П	-0.014	0.030	0.023	0.060	5.0	2 180	_		
I	-0.018	0.035	0.025	0.075	6.3	2 180	2 180		
I	-0.023	0.040	0.027	0.090	7.4	2 180	2 180		
I	-0.028	0.046	0.030	0.120	8.5	2 180	2 180		
I	-0.035	0.054	0.035	0.150	10.2	2 050	2 180		

L ₁ (Hardened area) 35 62 33 62 33 62 4 62 4 62 62 62 62 62 62 62 62 62 62 62 62 62	Shape II 0.017 A 0.017	C0.5	Seals (two places) X -	A G	12 15 2	.5 C1	<i>φ</i> 20h6
* * * *	✓ 0.006 F →	L	(Hardened area)		35	62	33
L _o	62					95	
	<		Lo				

Reference No.	Str	oke	- Screw shaft length			
	Niereinel	N. 4				
	Nominal	Maximum	$L_{\rm t}$	La	L。	
W3203SA-3P-C5Z6	250	294	365	400	515	
W3205SA-3P-C5Z6	450	494	565	600	715	
W3207SA-3P-C5Z6	650	694	765	800	957	
W3209SA-3P-C5Z6	850	894	965	1 000	1 157	
W3211SA-3P-C5Z6	1 050	1 094	1 165	1 200	1 357	
W3214SA-3P-C5Z6	1 350	1 394	1 465	1 500	1 657	

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.

Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
for details.


3. Contact NSK if permissible rotational speed N will be exceeded.

4. The maximum stroke is -9 mm when a Fixed-Fixed configuration is used with left shaft end shape I.

B241 B242

Lead 6

Unit: mm

_	6-φ6.6 drill thru c'bore φ11×6.5
45°	450
	PCD 75
	M6×1.0 (oil hole)
34	(5.1.11010)

34	M6×1.0 (oil hole)
View X-X	

Recommended s	support	unit
---------------	---------	------

For drive side, for non-drive side (Fixed)	
WBK25DF-31H (round)	

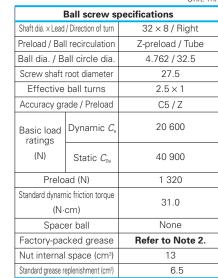
Unit: mm

Left	Lead accuracy			Shaft run-		Permissible rotational speed N (min-1)		
shaft end	L	au accura	iCy	out **	Mass	Config	uration	
shape	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple	Fixed - Fixed	
П	-0.009	0.025	0.020	0.050	4.5	2 180	_	
П	-0.014	0.030	0.023	0.060	5.6	2 180	_	
I	-0.019	0.035	0.025	0.090	7.0	2 180	2 180	
I	-0.024	0.040	0.027	0.090	8.1	2 180	2 180	
I	-0.028	0.046	0.030	0.120	9.3	2 180	2 180	
I	-0.036	0.054	0.035	0.150	11.0	2 060	2 180	

Shape II C1 R0.3 max. 10.017 A C1 R0.3 R0.3	16.35	* * (00.5	0,013 ≠20h6	0.013 E
/ 0.006 F →	$L_{\rm t}$ (Hardened area)	20	89	51	
89	L _a	.,-	140		
_	L _o				

	Stro	oke	Screw shaft length		
Reference No.					
	Nominal	Maximum	$L_{\rm t}$	La	L。
W3203SA-4Z-C5Z6	250	273	380	400	560
W3205SA-4Z-C5Z6	450	473	580	600	760
W3207SA-4Z-C5Z6	650	673	780	800	1 029
W3209SA-4Z-C5Z6	850	873	980	1 000	1 229
W3211SA-4Z-C5Z6	1 050	1 073	1 180	1 200	1 429
W3214SA-4Z-C5Z6	1 350	1 373	1 480	1 500	1 729

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.


2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

B243 **B244**

Lead 8

Unit: mm

View	X-X

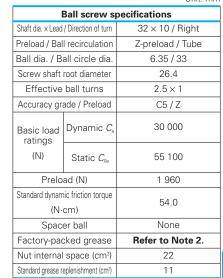
For drive side, for non-drive side (Fixed)	
WBK25DF-31H (round)	

Unit: mm

Left shaft end		ad accura	асу	Shaft run- out ** Mass		Permissible rotational speed <i>N</i> (min ⁻¹) Configuration		
shape	Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple	Fixed - Fixed	
П	-0.009	0.025	0.020	0.050	4.7	2 180	_	
П	-0.014	0.030	0.023	0.060	5.8	2 180	_	
I	-0.019	0.035	0.025	0.090	7.2	2 180	2 180	
I	-0.024	0.040	0.027	0.090	8.3	2 180	2 180	
I	-0.036	0.054	0.035	0.150	11.1	1 960	2 180	

Shape II	L ₀ 16.35 C0.5 C0.5 X A (Hardened area)	- * * G		0.013 E
89	-	> < ²⁰ >	140	< '`
< 89 →	< L _a	-	= 140	
k	L _o			>

	Str	oke	Screw shaft length		
Reference No.	Nominal	Maximum			
			$L_{\rm t}$	La	L。
W3203SA-5Z-C5Z8	250	290	380	400	560
W3205SA-5Z-C5Z8	450	490	580 600		760
W3207SA-5Z-C5Z8	650	690	780 800 1		1 029
W3209SA-5Z-C5Z8	850	890	980	1 000	1 229
W3214SA-5Z-C5Z8	1 350	1 390	1 480	1 500	1 729


Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.

2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for datails

3. Contact NSK if permissible rotational speed N will be exceeded.

Lead 10

Unit: mm

$\frac{6-\phi 9 \text{ drill thru}}{\text{c'bore } \phi 14 \times 8.5}$
45°
PCD 90
M6×1.0 (oil hole)
41

View X-X

Recommended	support	unit
-------------	---------	------

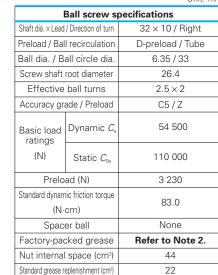
For drive side, for non-drive side (Fixed)	
WBK25DF-31H (round)	

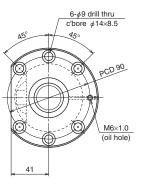
Jnit: mm

							Unit: mm	
Left	Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)			
shaft end		au accura	icy	/ out ** Wass		Configuration		
shape	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple	Fixed - Fixed	
П	-0.009	0.025	0.020	0.050	5.5	2 180	_	
П	-0.012	0.027	0.020	0.060	6.0	2 180	_	
П	-0.014	0.030	0.023	0.060	6.6	2 180	_	
I	-0.016	0.035	0.025	0.075	7.4	2 180	2 180	
I	-0.019	0.035	0.025	0.090	7.9	2 180	2 180	
I	-0.024	0.040	0.027	0.090	9.0	2 180	2 180	
I	-0.028	0.046	0.030	0.120	10.1	2 180	2 180	
I	-0.036	0.054	0.035	0.150	11.7	1 920	2 180	
I	-0.043	0.065	0.040	0.200	13.3	1 310	1 810	

C1 R0.3 max. 0.017 A C0.5 Shape	35		00.5	99400Z¢	013 E
10.006 F →	L _t (Hardened area)	20	89	51	
89	L _a	•	140		

	Stro	oke	Screw shaft length			
Reference No.	Nominal	Maximum	Sciew shart length			
	Nominal Iviaximum	$L_{\rm t}$	La	L _o		
W3203SA-6Z-C5Z10	250	272	380	400	560	
W3204SA-3Z-C5Z10	350	372	480	500	660	
W3205SA-6Z-C5Z10	450	472	580	600	760	
W3206SA-3Z-C5Z10	550	572	680	700	929	
W3207SA-6Z-C5Z10	650	672	780	800	1 029	
W3209SA-6Z-C5Z10	850	872	980	1 000	1 229	
W3211SA-5Z-C5Z10	1 050	1 072	1 180	1 200	1 429	
W3214SA-6Z-C5Z10	1 350	1 372	1 480	1 500	1 729	
W3217SA-1Z-C5Z10	1 650	1 672	1 780	1 800	2 029	


Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.


Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

Lead 10

Unit: mm

View X-X

Recommended support unit

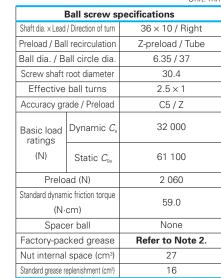
For drive side, for non-drive side (Fixed)
WBK25DED-31H (round)

Jnit: mm

Unit: mm								
Permissible rotational speed N (min-1)								
xed								

Shape II C1 R0.3 max. 10.017 A C1 R0.3 max. 10.017 A C1 R0.3 max. 26 M25×1.5	91 5 78 15 X -J		\$ 0000 \$ 425h5		0.013 E
/ 0.006 F →	L _t (Hardened area)		104	51	
104	L _a	-,	155		
	L _o			*	

	Stro	oke	Screw shaft length			
Reference No.	Nominal	Maximum	Screw shart length			
	INOMINAL	IVIAXIITIUITI	$L_{\rm t}$	La	L。	
W3203SA-7D-C5Z10	150	182	380	400	575	
W3204SA-4D-C5Z10	250	282	480	500	675	
W3205SA-7D-C5Z10	350	382	580	600	775	
W3206SA-4D-C5Z10	450	482	680	700	959	
W3207SA-7D-C5Z10	550	582	780	800	1 059	
W3209SA-7D-C5Z10	750	782	980	1 000	1 259	
W3211SA-6D-C5Z10	950	982	1 180	1 200	1 459	
W3214SA-7D-C5Z10	1 250	1 282	1 480	1 500	1 759	
W3217SA-2D-C5Z10	1 550	1 582	1 780	1 800	2 059	


Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.

Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

Lead 10

Unit: mm

_	6-\(\phi 11 \) drill thru c'bore \(\phi 17.5 \times 11 \)
45°	450
	PCD 98
	M6×1.0 (oil hole)
45	

View X-X

|--|

For drive side (Fixed)		For non-drive side (Simple)	
	WBK30DF-31H (round)	WBK25DF-31H (round)	

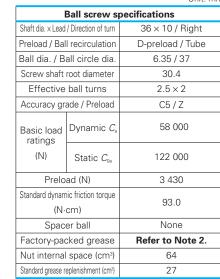
Unit: mm

Left shaft end	Lead accuracy		Out ""	Mass	Permissible rotational speed N (min-1) Configuration		
shape	Т	e _p v _u		<i>11</i>	(kg)	Fixed - Simple	Fixed - Fixed
П	-0.012	0.027	0.020	0.040	7.4	1 940	_
П	-0.016	0.035	0.025	0.050	8.8	1 940	_
I	-0.024	0.040	0.027	0.065	11.1	1 940	1 940
I	-0.033	0.054	0.035	0.100	13.9	1 940	1 940
I	-0.043	0.065	0.040	0.130	16.6	1 510	1 940

Shape II C1 R0.3 max. 12 26 M25×1.5	L ₀ 16.35 7 0.019 A 16.35 C1 90 90 90 90 90 90 90 90 90 9	Seals (two places) X 10.013 A 85 18 103	# * G A G		A
	L _t	(Hardened area)	_20	89	61
89		La		150	
		Lo		-	

	Str	oke	Screw shaft length		
Reference No.	Nicociocal	N 4 i			
	Nominal Maximum		$L_{\rm t}$	La	Lo
W3604SA-1Z-C5Z10	W3604SA-1Z-C5Z10 350 370		480	500	670
W3606SA-1Z-C5Z10	550	570	680 700		870
W3609SA-1Z-C5Z10	850	870	980 1 000 1		1 239
W3613SA-1Z-C5Z10	1 250	1 270	1 380	1 400	1 639
W3617SA-1Z-C5Z10	1 650	1 670	1 780		2 039

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.


2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details

3. Contact NSK if permissible rotational speed N will be exceeded.

B251

Lead 10

Unit: mm

_	6-\(\phi\)11 drill thru c'bore \(\phi\)17.5×11
45°	450
	PCD 98
	-
	M6×1.0 (oil hole)
45	

View X-X

Recommended	l support unit
-------------	----------------

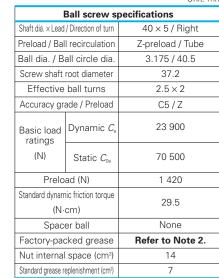
For drive side	For non-drive side		
(Fixed)	(Fixed)		
WBK30DFD-31H (round)	WBK25DFD-31H (round)		

Unit: mm

Permissible rotational speed N (min-1)		
ked		

Shape II C1 R0.3 R0.3	Seals (two places) X	G -		-0013 \$25h6	0.013 E
V 10.000 F	Lt (Hardened area)	20	104	61	
104	. La		165		
-	L _o			-	

	Stro	oke	- Screw shaft length		
Reference No.	Namainal	Marriagues			
	Nominal	Maximum	$L_{\rm t}$	L _a	L。
W3604SA-2D-C5Z10	250 280		480	500	685
W3606SA-2D-C5Z10	450	480	680 700 88		885
W3609SA-2D-C5Z10	750	780	980 1 000 1		1 269
W3613SA-2D-C5Z10	1 150	1 180	1 380	1 400	1 669
W3617SA-2D-C5Z10	1 550	1 580	1 780	1 800	2 069


Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.

2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for datails

3. Contact NSK if permissible rotational speed N will be exceeded.

Lead 5

Unit: mm

_	6-\(\phi\)9 drill thru c'bore \(\phi\)14×8.5
A5°	950 PCD 83
39	Rc 1/8 (oil hole)
< 39 >	

|--|

For drive side, for non-drive side (Fixed)	
WBK30DF-31H (round)	

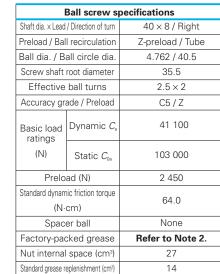
Jnit: mm

Unit: mm							
Load accuracy			Shaft run-		Permissible rotational speed N (min-1)		
eft end out ** Wass	Configuration						
Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple	Fixed - Fixed	
-0.009	0.025	0.020	0.035	6.3	1 750	_	
-0.014	0.030	0.023	0.040	8.1	1 750	_	
-0.019	0.035	0.025	0.065	10.3	1 750	1 750	
-0.024	0.040	0.027	0.065	12.2	1 750	1 750	
-0.028	0.046	0.030	0.080	14.0	1 750	1 750	
-0.038	0.054	0.035	0.100	17.7	1 750	1 750	
	<i>T</i> -0.009 -0.014 -0.019 -0.024 -0.028	T ep -0.009 0.025 -0.014 0.030 -0.019 0.035 -0.024 0.040 -0.028 0.046	-0.009 0.025 0.020 -0.014 0.030 0.023 -0.019 0.035 0.025 -0.024 0.040 0.027 -0.028 0.046 0.030	T ep vu tf -0.009 0.025 0.020 0.035 -0.014 0.030 0.023 0.040 -0.019 0.035 0.025 0.065 -0.024 0.040 0.027 0.065 -0.028 0.046 0.030 0.080	T ep vu Lf Mass (kg) -0.009 0.025 0.020 0.035 6.3 -0.014 0.030 0.023 0.040 8.1 -0.019 0.035 0.025 0.065 10.3 -0.024 0.040 0.027 0.065 12.2 -0.028 0.046 0.030 0.080 14.0	T e_p v_u tf Mass (kg) Config -0.009 0.025 0.020 0.035 6.3 1.750 -0.014 0.030 0.023 0.040 8.1 1.750 -0.019 0.035 0.025 0.065 10.3 1.750 -0.024 0.040 0.027 0.065 12.2 1.750 -0.028 0.046 0.030 0.080 14.0 1.750	

Shape II 222 11.75' Shape I C1 R0.3 max. 0.018 A C1 R0.3 max. 0.018 A C1 R0.3 max. 0.018 A C1 R0.3 max. 0.018 A C1 R0.3 max.				- ⁰ -0013 φ25h6	0.013 E
2 0.006 F →	L _t (Hardened area)	20	89	61	
89	La	75	150		
	L ₀		-	-	

	Stro	oke	- Screw shaft length			
Reference No.	Niereinel					
	Nominal	Maximum	$L_{\rm t}$	La	L。	
W4003SA-1Z-C5Z5	250	284	380	400	572	
W4005SA-1Z-C5Z5	450	484	580	600	772	
W4007SA-1Z-C5Z5	650	684	780	800	1 039	
W4009SA-1Z-C5Z5	850	884	980	1 000	1 239	
W4011SA-1Z-C5Z5	1 050	1 084	1 180	1 200	1 439	
W4015SA-1Z-C5Z5	1 450	1 484	1 580	1 600	1 839	

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.


2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details

3. Contact NSK if permissible rotational speed N will be exceeded.

B255

Lead 8

Unit: mm

/ c'bore φ14×8.5
25° PCD 90 Rc 1/8 (oil hole)

View X-X

Recommended support unit

For drive side, for non-drive side (Fixed)	
WBK30DF-31H (round)	

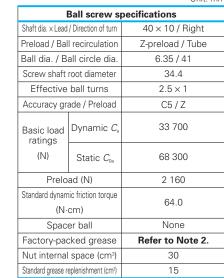
Jnit: mm

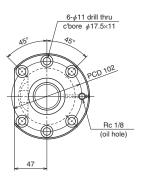
							Unit: mm	
Left	Load accuracy			Shaft run-		Permissible rotational speed N (min-1)		
shaft end	Le	Lead accuracy			Mass	Configuration		
shape	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple	Fixed - Fixed	
П	-0.009	0.025	0.020	0.035	7.4	1 750	_	
П	-0.014	0.030	0.023	0.040	9.2	1 750	_	
I	-0.019	0.035	0.025	0.065	11.3	1 750	1 750	
I	-0.024	0.040	0.027	0.065	13.1	1 750	1 750	
I	-0.028	0.046	0.030	0.080	14.9	1 750	1 750	
I	-0.038	0.054	0.035	0.100	18.5	1 750	1 750	

Shape II	L ₀ 00 4 4 00.019 A 17.755 10.019 A		# * * G		A 0.013	E
/ 0.006 F →		Lt (Hardened area)		89	61	
89	•	La	-1-	150		
		Lo				

	Stro	oke	Screw shaft length			
Reference No.	Nisasiasi	N 4 i				
	Nominal	Maximum	$L_{\rm t}$	La	L。	
W4003SA-2Z-C5Z8	200	243	380	400	572	
W4005SA-2Z-C5Z8	400	443	580	600	772	
W4007SA-2Z-C5Z8	600	643	780	800	1 039	
W4009SA-2Z-C5Z8	800	843	980	1 000	1 239	
W4011SA-2Z-C5Z8	1 000	1 043	1 180	1 200	1 439	
W4015SA-2Z-C5Z8	1 400	1 443	1 580	1 600	1 839	

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.


Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
for details.


3. Contact NSK if permissible rotational speed N will be exceeded.

B257 B258

Lead 10

Unit: mm

View	X-X

Recommended support unit

For drive side, for non-drive side (Fixed)	
WBK30DF-31H (round)	

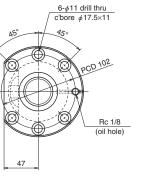
Unit: mm

Left	Lead accuracy		Shaft run-	Mass	Permissible rotational speed N (min-1)				
shaft end	Lead accuracy				out **	Configuration			
shape	T	$e_{\scriptscriptstyle p}$	υu	<i></i>	(kg)	Fixed - Simple	Fixed - Fixed		
П	-0.012	0.027	0.020	0.040	8.7	1 750	_		
П	-0.014	0.030	0.023	0.040	9.6	1 750	_		
П	-0.016	0.035	0.025	0.050	10.4	1 750	_		
I	-0.019	0.035	0.025	0.065	11.7	1 750	1 750		
I	-0.024	0.040	0.027	0.065	13.4	1 750	1 750		
Ι	-0.028	0.046	0.030	0.080	15.1	1 750	1 750		
I	-0.033	0.054	0.035	0.100	16.9	1 750	1 750		
I	-0.038	0.054	0.035	0.100	18.6	1 750	1 750		
I	-0.043	0.065	0.040	0.130	20.3	1 710	1 750		
I	-0.057	0.077	0.046	0.170	25.5	940	1 320		

Shape II	L ₂ 17.75 10.025 A 10.025 A 10.025 A	Seals (two places) X 10.015 A 18 18 103	# * G			0.013 E
 10.006 F →	L _t	(Hardened area)	20	89	61	
89		La	· .	150	-	
		Lo				

	Str	Stroke		Screw shaft length		
Reference No.	Nisasiasi	N 4 i	Screw shart length		igtii	
	Nominal	Maximum	$L_{\rm t}$	L _t L _a		
W4004SA-1Z-C5Z10	350	370	480	500	672	
W4005SA-3Z-C5Z10	450	470	580	600	772	
W4006SA-1Z-C5Z10	550	570	680	700	872	
W4007SA-3Z-C5Z10	650	670	780	800	1 039	
W4009SA-3Z-C5Z10	850	870	980	1 000	1 239	
W4011SA-3Z-C5Z10	1 050	1 070	1 180	1 200	1 439	
W4013SA-1Z-C5Z10	1 250	1 270	1 380	1 400	1 639	
W4015SA-3Z-C5Z10	1 450	1 470	1 580	1 600	1 839	
W4017SA-1Z-C5Z10	1 650	1 670	1 780	1 800	2 039	
W4023SA-1Z-C5Z10	2 250	2 270	2 380	2 400	2 639	

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.


Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

B259 B260

Lead 10

Unit: mm

	1 drill thru e φ17.5×11
45°	PCD 102
	Rc 1/8 (oil hole)
47	
View X-X	

		Unit: mm			
Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	40 × 10 / Right			
Preload / Bal	I recirculation	D-preload / Tube			
Ball dia. / B	all circle dia.	6.35 / 41			
Screw shaft	root diameter	34.4			
Effective	ball turns	2.5 × 2			
Accuracy grade / Preload		C5 / Z			
Basic load ratings	Dynamic C _a	61 200			
(N)	Static C _{0a}	137 000			
Prelo	ad (N)	3 630			
Standard dynamic friction torque (N·cm)		108			
Spacer ball		None			
Factory-pag	cked grease	Refer to Note 2.			
Nut internal	space (cm³)	59			
Standard grease r	eplenishment (cm³)	30			

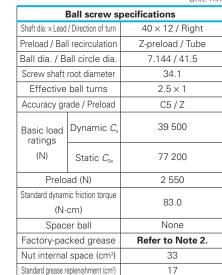
Recommended support unit

For drive side, for non-drive side (Fixed)
WRK30DED-31H (round)

							Unit: mm
Left	Lead accuracy		Shaft run-	Mass	Permissible rotational speed N (min-1)		
shaft end		Lead accuracy		out **		Config	uration
shape	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple	Fixed - Fixed
П	-0.012	0.027	0.020	0.040	11.0	1 750	_
П	-0.014	0.030	0.023	0.040	11.9	1 750	_
П	-0.016	0.035	0.025	0.050	12.7	1 750	_
I	-0.019	0.035	0.025	0.065	14.1	1 750	1 750
I	-0.024	0.040	0.027	0.080	15.8	1 750	1 750
I	-0.028	0.046	0.030	0.080	17.5	1 750	1 750
I	-0.033	0.054	0.035	0.100	19.3	1 750	1 750
I	-0.038	0.054	0.035	0.100	21.0	1 750	1 750
I	-0.043	0.065	0.040	0.130	22.7	1 750	1 750
I	-0.057	0.077	0.046	0.170	27.9	980	1 370

Shape II	L ₂ 17.75 1	**	C1	_0013 ∳25h6	0.013 E
/ 0.006 F →	L _t (Hardened area)	20	104	61	
104	L _a	-,	165		
<	Lo				

	Stroke		Screw shaft length		
Reference No.	Nisasiasi	N 4 i	Screw shart length		igtii
	Nominal	Maximum	$L_{\rm t}$	La	L。
W4004SA-2D-C5Z10	250	280	480	500	687
W4005SA-4D-C5Z10	350	380	580	600	787
W4006SA-2D-C5Z10	450	480	680	700	887
W4007SA-4D-C5Z10	550	580	780	800	1 069
W4009SA-4D-C5Z10	750	780	980	1 000	1 269
W4011SA-4D-C5Z10	950	980	1 180	1 200	1 469
W4013SA-2D-C5Z10	1 150	1 180	1 380	1 400	1 669
W4015SA-4D-C5Z10	1 350	1 380	1 580	1 600	1 869
W4017SA-2D-C5Z10	1 550	1 580	1 780	1 800	2 069
W4023SA-2D-C5Z10	2 150	2 180	2 380	2 400	2 669


Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.

2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13

3. Contact NSK if permissible rotational speed N will be exceeded.

Lead 12

Unit: mm

	c'bore	φ17.5×11	
45°	150	PCD 106	
48		Rc 1// (oil hol	
-			

6-ø11 drill thru

View X-X

Recommended s	support unit
---------------	--------------

For drive side, for non-drive side (Fixed)
WBK30DF-31H (round)

Init: mm

						Unit: mm
Load agguragy		Shaft run- out ** Mass		Permissible rotational speed N (min-1)		
Lead accuracy				Configuration		
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	Fixed - Fixed
-0.016	0.035	0.025	0.050	11.6	1 750	1 750
-0.024	0.040	0.027	0.065	14.2	1 750	1 750
-0.033	0.054	0.035	0.100	17.7	1 750	1 750
-0.043	0.065	0.040	0.130	21.2	1 710	1 750
-0.060	0.077	0.046	0.170	27.2	870	1 210

C1 C1 C1 R0.3 R0.3 max. F1 0.006 F1	Seals (two places) 0.025 A	X-1	Ct.	A 0.01.	3 E
	L _t (Hardened area)	20	89	61	
89	La		150		
	L _o		15		

Reference No.	Str	oke	Screw shaft length		
		Maximum			
	Nominal		$L_{\rm t}$	La	L _o
W4006SA-3Z-C5Z12	500	556	680	700	939
W4009SA-5Z-C5Z12	800	856	980	1 000	1 239
W4013SA-3Z-C5Z12	1 200	1 256	1 380	1 400	1 639
W4017SA-3Z-C5Z12	1 600	1 656	1 780	1 800	2 039
W4024SA-1Z-C5Z12	2 300	2 356	2 480	2 500	2 739

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.

Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

max.

26 \M30×1.5

1 0.006 F →

104

∕ 0.025 A

0.018 A −

✓ 0.013 E

E

104

165

61

√ 0.006 E

M30×1.5 / _26 _

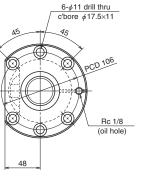
-11 * * G

A G

∕ 0.015 A

90

225


Lt (Hardened area)

105

Screw shaft ø40

Lead 12

Unit: mm

$\frac{6-\phi 11 \text{ drill thru}}{\text{c'bore } \phi 17.5 \times 11}$
45 PCD 106
Rc 1/8 (oil hole)
48

View	X-X

Ball screw specifications						
Shaft dia. x Lead / Direction of turn		40 × 12 / Right				
Preload / Ball recirculation		D-preload / Tube				
Ball dia. / B	all circle dia.	7.144 / 41.5				
Screw shaft	root diameter	34.1				
Effective	ball turns	2.5 × 2				
Accuracy gr	ade / Preload	C5 / Z				
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	71 700				
(N)	Static C _{0a}	154 000				
Preload (N)		4 310				
Standard dynamic friction torque (N-cm)		137				
Spacer ball		None				
Factory-packed grease		Refer to Note 2.				
Nut internal space (cm³)		76				
Standard grease r	eplenishment (cm³)	38				

Recommended support unit

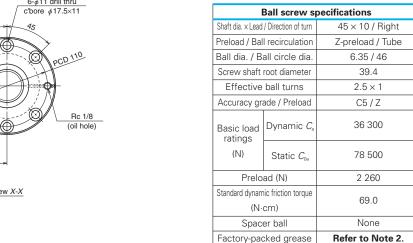
For drive side, for non-drive side (Fixed)	
WBK30DED-31H (round)	1

Unit: mm

Lead accuracy		Shaft run- out ** Mass		Permissible rotational speed N (min-1)		
				(kg)	Config	uration
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	Fixed - Fixed
-0.016	0.035	0.025	0.050	14.8	1 750	1 750
-0.024	0.040	0.027	0.080	17.4	1 750	1 750
-0.033	0.054	0.035	0.100	20.9	1 750	1 750
-0.043	0.065	0.040	0.130	24.3	1 750	1 750
-0.060	0.077	0.046	0.170	30.4	910	1 270

Reference No.	Str	oke	Screw shaft length		
	Nominal	Maximum			
			$L_{\rm t}$	La	L _o
W4006SA-4D-C5Z12	400	448	680	700	969
W4009SA-6D-C5Z12	700	748	980	1 000	1 269
W4013SA-4D-C5Z12	1 100	1 148	1 380	1 400	1 669
W4017SA-4D-C5Z12	1 500	1 548	1 780	1 800	2 069
W4024SA-2D-C5Z12	2 200	2 248	2 480	2 500	2 769

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.


2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13

3. Contact NSK if permissible rotational speed N will be exceeded.

B265 B266

Lead 10

Unit: mm

6-ø11 drill thru
∫ c'bore φ17.5×11
/
45
PCD 110
PCD PCD
Rc 1/8
(oil hole)
50
50

View X-X

Recommended	support	unit
necommenueu	auppoit	uiiit

Nut internal space (cm³)

Standard grease replenishment (cm3)

For drive side, for non-drive side (Fixed)	
WBK35DF-31H (round)	

33

17

Unit: mm

Lead accuracy		Shaft run- out ** Mass		Permissible rotational speed <i>N</i> (min ⁻¹) Configuration		
				(1,0)	Comig	uration
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	Fixed - Fixed
-0.016	0.035	0.025	0.050	13.4	1 550	1 550
-0.024	0.040	0.027	0.065	16.7	1 550	1 550
-0.033	0.054	0.035	0.100	21.2	1 550	1 550
-0.043	0.065	0.040	0.130	25.6	1 550	1 550
-0.060	0.077	0.046	0.170	33.4	990	1 390

L ₁ (Hardened area) 20 92 63 92 L _a 155	C1 C1 C1 R0.3 R0.3 R0.3 M35×1.5	\$\frac{1}{2} \frac{1}{2} \frac	4	C1	(A) (2 0.01!	5 E
92 155	-		20	+	63	
* → * 	₹ 92			155		

	Stroke		Screw shaft length		
Reference No.	Manainal	Marriageros	L _t L _a L _o		igui
	Nominal	Maximum			L_{\circ}
W4506SA-1Z-C5Z10	550	568	680	700	947
W4509SA-1Z-C5Z10	850	868	980	1 000	1 247
W4513SA-1Z-C5Z10	1 250	1 268	1 380	1 400	1 647
W4517SA-1Z-C5Z10	1 650	1 668	1 780	1 800	2 047
W4524SA-1Z-C5Z10	2 350	2 368	2 480	2 500	2 747

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.

2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13

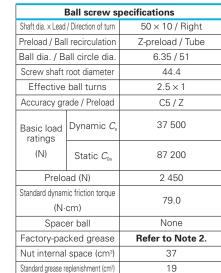
3. Contact NSK if permissible rotational speed N will be exceeded.

B267 B268

51

View X-X

6-ø11 drill thru


c'bore *ϕ*17.5×11

(oil hole)

Screw shaft ø50

Lead 10

Unit: mm

Recommended support unit

For drive side, for non-drive side (Fixed)	
WBK40DF-31H (round)	

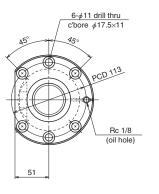
Init: mm

	Unit: mm							
Lood courses		Shaft run-		Permissible rotational speed N (min-1)				
L	ead accurad	ЗУ	out **	Mass	Config	uration		
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	Fixed - Fixed		
-0.014	0.030	0.023	0.050	14.8	1 400	1 400		
-0.019	0.035	0.025	0.065	17.6	1 400	1 400		
-0.024	0.040	0.027	0.080	20.3	1 400	1 400		
-0.028	0.046	0.030	0.080	23.1	1 400	1 400		
-0.036	0.054	0.035	0.100	27.3	1 400	1 400		
-0.048	0.065	0.040	0.130	34.2	1 400	1 400		
-0.062	0.093	0.054	0.170	42.5	1 030	1 400		

C1	0.018 A C1 0.018 A R0.3 18 F R0.3 10.006 F	X-1	G	C1 2 E M40×1.5 30	-0016 \$35h6	0.015 E
		L _t (Hardened area)	20	92	78	
	92	L _a		170)	
	_	Lo				

	Stroke		Screw shaft length		
Reference No.	Namainal	Marriagram	Screw shart length		igtii
	Nominal	Maximum	$L_{\rm t}$	La	L。
W5005SA-1Z-C5Z10	450	468	580	600	862
W5007SA-1Z-C5Z10	650	668	780	800	1 062
W5009SA-1Z-C5Z10	850	868	980	1 000	1 262
W5011SA-1Z-C5Z10	1 050	1 068	1 180	1 200	1 462
W5014SA-1Z-C5Z10	1 350	1 368	1 480	1 500	1 762
W5019SA-1Z-C5Z10	1 850	1 868	1 980	2 000	2 262
W5025SA-1Z-C5Z10	2 450	2 468	2 580	2 600	2 862

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.


Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

B269 B270

Lead 10

Unit: mm

View X-X

Ball screw specifications				
Shaft dia. x Lead	/ Direction of turn	50 × 10 / Right		
Preload / Ba	II recirculation	Z-preload / Tube		
Ball dia. / B	all circle dia.	6.35 / 51		
Screw shaft	root diameter	44.4		
Effective	ball turns	2.5 × 2		
Accuracy gr	ade / Preload	C5 / Z		
Basic load ratings (N)	Dynamic C _a	68 100		
	Static C _{0a}	174 000		
Prelo	ad (N)	4 020		
Standard dynamic friction torque (N-cm)		137		
Spacer ball		None		
Factory-packed grease		Refer to Note 2.		
Nut interna	l space (cm³)	59		
Standard grease r	eplenishment (cm³)	30		

Recommended support unit

For drive side, for non-drive side (Fixed)	
WBK40DFD-31H (round)	

Unit: mm

						91111: 111111	
1	Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)		
			out **	Mass	Config	uration	
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	Fixed - Fixed	
-0.014	0.030	0.023	0.050	16.8	1 400	1 400	
-0.019	0.035	0.025	0.065	19.6	1 400	1 400	
-0.024	0.040	0.027	0.080	22.3	1 400	1 400	
-0.028	0.046	0.030	0.080	25.1	1 400	1 400	
-0.036	0.054	0.035	0.100	29.3	1 400	1 400	
-0.048	0.065	0.040	0.130	36.2	1 400	1 400	
-0.062	0.093	0.054	0.170	44.6	1 060	1 400	

C1 C1 C1 PRO: max 14 PRO: max 14 PRO: max 15 PRO: max 15 PRO: max 16 PRO: max	. 1	Seals (two places) X — 1 145 163 X — 1	## * (d	C1	24 24 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	0.015 E
		Lt (Hardened area)	20	107	78	
107		La		185		
	7	Lo				

	Stroke		Screw shaft length		
Reference No.		N. 4	3016	Screw shart length	
	Nominal	Maximum	$L_{\rm t}$	L _a	L。
W5005SA-2Z-C5Z10	350	408	580	600	892
W5007SA-2Z-C5Z10	550	608	780	800	1 092
W5009SA-2Z-C5Z10	750	808	980	1 000	1 292
W5011SA-2Z-C5Z10	950	1 008	1 180	1 200	1 492
W5014SA-2Z-C5Z10	1 250	1 308	1 480	1 500	1 792
W5019SA-2Z-C5Z10	1 750	1 808	1 980	2 000	2 292
W5025SA-2Z-C5Z10	2 350	2 408	2 580	2 600	2 892

Notes: 1. We recommend use of the NSK support unit. See Page B389 for details.

Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
for details.

3. Contact NSK if permissible rotational speed N will be exceeded.

B271 B272

B-3-1.4 Finished Shaft End Stainless Steel KA Model

1. Order of the dimension tables

Tables are arranged by model in order of increasing shaft diameter. If ball screws have the same shaft diameter, those with smaller leads appear first. Page numbers for shaft diameter and lead combinations are shown in **Table 1**.

2. Dimension tables

Dimensions, shapes, and specifications are listed by shaft diameter/lead combinations. The following tables also contain data regarding:

Stroke

Nominal stroke : A reference for your use.

Maximum stroke: The stroke limit that the nut

can move.

Lead accuracy

Lead accuracy is C3 and C5 grades.

- T: Travel compensation
- $e_{\scriptscriptstyle p}$: Tolerance on specified travel
- ນູ: Travel variation

See "Technical Description: Lead Accuracy" (page B37) for details.

Permissible rotational speed

d • n : Limited by the relative peripheral speed between screw shaft and

nut.

Critical speed: Limited by the natural frequency of the ball screw shaft. Critical

speed depends on the support configuration of screw shaft.

The lower of the two criteria, *d-n* and critical speed, will determine the overall permissible rotational speed of the ball screw. For details, see "Technical Description: Permissible Rotational Speed" (page B47).

B4'

Table 1 Combinations of screw shaft diameter and lead

Lead (mm) Screw shaft diameter (mm)	1	2
6	B275	
8	B277	B279
10		B281
12		B285
15		
16		B295
20		

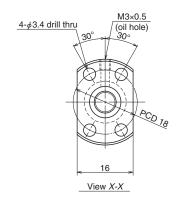
3. Material

A martensitic stainless steel is used. A special heat treatment technology provides the ball groove section with sufficient hardness which produces high load carrying capacity and durability.

4. Other

The seal of the ball screw, ball recirculating deflector, and end cap are made of synthetic resin. Consult NSK when using ball screws under extreme environments, special environments, or if using special lubricant or oil. For special environments, see pages B70 and D2. See pages B67 and D13 for lubricants.

Note: For details about standard stock products, contact NSK.


4	5	10	20
B283			
	B287	B289	
		B291	B293
			B297

B273 B274

Lead 1

Unit: mm

Ball screw specifications				
Shaft dia. x Lead	/ Direction of turn	6×1/Right		
Preload / Bal	I recirculation	P-preload / Deflector (bridge)		
Ball dia. / B	all circle dia.	0.800 / 6.2		
Screw shaft	root diameter	5.2		
Effective	ball turns	1 × 3		
Accuracy grade / Preload		C3 / Z		
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	555		
(N)	Static C _{0a}	680		
Axia	l play	0		
Preload (N)		24.5		
Dynamic fri	ction torque	1.0 1		
(N·cm)		1.3 or less		
Spacer ball		None		
Factory-packed grease		Refer to Note 1.		

Unit:	mm	E

					Offic. Hilli	
	Out					Permissible rotational speed N (min-1)
			Mass	Configuration		
Т	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple	
0	0.010	0.008	0.025	0.06	3 000	

(15)	Ls (stroke range)	.2
70.008 A	3.5 X - 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	C0.2 C0.3 C0.3
[4.5] [10.0025] 9	L ₁ 3 3 (7 L _a L _o	7) 22.5 7.5 30

	Stroke L _s		Thread length			
Reference No.	Nisasiasi	N 4	I i i eau length			
	Nominal	Maximum	$L_{\rm t}$	L_1	La	Lo
W0601KA-3PY-C3Z1	100	102	125	128	135	174

- Notes: 1. Only a rust preventive is applied before delivery. Apply lubricant (oil or grease) before use. See Page D13 for details. We recommend using NSK Grease LG2 (Cleanroom).
 - 2. These ball nuts do not have seals.
 - 3. Contact NSK if permissible rotational speed N will be exceeded.

B275 B276

Lead 1

Unit: mm

rill thru	M3×0.5 (oil hole)		Ball screw sp	pecifications
30°	30°	Shaft dia. x Lead	/ Direction of turn	8×1/Right
re 30	900	Preload / Ba	II recirculation	P-preload / Deflector (bridge
		Ball dia. / B	all circle dia.	0.800 / 8.2
[0		Screw shaft	root diameter	7.2
10		Effective	ball turns	1 × 3
-11:11		Accuracy gr	ade / Preload	C3 / Z
	PCD 21	Basic load ratings	Dynamic C _a	645
		(N)	Static C _{0a}	955
-	18	Axia	l play	0
Vi	ew X-X	Prelo	ad (N)	29.4
		Dynamic fr	iction torque	10
		(N-	cm)	1.8 or less
		Spac	er ball	None

4-\$\phi 3.4 \text{ drill thru} \text{M3x0.5} \text{(oil hole)} \\ 30^\circ \text{30}^\circ} \\ \text{PCD 21}
18 View <i>X-X</i>

Recommended support unit

Refer to Note 1.

Factory-packed grease

For drive side (Fixed)	For non-drive side (Simple)	
WBK08-01C (square, clean)	WBK08S-01C (square, clean)	
WBK08-11C (round, clean)		

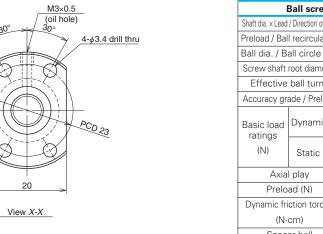
Unit: mm

	Lead accuracy		Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)
L			out **	Mass	Configuration		
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple		
0	0.010	0.008	0.035	0.12	3 000		

C0.2 R0.2 F C0.5 R0.2 R0.2	0.009 A	3.5 X - 3.5 X	15 10 10 10 10 10 10 10 10 10	R0.2 max. E 9	C0.5 C0.5
1 0.0025 F →	<u>-</u>		4 (0)	√[0.0025]E	40
9		<u>L₁</u>	(8)	27	10
		Lo		-	

	Stroke L _s		Thread length			
Reference No.	Niereinel	N 4 i	Triread length			
	Nominal	Maximum	$L_{\rm t}$	L_1	La	L。
W0802KA-1PY-C3Z1	150	155	190	194	202	248

Notes: 1. Only a rust preventive is applied before delivery. Apply lubricant (oil or grease) before use. See Page D13 for details. We recommend using NSK Grease LG2 (Cleanroom).


2. These ball nuts do not have seals.

3. Contact NSK if permissible rotational speed N will be exceeded.

B277 B278

Lead 2

Unit: mm

M3×0.5 (oil hole) 30° 4-φ3.4 drill thru
PCD 23

Ball screw specifications						
Shaft dia. x Lead	/ Direction of turn	8 × 2 / Right				
Preload / Ba	II recirculation	P-preload / Deflector (bridge)				
Ball dia. / B	all circle dia.	1.200 / 8.3				
Screw shaft	root diameter	6.9				
Effective	ball turns	1 × 3				
Accuracy gr	ade / Preload	C3 / Z				
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	1 270				
(N)	Static C _{0a}	1 630				
Axia	l play	0				
Prelo	ad (N)	49.0				
	iction torque cm)	2.0 or less				
Spac	er ball	None				
Factory-pa	cked grease	Refer to Note 1.				
Nut interna	l space (cm³)	0.34				
Standard grease r	eplenishment (cm³)	0.17				

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)	
VBK08-01C (square, clean)	WBK08S-01C (square, clean)	
WBK08-11C (round, clean)		

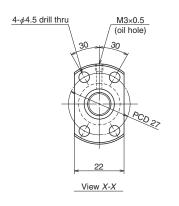
Unit: mm

	and annura	21.4	Shaft run- out ** Mass		Permissible rotational speed N (min-1)
L	ead accurad	ЗУ			Configuration
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	(kg)	Fixed - Simple	
0	0.010	0.008	0.035	0.13	3 000

(0.008 A) (0.008 A) (0.002 A)	(22) A 0.009 A O SECOND	Ls (stroke range) Seals (two places) X 10.008 A 22 28 6	(4)	70.2 R0.2 max. E 9 M8x1	C0.5 C0.5
-		L _t L ₁	4 (8)	27	10
9		L _a L _o	>	- 37	
					7

	Stroke L _s		Thread length				
Reference No.	Nisasiasi	N		Trillead lerigiti			
	Nominal	Maximum	$L_{\rm t}$	L_1	La	Lo	
W0802KA-5PY-C3Z2	150	154	190	194	202	248	

- 1. Only a rust preventive is applied before delivery. Apply lubricant (oil or grease) before use. See Page D13 for details. We recommend using NSK Grease LG2 (Cleanroom).
- 2. Contact NSK if permissible rotational speed N will be exceeded.


NSN

Screw shaft ø10

Lead 2

Unit: mm

l l	Ball screw sp	pecifications
Shaft dia. x Lead	/ Direction of turn	10 × 2 / Right
Preload / Bal	l recirculation	P-preload / Deflector (bridge)
Ball dia. / Ba	all circle dia.	1.200 / 10.3
Screw shaft	root diameter	8.9
Effective	ball turns	1×3
Accuracy gra	ade / Preload	C3 / Z
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	1 470
(N)	Static C _{0a}	2 190
Axia	play	0
Prelo	ad (N)	58.8
	ction torque cm)	0.10 – 2.5
Space	er ball	None
Factory-pag	ked grease	Refer to Note 1.
Nut internal	space (cm³)	0.44
Standard grease re	eplenishment (cm³)	0.22

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK08-01C (square, clean)	WBK08S-01C (square, clean)
WBK08-11C (round, clean)	

Unit: mm

L	ead accurad	су	Shaft run- out ** Mass		Permissible rotational speed N (min-1) Configuration
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple
0	0.012	0.008	0.030	0.22	3 000

00/45 CO.2	Ls (stroke range) Seals (two places) 10.008 A Ls Ls Ls Ls Ls Ls Ls	For Co.2 Ro.2 Ro.2 Ro.2 Ro.2 Ro.2 Market Co.2	C0.5 C0.5	(0.005 E)
***	L _a	*		
•			- 1	

	Stroke L _s		Thread length			
Reference No.	Niereinel	NI I NA I		Triread lerigiti		
	Nominal Maximum		$L_{\rm t}$	$L_{\scriptscriptstyle 1}$	La	L _o
W1002KA-3PY-C3Z2	200	203	250	254	262	308

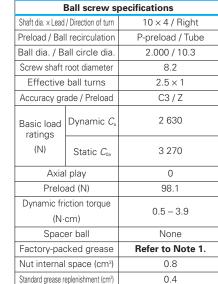
Notes: 1. Only a rust preventive is applied before delivery. Apply lubricant (oil or grease) before use. See Page D13 for details. We recommend using NSK Grease LG2 (Cleanroom).

2. Contact NSK if permissible rotational speed N will be exceeded.

B281 B282

M6×1.0 (oil hole)

View X-X


 $4-\phi 4.5$ drill thru

c'bore ∮8×4

Screw shaft ø10

Lead 4

Unit: mm

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)	3
WBK10-01C (square, clean)	WBK10S-01C (square, clean)	
WBK10-11C (round, clean)		

Unit: mm

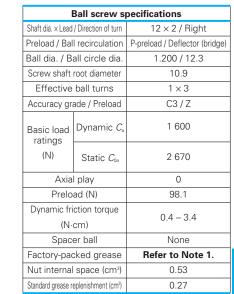
Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)	
	eau accurac		out **	Mass	Configuration
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple
0	0.010	0.008	0.030	0.29	3 000
0	0.013	0.008	0.050	0.39	3 000

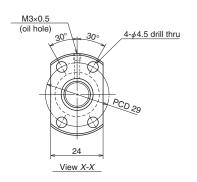
(37) (0.007 A (37) (0.007	Ls (stroke range) Seals (two places) John March 1990 Seals A 10 A 34 A 4 A 4 A 4 A 4 A 4 A 4 A	A G	0.010 A 0.005 C0.5 C0.5 R0.2 M10x1	E
		+25 (10)	30 15	
10	L _a L _o	-	45	
Γ			7	

	Strol	Thread length						
Reference No.	N	N NA . L		i ili eau lengtii				
	Nominal	Maximum	$L_{\rm t}$	L_1	L _a	L _o		
W1001KA-3P-C3Z4	100	110	160	165	175	230		
W1003KA-3P-C3Z4	300	310	360	365	375	430		

Notes:

- Only a rust preventive is applied before delivery. Apply lubricant (oil or grease) before use. See Page D13 for details. We recommend using NSK Grease LG2 (Cleanroom).
- 2. Contact NSK if permissible rotational speed N will be exceeded.


B283 B284


NSN

Screw shaft ø12

Lead 2

Unit: mm

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)
WBK10-01C (square, clean)	WBK10S-01C (square, clean)
WBK10-11C (round, clean)	

Unit: mm

B286

L	ead accurad	су	Shaft run- out ** Mass		Permissible rotational speed N (min-1) Configuration
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple
0	0.010	0.008	0.030	0.24	3 000
0	0.012	0.008	0.040	0.36	3 000

(38) (38) (38) (38) (38) (38) (38) (39) (30)	Ls (stroke range) 0.010 A	A G (width of flats) (7, 5	C0.2 C0.5 C0.5 R0.2 max
0.003 F	<u>L_t</u> <u>L₁</u> <u>L_a</u>	(10)	30 15
- 7.	L _o		

	Stroke L _s		Thread length					
Reference No.	N			Tillead leligtii				
	Nominal	Maximum	$L_{\rm t}$	L_1	L _a	L _o		
W1201KA-3PY-C3Z2	100	109	160	165	175	230		
W1203KA-1PY-C3Z2	250	259	310	315	325	380		

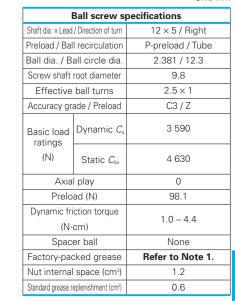
Notes:

- Only a rust preventive is applied before delivery. Apply lubricant (oil or grease) before use. See Page D13 for details. We recommend using NSK Grease LG2 (Cleanroom).
- 2. Contact NSK if permissible rotational speed N will be exceeded.

M6×1.0

View X-X

(oil hole)


 $4-\phi 4.5$ drill thru

c'bore ∮8×4

Screw shaft ø12

Lead 5

Unit: mm

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)	S
WBK10-01C (square, clean)	WBK10S-01C (square, clean)	
WBK10-11C (round, clean)		

Unit: mm

Load converse		Shaft run-		Permissible rotational speed N (min-1)					
L	ead accurad	Зу	out **	out **	out **	out **	out **		Configuration
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	(kg)		Fixed - Simple				
0	0.012	0.008	0.040	0.47	3 000				
0	0.016	0.012	0.065	0.66	3 000				

(40) **	Ls (stroke range) 12	-0.25 12
C0.2 C0.5 R0.2 R0.2 R0.2 R0.3 F	Seals 5 X	C0.2 C0.5 C0.5 C0.2 C0.5 C0.5

	Stroke L _s		Thread length					
Reference No.	Nominal			- Thread length				
		Maximum	$L_{\rm t}$	L ₁	La	Lo		
W1202KA-3P-C3Z5	200	208	260	265	275	330		
W1205KA-1P-C3Z5	450	458	510	515	525	580		

Notes: 1. Only a rust preventive is applied before delivery. Apply lubricant (oil or grease) before use. See Page D13 for details. We recommend using NSK Grease LG2 (Cleanroom).

2. Contact NSK if permissible rotational speed N will be exceeded.

B287

NSN

Screw shaft ø12

Lead 10

Unit: mm

Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	12 × 10 / Right			
Preload / Bal	I recirculation	P-preload / Tube			
Ball dia. / B	all circle dia.	2.381 / 12.5			
Screw shaft	root diameter	10.0			
Effective	ball turns	2.5 × 1			
Accuracy gra	ade / Preload	C5 / Z			
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	3 620			
(N)	Static C _{0a}	4 750			
Axia	l play	0			
Prelo	ad (N)	98.1			
Dynamic fri	ction torque	1.0 – 4.9			
(N·	cm)	1.0 – 4.9			
Spac	er ball	None			
Factory-pag	cked grease	Refer to Note 1.			
Nut internal	space (cm³)	1.4			
Standard grease r	eplenishment (cm³)	0.7			

M6× (oil h	
30° 30°	4-φ4.5 drill thru c'bore φ8×4.5
	PCD 40
32	
_ View X-X	

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)	3
WBK10-01C (square, clean)	WBK10S-01C (square, clean)	
WBK10-11C (round, clean)		

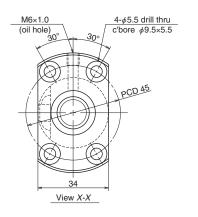
Unit: mm

	Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)
			out **	out **	
Т	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$			
0	0.023	0.018	0.050	0.56	3 000
0	0.030	0.023	0.075	0.72	3 000

(44) × (24)	0.0.12	x - 4₁ <u>//</u> *	13 0025 * G 12	√0.015 A / 0.	.008 E
	(two places)		C0.2	C0.5	948 000 000 000 000 000 000 000 000 000 0
C0.5 R0.2 max. 7.9°	[7] 0.010 [A]	A G	RO.:	,	
/0.003 F →	40 50 L _t	x-4	(width of flats) (7) 5]0.003 <i>E</i>]	>
< 10 s c	L _a	Lo		45	>

	Stroke L _s		Thread length				
Reference No.	N	Name in al Manian was		Till ead leiligill			
	Nominal	Maximum	L_{t}	L_1	La	L。	
W1203KA-3P-C5Z10	250	253	310	315	325	380	
W1205KA-3P-C5Z10	450	453	510	515	525	580	

otes: 1. Only a rust preventive is applied before delivery. Apply lubricant (oil or grease) before use. See Page D13 for details. We recommend using NSK Grease LG2 (Cleanroom).


2. Contact NSK if permissible rotational speed N will be exceeded.

B289 B290

Lead 10

Unit: mm

	Ball screw sp	pecifications
Shaft dia. x Lead	/ Direction of turn	15 × 10 / Right
Preload / Bal	I recirculation	P-preload / Tube
Ball dia. / B	all circle dia.	3.175 / 15.5
Screw shaft	root diameter	12.2
Effective	ball turns	2.5 × 1
Accuracy gr	ade / Preload	C5 / Z
Basic load ratings	Dynamic C _a	6 660
(N)	Static C _{0a}	9 480
Axia	l play	0
Prelo	ad (N)	147
	cm)	1.5 – 7.9
Spac	er ball	None
Factory-pag	cked grease	Refer to Note 1.
Nut internal	space (cm³)	2.3
Standard grease r	eplenishment (cm³)	1.4

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)	S
WBK12-01C (square, clean)	WBK12S-01C (square, clean)	
WBK12-11C (round, clean)		

B292

					Offit: Iffili
	Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)
			out **] ,, [Mass
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple
0	0.027	0.020	0.050	0.99	3 000
0	0.035	0.025	0.065	1.2	3 000
0	0.046	0.030	0.110	1.7	1 610

(48) (0.014 A	Ls (stroke range) Seals (two places)	70.014 A 89
C0.5 R0.2 max. F 1.15 9.15	10 0011 A G	C0.2 C0.5 C0.5 A0.2 max E 10 (8) 5 M12×1
<u>12</u>	51 L _a L _o	(15) 30 15 45

	Strol	ke L _s	Thread length			
Reference No.	Nominal	Marriagrama	Tillead length			
	ivominai	Maximum	$L_{\rm t}$	La	L。	
W1504KA-3P-C5Z10	400	427	489	504	561	
W1506KA-3P-C5Z10	600	627	689	704	761	
W1510KA-1P-C5Z10	1 000	1 027	1 089	1 104	1 161	

- 1. Only a rust preventive is applied before delivery. Apply lubricant (oil or grease) before use. See Page D13 for details. We recommend using NSK Grease LG2 (Cleanroom).
- 2. Contact NSK if permissible rotational speed N will be exceeded.

M6×1.0 (oil hole)

View X-X

4-φ5.5 drill thru

Screw shaft ø15

Lead 20

Unit: mm

	Ball screw sp	ecifications
Shaft dia. x Lead	/ Direction of turn	15 × 20 / Right
Preload / Bal	I recirculation	P-preload / End cap
Ball dia. / B	all circle dia.	3.175 / 15.5
Screw shaft	root diameter	12.2
Effective	ball turns	1.7 × 1
Accuracy gr	ade / Preload	C5 / Z
Basic load	Dynamic C _a	4 630
ratings (N)	Static C _{0a}	6 430
Axia	l play	0
Prelo	ad (N)	147
Dynamic fri	iction torque	1.5 – 7.9
(N·	cm)	1.5 – 7.9
Spac	er ball	None
Factory-page	cked grease	Refer to Note 1.
Nut internal	space (cm³)	1.9

Recommended support unit

Standard grease replenishment (cm³)

For drive side (Fixed)	For non-drive side (Simple)	3
NBK12-01C (square, clean)	WBK12S-01C (square, clean)	
WBK12-11C (round, clean)		

1.0

Unit: mm

					O ma mini		
1	and annura	2) (Shaft run-		Permissible rotational speed N (min-1)		
L	eau accuracy		Lead accuracy		out **	Mass	Configuration
T	$e_{\scriptscriptstyle P}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple		
0	0.027	0.020	0.050	1.0	3 000		
0	0.035	0.025	0.065	1.3	3 000		
0	0.046	0.030	0.110	1.8	1 610		

100	0.015 A	ke range) 5 X III A G A G	28	7 0.003 E
	[/0.011] 24	 	(18)	6 E/ 10 M12x1 10.004E 30 15 45

	Stroke L _s		Thread length		
Reference No.	Niii	N 4 a viva v vaa	Tillead leligtii		
	Nominal	Maximum	$L_{\rm t}$	La	L _o
W1504KA-7PG-C5Z20	400	424	486	504	561
W1506KA-7PG-C5Z20	600	624	686	704	761
W1510KA-3PG-C5Z20	1 000	1 024	1 086	1 104	1 161

2. Contact NSK if permissible rotational speed N will be exceeded.

Notes: 1. Only a rust preventive is applied before delivery. Apply lubricant (oil or grease) before use. See Page D13 for details. We recommend using NSK Grease LG2 (Cleanroom).

Lead 2

Unit: mm

Ball screw specifications				
Shaft dia. x Lead	/ Direction of turn	16 × 2 / Right		
Preload / Bal	I recirculation	P-preload / Deflector (bridge)		
Ball dia. / Ba	all circle dia.	1.588 / 16.4		
Screw shaft	root diameter	14.6		
Effective	ball turns	1 × 4		
Accuracy gra	ade / Preload	C3 / Z		
Basic load ratings	Dynamic $C_{\scriptscriptstyle a}$	3 400		
(N)	Static C _{0a}	6 240		
Axia	l play	0		
Prelo	ad (N)	147		
Dynamic fri	ction torque	0.5 – 4.9		
(N-	cm)	0.5 - 4.9		
Space	er ball	None		
Factory-pag	cked grease	Refer to Note 1.		
Nut internal	space (cm³)	1.6		
Standard grease re	eplenishment (cm³)	0.8		

M6×1.0 (oil hole)	30° 30°	4-φ5.5 drill thru
	29 View X-X	

For drive side (Fixed)	For non-drive side (Simple)	3
WBK12-01C (square, clean)	WBK12S-01C (square, clean)	
WBK12-11C (round, clean)		

Unit: mm

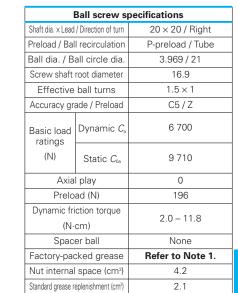
L	Lead accuracy		Shaft run- out ** Mass		Permissible rotational speed N (min-1) Configuration
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle \sf u}$	<i>L1</i>	(kg)	Fixed - Simple
0	0.010	0.008	0.020	0.46	3 000
0	0.013	0.010	0.035	0.75	3 000

(39)	L _s (stroke range)	13 12 0.25 13 12 12 13 14 15 15 15 15 15 15 15
C0.5 R0.2 max	0.010 A Seals (two places) 5 X (two places) 5 X (1) 4	## # G
10.003 F →	L _t	5 (10) 30 15
<u>*12</u> <u>*</u>	L _a L _o	45

	Strol	ke L _s	Thread length		h
Reference No.	Nisasiasi	N A - v disa - v v	Tillead length		11
	ivominai	Nominal Maximum		La	L _o
W1601KA-3PY-C3Z2	100	137	189	204	261
W1603KA-1PY-C3Z2	300	337	389	404	461

Notes: 1. Only a rust preventive is applied before delivery. Apply lubricant (oil or grease) before use. See Page D13 for details. We recommend using NSK Grease LG2 (Cleanroom).

2. Contact NSK if permissible rotational speed N will be exceeded.


B295

NSN

Screw shaft ø20

Lead 20

Unit: mm

M6×1.0 (oil hole)	4-φ6.6 drill thru c'bore φ11×6.5
	PCD 59
46 View X-X	-

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)	S
WBK15-01C (square, clean)	WBK15S-01C (square, clean)	
WBK15-11C (round, clean)		

Unit: mm

					Offic. Hilli
Load course.		Shaft run-		Permissible rotational speed N (min-1)	
L	ead accurad	Зу	out **	Mass	Configuration
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple
0	0.030	0.023	0.050	2.0	3 000
0	0.035	0.025	0.085	2.5	3 000
0	0.046	0.030	0.110	3.4	2 160

(61)		15 0
C0.5 RO.2 max. 13	0.015 A Seals 8 X	CO.3 CO.5 CO.5 RO.2 M15x1 10,004 E 10,004 E 10,004 E 10,004 E 10,004 E

Reference No.	Stro	ke L _s	- Thread length					
	Nominal	Maximum						
	Nominal	IVIAXIITIUITI	$L_{\rm t}$	L_{a}	L_{\circ}			
W2005KA-3P-C5Z20	400	434	510	535	608			
W2007KA-3P-C5Z20	600	634	710	735	808			
W2011KA-3P-C5Z20	1 000	1 034	1 110	1 135	1 208			

Notes:

- Only a rust preventive is applied before delivery. Apply lubricant (oil or grease) before use. See Page D13 for details. We recommend using NSK Grease LG2 (Cleanroom).
- 2. Contact NSK if permissible rotational speed N will be exceeded.

B297 B298

B-3-1.5 Blank Shaft End MS, FS, and SS Models

1. Order of the dimension tables

Tables are arranged by model in order of increasing shaft diameter. If ball screws have the same shaft diameter, those with smaller leads appear first. Page numbers for shaft diameter and lead combinations are shown in the **Table 1**.

2. Dimension tables

Dimensions, shapes, and specifications are listed by shaft diameter/lead combinations. The following tables also contain data regarding:

Lead accuracy

Lead accuracy is either C3 or C5 grade.

T: Travel compensation

 e_n : Tolerance of specified travel

 υ_{\parallel} : Travel variation

See "Technical Description: Lead Accuracy" (page B37) for details.

Permissible rotational speed

d • n: Limited by the relative peripheral speed between the screw shaft and the nut.

Critical speed: Limited by the natural frequency of the ball screw shaft. Critical speed depends on the support configuration of screw shaft.

Criterion of maximum rotational speed

: 3 000 min-1

The lower of the two criteria, $d \cdot n$ and critical speed, will determine the overall permissible rotational speed of the ball screw. For details, see "Technical Description: Permissible Rotational Speed" (page B47).

3. Shaft end processing

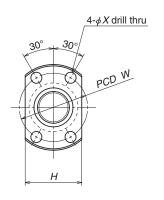
MS, FS, and SS models require shaft end processing. Specialized support units (page B389) can be used for the design of shaft end support sections. See "Configuration of shaft end" (page B27 and following pages) when using a support unit. See "Technical

Description: Shaft End Processing" (page B86) for procedures and precautions.

4. Other

The seals of the ball screw, ball recirculating deflectors, and end caps are made of synthetic resin. Consult NSK when using the ball screws under extreme environments, special environments, or if using special lubricant or oil. For special environments, see pages B70 and D2. See pages B67 and D13 for lubricants. Shaft end appearance, including thread ends, may vary depending on manufacturing.

Note: For details on standard stock products, contact NSK.


Table 1 Combinations of screw shaft diameter and lead

Screw shaft diameter(mm)	1	1.5	2	2.5	4	5	6
4	B301						
6	B301						
8	B301	B303	B303				
10			B303	B305	B309		
12			B305	B305		B309	
14						B311	
15							
16			B307	B307		B315	
20					B321	B321	
25					B323	B323	B323
25					B323	B325	D323
28						B327	B327
20						B329	B329
						B331	B331
32						B333	B333
						B335	D333
36							
40						B337	
40						10007	
45							
50							

8	10	12	16	20	25	32	40	50
	B309							
B311								
	B311			B313				
			B315			B313		
	B315			B315			B313	
	B325			B317	B317			B317
	B327			D317	D317			D317
	B335							
B333	B337				B319	B319		
	B339							
	B337							
	B339							
	B341	B341						
B341	B343	B341						
	B345	D343						
	B347							
	B345							
	B347							

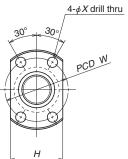
B299 B300

Screw shaft ø4, ø6, ø8, Lead 1

View X-X

Unit: mm

dir	mensio	ns	Sc	rew s	haf	t dir	nen	sion	S	Lea	ad acc	uracy	F	Run-ou	Mass	Permissible rotational	MS	
Overall length	Bolt	hole	Threaded length	Shaft e	end,	right	Shaft e	nd, left	Overall length		Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	
L_{n}	W	X	L _t	d_1	L_1	L_2	d_2	L ₃	L _o	Τ	$e_{\scriptscriptstyle 0}$	υu	I	J	K		N (min-1)	
12	15	2.9	80	6.0	4	40	3.3	10	130	0	0.008	0.008	0.030	0.009	0.008	0.026	3 000	
15	18	3.4	125	8.0	4	50	5.3	15	190	0	0.010	0.008	0.030	0.009	0.008	0.063	3 000	
16	21	3.4	110 190	10.2	4	60	7.3	25	195 275	0	0.010	0.008	0.030	0.009	0.008	0.11	3 000	


		<u> </u>			
Co.1	C0.2 6.3	D D D O D O D D O			Center hole
	L ₃	L _t (Hardened area)		L ₂	
	Unhardened area	L_{0}	Unha	ardened area	
		Nut: MSFD			

Model No.	Stroke Max.	Screw shaft dia.	Lead	aia.	dia.	dia.	Effective ball	1)	d ratings V) Static	Axial play	Outside dia.		ut Flang	е
	$L_{t}^{-L_{n}}$ d	d	ι	$D_{\rm w}$	$d_{\rm m}$	d_{r}	turno	C_{a}	C_{0a}	171671	D	Α	Н	В
W0400MS-1Y-C3T1	68	4	1	0.8	4.2	3.2	2	370	370	0.005	10	20	14	3
W0601MS-1Y-C3T1	110	6	1	0.8	6.2	5.2	3	680	920	0.005	12	24	16	3.5
W0801MS-1Y-C3T1 W0802MS-1Y-C3T1	94 174	8	1	0.8	8.2	7.2	3	790	1 290	0.005	14	27	18	4

Notes: 1. We recommend using NSK support units. See Page B389 for details.

- Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
 for details.
- 3. These ball nuts do not have seals.
- 4. The permissible rotational speed is determined by the *d-n* value, critical speed, and maximum rotational speed. See Page B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

Lead 1.5, 2 Screw shaft ø10 Lead 2

View X-X

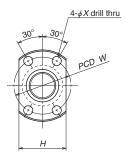
,	4-φ <i>X</i>
30° 30°	PCI
Н	
·	

Unit: mm

dim	ensio	ns	5	Screw	sha	ft di	mensi	ons		Le	ad acc	curacy	F	Run-ou	ıt	Mass	Permissible rotational
Overall length	Bolt	hole	Threaded length	Shaft e	end, r	ight	Shaft end, left Overall			Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	
Ln	W	X	$L_{\rm t}$	$d_{\scriptscriptstyle 1}$	L	L2	$d_{\scriptscriptstyle 2}$	L ₃	length L_{\circ}	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)
22	22	3.4	110	10.2	4	60	7.2	25	195	^	0.010	0 008	0.030	0 000	0.008	0.12	3 000
22	22	3.4	190	10.2	4	00	1.2	25	275	U	0.010	0.006	0.050	0.009	0.000	0.15	3 000
26	23	3.4	110	10.2	4	60	7.0	25	195	n	0.010	0 000	0.030	0 000	0.008	0.12	3 000
20	23	3.4	190	10.2	4	00	7.0	25	275	0	0.010	0.008	0.050	0.003	0.008	0.15	3 000
28	27	4.5	150	12.2	4	70	9.0	30	250	٥	0.010	0.008	0.035	0 000	0.008	0.22	3 000
20	27	4.5	250	12.2	4	70	9.0	30	350	U	0.012	0.006	0.050	0.009	0.000	0.17	3 000

		Seals (two places) X	I G	
Center hole	6.3	A G	C0.5 √6.3(or /) Center ho	<u>le</u>
	L ₃	L _t (Hardened area)	<u>L2</u>	
	Unhardened are	ea L _o	Unhardened area	
		Nut: MSFD	-1	

Model No.	odel No. Stroke Max.		Lead	Ball dia.	circie	Root dia.	Effective ball	Basic loa	d ratings J)	Axial play		Nı		
Wieder We.	, ,	dia.	,		dia.	,	turns	Dynamic	Static	Max.	Outside dia.		lange	9
	L_{t} - L_{n}	d	l	$D_{\rm w}$	$d_{\rm m}$	d_{r}	tuilis	C_{a}	$C_{\scriptscriptstyle 0a}$	IVIAA.	D	Α	Н	В
W0801MS-2Y-C3T1.5	88	8	1.5	1.0	8.3	7.0	3	1 270	1 970	0.005	15	28	19	4
W0802MS-2Y-C3T1.5	168	O	1.5	1.0	0.5	7.0	3	1 2/0	1 370	0.003	13	20	10	4
W0801MS-3Y-C3T2	84	8	2	1.2	8.3	6.9	3	1 560	2 200	0.005	16	29	20	4
W0802MS-3Y-C3T2	164	0	_	1.2	0.5	0.9	٥	1 300	2 200	0.005	10	29	20	4
W1001MS-1Y-C3T2	122	10	2	1.2	10.3	8.9	3	1 000	2 970	0.005	18	35	22	5
W1002MS-1Y-C3T2	222	10	2	1.2	10.5	0.9	٥	1 000	2 970	0.005	10	30	22	5


Notes: 1. We recommend using NSK support units. See Page B389 for details.

2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13

3. The permissible rotational speed is determined by the $d \cdot n$ value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

Unit: mm

Screw shaft ø10 Lead 2.5 Screw shaft ø12 Lead 2, 2.5

View X-X

Center hole	C0.2	Seals (two places) X A B L A G	7 G A.3(or /)	C0.5
	L ₃	L _t (Hardened area)	L ₂	
	Unhardened ar	ea L _o	Unhardened area	
	-	Nut: MSFD	,	1

Model No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective hall	(1	۷)	Axial	Outside dia.		Nut Flange	9
	L_{t} - L_{n}	d	l	$D_{\rm w}$	$d_{\rm m}$	d_{r}	turns	Dynamic $C_{\scriptscriptstyle a}$	C_{0a}	Max.	D	Α	Н	В
W1001MS-2Y-C3T2.5	118	10	٥ ٦	1 500	10.4	0.0	_	2 500	2 620	0.005	10	20	00	_
W1002MS-2Y-C3T2.5	218	10	2.5	1.588	10.4	8.6	3	2 500	3 030	0.005	19	36	23	5
W1202MS-1Y-C3T2	182	12	2	1 200	12.3	10.9	3	1 960	3 620	0.005	20	37	24	5
W1203MS-1Y-C3T2	282	12	۷.	1.200	12.3	10.9	3	1 300	3 020	0.005	20	57	24	5
W1202MS-2Y-C3T2.5	178	12	2.5	1.588	12 /	10.6	3	2 790	1 530	0.005	21	38	25	5
W1203MS-2Y-C3T2.5	278	12	2.5	1.000	12.4	10.0	3	2 730	4 550	0.005	21	30	25	5

Notes: 1. We recommend using NSK support units. See Page B389 for details.

- Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
 for details.
- 3. The permissible rotational speed is determined by the *d-n* value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

dim	ensio	ns	5	Screw	crew shaft din			ons		Le	ad acc	uracy	R	un-ou		Mass	Permissible rotational	_
Overall length	Bolt	hole	Threaded length	Shaft e	end, r	ight	Shaft en	d, left	Overall		Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	N.
Ln	W	X	$L_{\rm t}$	d ₁	L ₁	L2	d ₂	L ₃	length L_{\circ}	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	
32	28	4.5	150	12.2	4	70	8.7	30	250	0	0.010	0.008	0.035	0.010	0.008	0.23	3 000	
32	20	4.5	250	12.2	4	70	0.7	30	350	U	0.012	0.006	0.050	0.010	0.006	0.28	3 000	
28	29	4.5	210	14.2	5	80	11.0	35	325	0	0.012	0.008	0.050	0.010	0.008	0.36	3 000	
20	23	4.5	310	14.2	5	80	11.0	35	425	0	0.012	0.008	0.060	0.010	0.000	0.44	3 000	
32	30	4.5	210	14.2	5	80	10.7	35	325	0	0.012	0.008	0.050	0.010	0.008	0.37	3 000	
32	30	4.5	310	14.2	5	00	10.7	33	425	U	0.012	0.006	0.060	0.010	0.008	0.45	3 000	

C0.2

Unhardened area

C0.1

Center hole

/ J A

\$ dr

Seals (two places)

/ K A →

L_t (Hardened area)

В

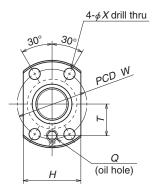
Nut: MSFD

X - 1

A

C0.5

Center hole


-11 I G

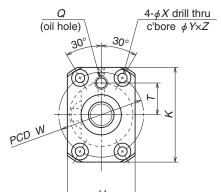
1.6

Min. L_1

Unhardened area

Lead 2, 2.5

View X-X


Model No.	Stroke Max.		Lead	Ball dia.	circle	Root dia.	Effective ball	Basic loa (1	ad ratings ()	Axial play				Nut			
Model No.	l	٠,	,	_	dią.		turns	Dynamic	Static	ріау Мах.	Outside dia.	F	lang	е	Overall length	Bolt	hole
	L_t - L_n	d	l	D_w	$d_{\rm m}$	d_{r}	tuilia	C_a	C_{0a}	IVIAA.	D	Α	Н	В	L	W	Χ
W1602MS-1Y-C3T2	210	16	2	1.588	16.4	116	4	/ 1EO	8 450	0.005	2.5	11	29	10	40	35	- -
W1604MS-1Y-C3T2	360	10		1.388	10.4	14.0	4	4 150	0 450	0.005	25	44	29	10	40	ახ	5.5
W1602MS-2Y-C3T2.5	206	1.0	2.5	1 500	10.4	146	4	4 150	0.440	0.005	2.5	1.1	20	10	11	O.E.	E E
W1604MS-2Y-C3T2.5	356	16	2.5	1.588	10.4	14.0	4	4 150	8 440	0.005	25	44	29	10	44	35	5.5

Notes: 1. We recommend using NSK support units. See Page B389 for details.

- 2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details
- The permissible rotational speed is determined by the d·n value, critical speed, and maximum rotational speed.
 See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

																		Unit: mm	
dimens	sions	Scr	ew :	shaf	t dir	men	sior	าร	Lea	ad acc	uracy	F	Run-ou		Mass	Permissible rotational	Nut internal	Standard grease	NS
Oil h	ole	Threaded length	Shaft	end,	right	Shaft e	end, left			Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	space	replenishment	
Q	T	$L_{\rm t}$	d_1	L1	L ₂	d_2	L ₃	length $L_{\rm o}$	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I I	J	Κ		N (min-1)	(cm ³)	(cm³)	
M6×1	16	250	16	30	100	117	10	390	0	0.012	0.008	0.035	0.010	0.008	0.71	3 000	1.5	0.8	
IVIOXI	10	400	10	30	100	14.7	40	540	0	0.013	0.010	0.050	0.010	0.000	0.93	3 000	1.5	0.0	
NAC-41	16	250	10	20	100	14.7	40	390	_	0.012	0.008	0.035	0.010	0 000	0.73	2 000	1.5	0.0	
M6×1	10	400	16	30	100	14./	40	540	0	0.013	0.010	0.050	0.010	0.008	0.95	3 000	1.5	0.8	

Screw shaft ø10 Lead 4 Screw shaft ø12 Lead 5, 10

View X-X

Unit: mm

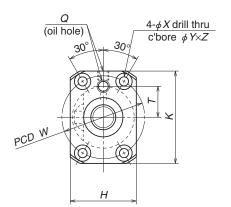
																			OTHE. ITHIT	
dimens	ions	5	Scre	ew	sha	aft (dime	ensi	ons	Le	ad acc	curacy	F	Run-ou	it	Mass	Permissible rotational	Nut internal	Standard grease	Z
Oil h	ole	Threaded length	Sha	ft e	nd, r	ight	Shaft en	d, left	Overall length		Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	space	replenishment	
Q	Τ	L _t	$d_{\scriptscriptstyle 1}$	$L_{\rm u}$	L_1	L_2	$d_{\scriptscriptstyle 2}$	L ₃	L _o	Τ	$e_{\scriptscriptstyle m p}$	$\upsilon_{_{\sf u}}$	I	J	Κ		N (min ⁻¹)	(cm ³)	(cm³)	
		160							265		0.010	0.008	0.030			0.34				
M6×1	14	260	14	5	40	70	8.2	35	365	0	0.012	0.008	0.040	0.010	0.008	0.39	3 000	0.86	0.43	
		360							465		0.013	0.010	0.050			0.45				
		150							255		0.010	0.008	0.030			0.44				
M6×1	15	250	14	5	40	70	9.8	35	355	0	0.012	0.008	0.040	0.010	0.008	0.52	3 000	1.2	0.6	
		450							555		0.015	0.010	0.065			0.67				
NAC-41	1.5	250	1 1	0	10	70	100	2.5	355		0.023	0.018	0.050	0.010	0.010	0.57	2 000	1 /	0.7	
M6×1	15	450	14	ğ	40	70	10.0	35	555	0	0.027	0.020	0.075	0.012	0.010	0.74	3 000	1.4	0.7	

Conter hole	.5 C0.2 6.3	Seals (two places) X A B L A G	7 G	0.2 C0.5 Center hole
	L ₃	Lt (Hardened area)	L ₂	
	Unhardened area	L_{\circ}	Unhardened area	

(Fine, Medium lead: Tube Recirculation)

Nut: SFT, LSFT

Model No.	Stroke Max. Lt-Ln	Screw shaft dia. d	Lead <i>l</i>	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root	Turns	(N Dynamic	V)	Axial	Outside dia.	A A	=lar H	nge <i>K</i>		ut Overall length L	B	olt	ho Y	le Z
W1001FS-1-C3T4	126																			
W1002FS-1-C3T4	226	10	4	2.000	10.3	8.2	2.5×1	3 210	4 420	0.005	26	46	28	42	10	34	36	4.5	8	4.5
W1003FS-1-C3T4	326																			
W1201FS-1-C3T5	110																			
W1202FS-1-C3T5	210	12	5	2.381	12.3	9.8	2.5×1	4 390	6 260	0.005	30	50	32	45	10	40	40	4.5	8	4.5
W1204FS-1-C3T5	410																			
W1202FS-2-C5T10	200	12	10	2 201	12 5	100	2 5 1	4 430	6 420	0 005	20	<u>-</u>	22	15	10	50	10	1 5	0	4.5
W1204FS-2-C5T10	400	12	10	2.301	12.5	10.0	2.581	4 430	0 430	0.005	30	50	SZ	45	10	50	40	4.5	0	4.5


Notes: 1. We recommend using NSK support units. See Page B389 for details.

- 2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
- 3. The permissible rotational speed is determined by the $d \cdot n$ value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

Center hole

Lead 5, 8 Screw shaft ø15

View X-X

	1	J A	Seals (two places)	IG	
1.5	6.3	ρφ		(Sha is the state of the state	$+0.2$ ft diameter ϕ 15 e same as ϕ d_2) C 0.5
	L ₃		L _t (Hardened area)	L ₂	
ĺ	Unhardened a	area	ı	Unhardened area	i

(Fine, Medium lead: Tube Recirculation)

Nut: SFT, LSFT

Model No.	Stroke Max. <i>L</i> _t - <i>L</i> _n	Screw shaft dia. d	Lead <i>l</i>	dia	Ball circle dia. d _m	Root dia. <i>d</i> ,	Turns	Dynamic	۷)	Axial	Outside dia. D	F A	=lar H	nge K		ut Overall length L _n	B W	olt	ho Y	le Z
W1403FS-1-C3T5	310	14	5	2 175	115	11 2	2 5 1	7 970	11 000	0 005	24	57	2/1	E۷	11	40	15	55	0 5	E E
W1406FS-1-C3T5	560	14	5	3.175	14.5	11.2	Z.3X1	7 970	11 900	0.003	34	57	34	50	11	40	40	5.5	9.0	0.0
W1405FS-1-C5T8	454	14	8	3.175	115	11 2	2 5 1	7 880	11 900	0 005	31	57	2/	E۷	11	16	15	5 5	0 F	5 5
W1408FS-1-C5T8	754	14	0	3.173	14.5	11.2	2.5/1	7 000	11 000	0.005	54	57	54	50	11	40	45	0.0	3.5	5.5
W1504FS-1-C5T10	349																			
W1506FS-1-C5T10	549	15	10	2 175	155	12.2	2 5 1	8 140	12 200	0 005	3/1	57	2/	E۷	11	L 1	15	5 5	0 F	5.5
W1509FS-1-C5T10	849	13	10	0.170	10.0	12.2	Z.3X1	0 140	12 000	0.003	54	57	54	50	11	01	45	0.0	5.0	0.0
W1511FS-1-C5T10	1 049																			

Notes: 1. We recommend using NSK support units. See Page B389 for details.

- 2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
- 3. The permissible rotational speed is determined by the $d \cdot n$ value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

Unit: mm

dimens	sions						men				ad acc			Run-ou	it	Mass	Permissible rotational	Nut internal	Standard grease
Oil h	ole	Threaded length	Sha	ift ei	nd, r	ight	Shaft en	d, left	Overall length		Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	space	replenishment
Q	Τ	$L_{\rm t}$	d_1	$L_{\rm u}$	L_1	L_2	$d_{\scriptscriptstyle 2}$	L ₃	Lo	Τ	$e_{\scriptscriptstyle \! p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	Κ		N (min-1)	(cm³)	(cm³)
M6×1	17	350	15	5	10	100	11.2	10	490	0	0.013	0.010	0.035	0.012	0.000	0.78	3 000	2.0	1.0
IVIOXI	17	600	15	0	40	100	11.2	40	740	U	0.016	0.012	0.055	0.012	0.006	1.0	3 000	2.0	1.0
M6×1	17	500	15	8	40	100	11.2	40	640	0	0.027	0.020	0.065	0.015	0.011	1.0	3 000	2.0	1.0
IVIOXI	17	800	15	0	40	100	11.2	40	940	U	0.035	0.025	0.085	0.013	0.011	1.3	3 000	2.0	1.0
		400							570		0.025	0.020	0.050			1.0			
M6×1	17	600	15	8	10	120	12.2	50	770	٨	0.030	0.023	0.065	0.015	0.011	1.3	3 000	2.3	1.2
IVIOXI	17	900	13	0	40	120	12.2	30	1 070	U	0.040	0.027	0.110	0.015	0.011	1.7	3 000	2.3	1.2
		1 100							1 270		0.046	0.030	0.150			1.9			

B311 B312 Unhardened area

C0.5

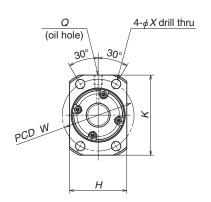
Center hole

A

C0.5

Center hole

1 G


Min.

Unhardened area

Screw shaft ø15 Lead 20 Screw shaft ø16 Lead 32 Screw shaft ø20

Lead 40

View X-X

L_o

B C

L_t (Hardened area)

K A

X - 1

 $X \rightarrow A \stackrel{\Box}{G}$

Model No.		Screw shaft dia.	Lead	uia.	circle dia.		Turns	Basic loa (N Dynamic		Axial play Max.	Outside dia.		FI	I anç	Nut ge		Overall length	Bolt	hole
	L_{t} - L_{n}	d	l	D_{w}	$d_{\rm m}$	d_{r}	Circuits	C_{a}	C_{0a}	iviax.	D	Α	Н	Κ	В	С	L	W	
W1504FS-2G-C5T20	355																		
W1506FS-2G-C5T20	555	15	20	3.175	15.5	100	1.7×1	5 660	Q 700	0.005	24	e e	20	EΛ	10	11	4.5	4.5	5.5
W1509FS-2G-C5T20	855	15	20	3.1/5	10.0	12.2	1./XI	5 000	0 700	0.005	34	ວວ	30	อบ	10	11	45	45	5.5
W1511FS-2G-C5T20	1 055																		
W1609FS-2GX-C5T32	866	10	20	0 175	10.75	10.4	0.70	1 000	7 510	0.005	0.4		20	۲0	10	10 F	0.4	4 -	
W1613FS-1GX-C5T32	1 266	16	32	3.1/5	10./5	13.4	0.7×2	4 000	7 510	0.005	34	55	30	50	10	10.5	34	45	5.5
W2011FS-1GX-C5T40	1 059	20	40	0 175	20.75	17 /	0.7.42	5 /10	0.260	0.005	20	EO	10	ΕO	10	11	11	10	ЕЕ
W2017FS-1GX-C5T40	1 659	20	40	3.1/5	20./5	17.4	0.7×2	5 410	300	0.005	38	ეგ	40	22	10	П	41	48	5.5

Notes: 1. We recommend using NSK support units. See Page B389 for details.

- Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
 for details
- 3. The permissible rotational speed is determined by the d·n value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

dimen	sions	Sc	rev	N S	haf	t di	men	sio			ad acc	,		Run-ou	ıt	Mass	Permissible rotational	Nut internal	Standard grease	3
Oil h	ole	Threaded length	Sha	aft ei	nd, r	ight	Shaft en	d, left	Overall length	Travel com- pensation	Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	space	replenishment	
Q	T	Lt	d_1	Lu	L_1	L_2	$d_{\scriptscriptstyle 2}$	L ₃	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min ⁻¹)	(cm³)	(cm³)	
		400							570		0.025	0.020	0.050			1.0				
N / C v / 1	E	600	1 5	12	40	100	100	E0.	770		0.030	0.023	0.065	0.015	0 011	1.3	2 000	1.0	1.0	
M6×1	5	900	115	13	40	120	12.2	50	1 070	0	0.040	0.027	0.110	0.015	0.011	1.7	3 000	1.9	1.0	
		1 100							1 270		0.046	0.030	0.150			2.0				
N / C , /1		900	1.0	10	40	150	10.4	60	1 110	_	0.040	0.027	0.110	0.015	0.011	1.9	2 000	2 0	1.0	
M6×1	5	1 300	110	6 19 22	40	150	13.4	00	1 510	0	0.054	0.035	0.150	0.015	0.011	2.5	3 000	2.0	1.0	
N / C , /1	Б	1 100	20		co	150	17.4	00	1 330	^	0.046	0.030	0.150	0.015	0.011	3.5	2 000	0.7	1 1	
M6×1	5	1 700	120		lου	100	17.4	ĮδU	1 020	U	0.065	0.040	0.200	0.015	0.011	4.0	3 000	2.7	1.4	

0.065 0.040 0.200

Unit: mm

C0.5

Center hole

Center hole

Unhardened area

Center Ge

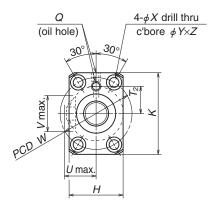
Min.

 L_1

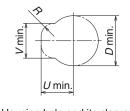
 L_2

Unhardened a

Seals (two places)


В

Unhardened area


Min.

Lt (Hardened_area)

Lead 5, 16 Screw shaft ø20 Lead 10, 20

View X-X

Housing hole and its clearance (only applicable to shaft dia. ϕ 16, lead 16)

Nut: SFT, LSFT Nut: SFT, LSFT

X J A G K A

Model No.	Stroke Max. L _t -L _n	Screw shaft dia. d	Lead <i>l</i>	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia. <i>d</i> r	Effective ball turns Turns × Circuits	(N Dynamic	۷)	Axial	Outside dia.	I A	Flar H	nge K	N B	ut Overall length L	Bo W	olt X	ho Y	le Z
W1605FS-1-C3T5	458	16	5	3.175	16 5	12.2	2.5×1	0 620	12 000	0 005	40	62	40	55	11	12	Б 1	5 5	0.5	5.5
W1609FS-1-C3T5	858	10	5	3.175	10.5	13.2	Z.5X1	0 020	13 000	0.003	40	03	40	55	11	42	01	0.0	9.0	5.5
W1606FS-1-C5T16	544	16	16	2 175	16 75	12.4	1.5×1	E 100	o non	0 005	2/	57	2/	۳ ر	10	56	15	۳ ۲	0.5	5 5
W1611FS-1-C5T16	1 044	10	10	3.175	10.75	13.4	1.581	3 400	0 000	0.003	34	57	34	50	12	30	40	0.0	9.0	5.5
W2009FS-1-C5T10	846	20	10	3.969	21	16.0	2.5×1	12 200	21 000	0 005	16	71	16	66	12	E1	E0	66	11	6.5
W2013FS-1-C5T10	1 246	20	10	3.909	21	10.9	2.581	13 300	21 900	0.003	40	74	40	00	13	104	วฮ	0.0	"	0.5
W2010FS-1-C5T20	937	20	20	3.969	21	16.0	1.5×1	0 100	12 100	0 005	16	71	16	66	12	62	50	6 6	11	6.5
W2015FS-1-C5T20	1 437] 20	20	3.303	Z I	10.9	1.3X1	0 190	13 100	0.005	40	/4	40	00	13	03	บฮ	0.0	''	0.5

Seals (two places)

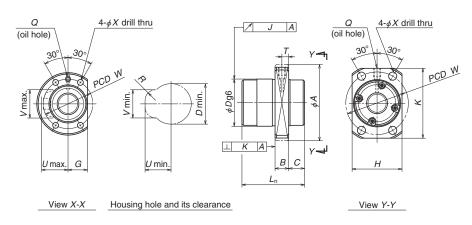
/ K A

Unhardened area

4 (Hardened area)

В

Notes: 1. We recommend using NSK support units. See Page B389 for details.


- Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
 for details.
- 3. The permissible rotational speed is determined by the d·n value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

	di	me	nsion	S			crev									uracy		un-oı	ut	Mass	Permissible rotational	Nut internal	Standard grease	FS
Proje	cting	tube	Oil h	nole	Э	Threaded length	Shaf	t en	d, ri	ght	Shaft en	d, left	Overall length		Deviation	Variation	Shaft	Radial	run-out	(kg)	speed	space	replenishment	
Ú	V	R	Q	T_1	T_2	Lt	d ₁	Lu	L_1	L_2	d_2	L ₃	Lo	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	Κ		N (min ⁻¹)	(cm ³)	(cm ³)	
			N 40 4		47	500	10	_	40	150	10.0		710		0.015	0.010	0.055	0.040	0.000	1.4	0.000	0.0	1.0	
_		_	M6×1	6	1 /	900	16	5	40	150	13.2	60	1 110	U	0.021	0.015	0.095	0.012	0.008	1.9	3 000	2.6	1.3	
						600				. = 0			810		0.030	0.023	0.085			1.5	3 000			
19	20	8	M6×1	8	1 /	1 100	16	10	40	150	13.4	60	1 310	0	0.046	0.030	0.150	0.015	0.011	2.3	2 480	2.1	1.1	
			1.40.4	_		900	0.0	4.0	00	450	400	00	1 130	_	0.040	0.027	0.110	0.045	0.044	3.2	3 000	4 7	0.4	
		_	M6×1	6	24	1 300	20	10	60	150	16.9	80	1 530	0	0.054	0.035	0.150	0.015	0.011	4.1	2 190	4.7	2.4	
						1 000				0			1 230		0.040	0.027	0.110			3.6	3 000			
_	_	_	M6×1	8	24	1 500	20	13	60	150	16.9	80	1 730	0	0.054	0.035	0.200	0.015	0.011	4.8	1 610	4.2	2.1	

B315

Unit: mm

Screw shaft ø25 Lead 20, 25, 50

Nut type code: USFC

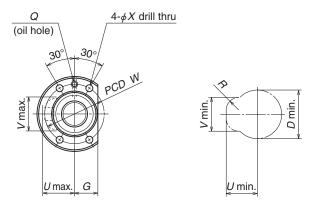
Unit: mm

	din	ner	nsions		S	crev	v s	haf	t dir	nen	sior	าร	Le	ad acc	uracy	R	un-oı		Mass	Permissible rotational	Nut internal	Standard grease	Z
roje	cting	tube	Oil ho	ole	Threaded length	Sha	ıft er	nd, r	ight	Shaft e	nd, left	Overall length		Deviation	Variation	Shaft straightness	Radial	run-out		speed	space	replenishment	
Ú	V	R	Q	T	Lt	d_1	Lu	L	L ₂	d_2	L ₃	Ľ.	Τ	e,	$\upsilon_{\scriptscriptstyle u}$	I	J	Κ		N (min-1)	(cm³)	(cm³)	
21	35	12	M6×1		1 350	25	12	70	200	21.3	100	1 650	٥	0.054	0.035	0.120	0.015	0.011	6.8	2 550	12	6.0	
١١	30	12	IVIOXI		2 150	20	13	//	200	21.3	100	2 450	U	0.077	0.046	0.160	0.013	0.011	9.8	1 000	12	0.0	
22	34	10	N 1 C . 1		1 350	25	1.5	70	200	21.2	100	1 650	0	0.054	0.035	0.120	0.015	0.011	6.8	2 540	10	F 0	
32	34	12	M6×1	_	2 150	25	15	//	200	21.3	100	2 450	U	0.077	0.046	0.160	0.015	0.011	9.8	1 000	10	5.0	
			N 10: -1	_	1 500	٥٢	00	70	200	01.0	100	1 800	0	0.054	0.035	0.120	0.015	0.011	7.3	1 250	г о	0.7	
_			M6×1	6	2 150	25	26	/0	200	21.9	100	2 450	0	0.077	0.046	0.160	0.015	0.011	9.8	1 000	5.3	2.7	

	J A	Seals (two places)	<u> </u>	
C0.5 C0.3	D 0 0	B C	1.6 Min. Lu Min. L1	C0.5
_ L ₃		Lt (Hardened area)	L ₂	
Unharden	ed area	Lo	Unhardened are	ea -

Nut: LSFT

Model No.	Stroke Max.	dia.	Lead	Ball dia. <i>D</i> w	Ball circle dia. d _m	dia.	Turns	Dynamic	1)	Axial	Nut	Outside dia.				Nu1			Overall length	Bolt	
	ι 11	d		**	- 111	- 1	Circuits	C _a	C_{0a}			D	$A \mid$	G	Н	K	В	C	L_n	W	X
W2513FS-1-C5T20	1 254	25	20	1 762	26.25	21.2	2 5 1	18 600	33 600	0 005	I CET	11	71	23			12	8	96	57	6.6
W2521FS-1-C5T20	2 054	25	20	4.702	20.20	21.3	2.5/1	10 000	32 000	0.005	LJI I	44	′ '	23			12	O	30	57	0.0
W2513FS-2-C5T25	1 260	25	2.5	4 760	26.25	21.2	1 Ev1	11 700	10 700	0.005	LCET	11	71	22			10	10	00	-7	6.6
W2521FS-2-C5T25	2 060	25	25	4./02	20.20	21.3	1.XC.1	11 700	19 /00	0.005	LOFI	44		۷۵	_	_	12	10	90	57	0.0
W2515FS-1GX-C5T50	1 450	25	ΕO	3.969	26	21.9	0.752	7 200	12 200	0.005	HOEO	16	70		10	62	10	10	ΕO	EO	6 6
W2521FS-3GX-C5T50	2 100	25	50	3.909	20	21.9	0.7×2	7 280	13 200	0.005	USFC	40	70		48	03	12	13	วบ	ეგ	0.0


Notes: 1. We recommend using NSK support units. See Page B389 for details.

Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
for details

3. The permissible rotational speed is determined by the d·n value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

B317 B318

View X-X

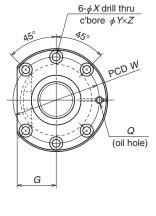
Housing hole and its clearance

	/ J		Seals (two places)		I G	
Co.5	C0.3	\$\frac{\phi}{\phi} \frac{\phi}{\phi} \frac{\phi}	K A	X A A G	(i) (i) (i) (i) (ii) (ii) (iii) (iii	Co.5
	L ₃		L _t (Hardened area)	>	L ₂	
	Unhardened a	area	Lo		Unhardened area	

(Medium, High helix lead: Tube Recirculation)

Nut: LSFT

Model No.	Stroke Max.		Lead		Ball circle	HOOL	Turns	1)	۷)	Axial				Νι	ut			
Model No.	l		1	Δ.α.	dia.	,	X	Dynamic	Static	play Max	Outside dia.		Flar	nge		Overall length	Bolt	hole
	L_t - L_n	d	ι	$D_{\rm w}$	$d_{\rm m}$	$d_{\rm r}$	Circuits	$C_{\rm a}$	C_{0a}	IVIGA.	D	Α	G	В	С	L	W	X
W3217FS-1-C5T25	1 583	32	25	4 760	22.25	20.2	2.5×1	20 400	42 200	0.005	E1	85	26	15	10	117	67	9
W3227FS-1-C5T25	2 583	32	25	4.702	აა. ∠ ა	20.3	Z.5X1	20 400	42 200	0.005	01	00	20	15	10	117	07	9
W3217FS-2-C5T32	1 591	32	32	4 700	22.25	20.2	1.5×1	10 000	25 200	0.005	E 1	85	20	15	10	109	67	
W3227FS-2-C5T32	2 591	32	32	4.702	JJ.25	28.3	1.0X1	13 300	25 200	0.005	וכ	80	26	15	12	109	0/	9


Notes: 1. We recommend using NSK support units. See Page B389 for details.

- 2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
- 3. The permissible rotational speed is determined by the $d \cdot n$ value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

Unit: mm

d	ime	nsic	ns	Sc	rev	v sł	naft	t din	nens	sion	S	Lea	ad acc	uracy	R	lun-oı	ut	Mass	Permissible rotational	Nut internal	Standard grease	5
Proje <i>U</i>	ecting t	tube R	Oil hole	Threaded length	Sha d ₁	ft er	nd, ri L₁	ight L2	Shaft e	nd, left <i>L</i> ₃	Overall length L_o	Travel com- persation T	Deviation $e_{\scriptscriptstyle m p}$	Variation $\mathbf{v}_{\scriptscriptstyle u}$	Shaft straightness I	Radial <i>J</i>	run-out <i>K</i>	(kg)	speed N (min ⁻¹)	space (cm³)	replenishment (cm³)	
34	42	12	M6×1	1 700 2 700	32	15	70	250	28.3	1170	2 070 3 070	10	0.065 0.093		0.160 0.210	0.019	0.013	13.8 20.0	2 180 800	17	8.5	
34	42	12	M6×1	1 700 2 700	32	19	70	250	28.3	120	2 070 3 070	1 ()	0.065 0.093			0.019	0.013	13.9 20.0	2 180 790	15	7.5	

Lead 4, 5

View X-X

Conter hole	Seals (two places) X A G	7 G C1 T G	Center hole
< L ₃	L _t (Hardened area)	>< L ₂ >	
Unhardened area	Lo	Unhardened area	

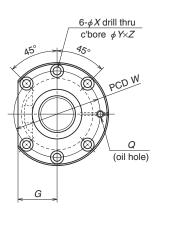
Nut: PFT

Model No.	Stroke Max. L _t -L _n	Screw shaft dia. d	Lead <i>l</i>	Ball dia. D_{w}	Ball circle dia. d _m	Root dia.	Turns	Dvnamic	۷)	Preload (NI)	Dynamic friction torque, median (N·cm)	Uutside dia	FI A	ang	Nut	Overall length L _n	Bolt	
W2003SS-1P-C5Z4	251																	
W2005SS-1P-C5Z4	451	20	4	2.381	20.3	17.8	2.5×2	6 550	10 900	290	3.9	40	63	24	11	49	51	5.5
W2008SS-1P-C5Z4	751																	
W2003SS-2P-C5Z5	244																	
W2005SS-2P-C5Z5	444	20	-	0 175	20 5	17.0	2 52	11 100	17 100	400	7.0	11	67	200	11	E.C.		
W2007SS-1P-C5Z5	644	20	5	3.1/5	20.5	17.2	2.5×2	100	17 100	490	7.8	44	0/	20		56	00	0.5
W2010SS-1P-C5Z5	944																	

Notes: 1. We recommend using NSK support units. See Page B389 for details.

mm	Unit: m			
. 02	0			

(din	ner	sions					lime				d accu	,		lun-ou	ıt	Mass	Permissible rotational	Nut internal	Standard grease	SS
E	3olt	hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out		speed	space	replenishment	
	Y	Ζ	Q	$L_{\rm t}$	d ₁	L_1	L ₂	d_2	L ₃	Lo	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	I	J	Κ		N (min-1)	(cm ³)	(cm³)	
				300			150		_	450	-0.007	0.023	0.018	0.055			1.5				
S	9.5	5.5	M6×1	500	20	40	150	17.8	50	700	-0.012	0.027	0.020	0.085	0.015	0.011	2.0	3 000	2.7	1.4	
				800			200		100	1 100	-0.019	0.035	0.025	0.140			2.9				
				300			150		_	450	-0.007	0.023	0.018	0.055			1.6				
_			NAC1	500		40	150	17.0	50	700	-0.012	0.027	0.020	0.085	0 01 5	0.011	2.2	0.000	4.0	0.0	
٢	1.5	5.5	M6×1	700	20	40	200	17.2	100	1 000	-0.017	0.035	0.025	0.110	0.015	0.011	2.8	3 000	4.3	2.2	
				1 000			200		100	1 300	-0.024	0.040	0.027	0.180			3.5				


B321 B322

Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
for details.

^{3.} The permissible rotational speed is determined by the *d·n* value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

(Fine lead: Tube Recirculation)

Screw shaft ø25 Lead 4, 5, 6

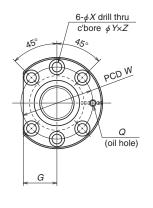
View X-X

C1 Center hole	C0.5	eals (two places) X A B L Min	C1 Center hole
L ₃		ened area)	L ₂
Unhardene <	d area	Lo	Unhardened area

Nut: PFT

	Stroke	Screw		Ball	Ball	Root	Effective ball turns	Basic loa	d ratings		Dvnamic				Nut			
Model No.	1	shaft dia.	Lead		circle dia.		Turns	1) Dynamic	N)		friction torque, median	Outside dia.	EI	anç		Overall length	Rolt	holo
	L_{t} - L_{n}	d	l	D _w	d _m	d_{r}	Circuits	$C_{\rm a}$	C_{0a}	(N)	(N·cm)	dia.	A	G	B	length L _n		X
W2503SS-1P-C5Z4	252																	
W2506SS-1P-C5Z4	552	25	4	2.381	25.3	22.8	2.5×2	7 110	13 600	290	4.9	46	69	26	11	48	57	5.5
W2510SS-1P-C5Z4	952																	
W2503SS-2P-C5Z5	245																	
W2505SS-1P-C5Z5	445	25	5	3.175	25.5	22.2	2 5/2	12 300	21 900	540	8.8	E0	72	20	11	55	61	5.5
W2508SS-1P-C5Z5	745	25	5	3.173	25.5	22.2	2.002	12 300	21 000	340	0.0	50	/3	20	11	55	01	5.5
W2512SS-1P-C5Z5	1 145]																
W2504SS-1P-C5Z6	338																	
W2508SS-2P-C5Z6	738	25	6	3.969	25.5	21.4	2.5×2	16 600	26 700	690	13.8	53	76	29	11	62	64	5.5
W2512SS-2P-C5Z6	1 138																	

Notes: 1. We recommend using NSK support units. See Page B389 for details.


- 2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
- 3. The permissible rotational speed is determined by the $d \cdot n$ value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

Unit: mm

dir	ner	nsions	Scr	ew	sha	aft d	lime	nsic	ons		d accu	,		Run-ou	ut	Mass	Permissible rotational	Nut internal	Standard grease	90
Bolt	hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	end, left	Overall length	Travel compensation	Deviation	Variation	Shaft	Radial	run-out	(kg)	speed	space	replenishment	
Y	Z	Q	L _t	d_1	L	L ₂	$d_{\scriptscriptstyle 2}$	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	υu	I	J	K	ĺ	N (min-1)	(cm³)	(cm³)	
			300			150		_	450	-0.007	0.023	0.018	0.040			2.2				
9.5	5.5	M6×1	600	25	40	200	22.8	100	900	-0.014	0.030	0.023	0.075	0.015	0.011	3.8	2 800	3.2	1.6	
			1 000			200		100	1 300	-0.024	0.040	0.027	0.120			5.2				
			300			200		_	500	-0.007	0.023	0.018	0.040			2.5				
0 E	 	M6×1	500	25	40	200	22.2	50	750	-0.012	0.027	0.020	0.060	0.015	0.011	3.4	2 800	5.2	2.6	
9.5	0.5	IVIOXI	800	20	40	250	22.2	100	1 150	-0.019	0.035	0.025	0.090	0.015	0.011	4.8	2 000	0.2	2.0	
			1 200			300		100	1 600	-0.029	0.046	0.030	0.120			6.3				
			400			200		_	600	-0.010	0.025	0.020	0.050			3.0				
9.5	5.5	M6×1	800	25	40	250	21.4	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	4.8	2 800	7.0	3.5	
			1 200			300		100	1 600	-0.029	0.046	0.030	0.120			6.3				

B323 B324

Screw shaft ø25 Lead 5, 10

View X-X

Co.5	C0.5	Seals (two places) X A G L A G	Conter hole
	< L ₃	L _t (Hardened area)	
	Unhardened area	Lo	Unhardened area

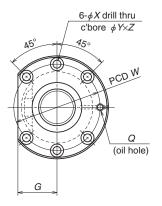
Nut: ZFD

Model No.	Stroke Max. L _t -L _n	Screw shaft dia. <i>d</i>	Lead <i>l</i>	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia. <i>d</i> _r	Turns	Basic loa (N Dynamic <i>C</i> _a	۷)	(NI)	Dynamic friction torque, median (N·cm)	Outside dia. D	FI:	anç G	Nut ge B	Overall length L _n	Bolt	hole
W2502SS-1ZY-C5Z5	184																	
W2504SS-3ZY-C5Z5	334																	
W2506SS-2ZY-C5Z5	534	25	5	3.175	25.75	22.4	1×3	11 600	22 900	740	13.8	40	63	24	11	66	51	5.5
W2509SS-1ZY-C5Z5	834																	
W2512SS-3ZY-C5Z5	1 134																	
W2504SS-4ZY-C5Z10	312																	
W2506SS-3ZY-C5Z10	512																	ĺ
W2508SS-3ZY-C5Z10	712	25	10	4.762	26.25	21.3	1×2	13 300	21 200	880	21.5	42	69	26	15	88	55	6.6
W2511SS-1ZY-C5Z10	1 012																	
W2515SS-2ZY-C5Z10	1 412																	

Notes: 1. We recommend using NSK support units. See Page B389 for details.

Unit: mm

dir	ner	nsions						nsic	ons		d accu	,		Run-ou	ıt	Mass	Permissible rotational	Nut internal	Standard grease	00
Bolt	hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	end, left	Overall length	Travel compensation	Deviation	Variation	Shaft	Radial	run-out	(kg)	speed	space	replenishment	
Y	Z	Q	L_{t}	d_1	L_1	L_2	d_2	L ₃	Ľ.	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)	(cm³)	
			250			200		_	450	-0.005	0.023	0.018	0.040			2.1				
			400			200		50	650	-0.009	0.025	0.020	0.060			2.8				H
9.5	5.5	M6×1	600	25	40	250	22.4	100	950	-0.013	0.030	0.023	0.075	0.015	0.011	3.9	2 800	5.4	2.7	
			900			250		100	1 250	-0.021	0.040	0.027	0.090			4.9				Г
			1 200			300		100	1 600	-0.028	0.046	0.030	0.120			6.2				
			400			200		50	650	-0.008	0.025	0.020	0.060			3.0				
			600			250		100	950	-0.012	0.030	0.023	0.075			4.1				
11	6.5	M6×1	800	25	60	250	21.3	100	1 150	-0.017	0.035	0.025	0.090	0.015	0.011	4.8	2 800	9.0	4.5	
			1 100			300		100	1 500	-0.024	0.046	0.030	0.120			6.0				
			1 500			300		100	1 900	-0.034	0.054	0.035	0.150			7.4				


B325 B326

Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
for details.

^{3.} The permissible rotational speed is determined by the *d-n* value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

(Fine lead: Tube Recirculation)

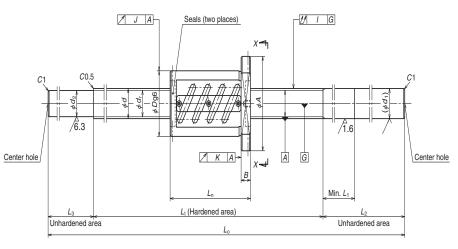
Lead 10 Screw shaft ø28 Lead 5, 6

View X-X

C1	C0.5 6.3	Seals (two places) X A B X A G	7 G	C1 Center hole
		$\stackrel{ \mathcal{B} }{\underset{\longleftarrow}{\longleftarrow}}$	Min. L ₁	
	L ₃	Lt (Hardened area)	L ₂	
	Unhardened area	Lo	Unhardened area	

Nut: PFT

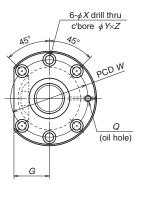
Model No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle	HOOL	Effective ball turns Turns	Basic loa	-	Preload	triction torque,		ı	I	Nut			
Wiodel IVO.	L _t -L _n	d	l	D _w	$d_{\rm m}$	d _r	× Circuits	Dynamic C_a	Static C _{0a}	(N)	median (N.cm)	Outside dia.	FI	anç G	ge B	Overall length	Bolt W	hole X
W2504SS-2P-C5Z10	319							C _a	C _{0a}			υ	Α	G	D	Ln	VV	Λ
W2507SS-1P-C5Z10	619	25	10	4.762	25.5	20.5	1 5 > 2	13 600	10 000	500	13.8	58	85	33	15	81	71	6.6
W2510SS-2P-C5Z10	919	20	10	4.702	20.0	20.5	1.582	13 000	10 300	330	13.0	50	00	32	10	01	/ 1	0.0
W2515SS-1P-C5Z10	1 419																	
W2804SS-1P-C5Z5	344																	
W2806SS-1P-C5Z5	544	28	5	3.175	28.5	25.2	2 5/2	13 000	24 400	540	9.8	55	85	21	12	56	60	6.6
W2808SS-1P-C5Z5	744		5	3.175	20.5	25.2	2.082	13 000	24 400	040	9.0	55	00	31	12	50	09	0.0
W2812SS-1P-C5Z5	1 144																	
W2804SS-3P-C5Z6	337																	
W2806SS-3P-C5Z6	537	28	6	3.175	28 5	25.2	2 5 > 2	12 900	34 300	540	10.8	55	85	21	12	63	60	6.6
W2808SS-3P-C5Z6	737	20	0	3.173	20.0	20.2	2.082	12 900	24 300	340	10.0	90	00	υI	12	US	US	0.0
W2812SS-3P-C5Z6	1 137																	


Notes: 1. We recommend using NSK support units. See Page B389 for details.

- Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
 for details.
- 3. The permissible rotational speed is determined by the *d-n* value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

																				Unit: mm	
(dir	ner	nsions	Scr	ew	sh	aft c	lime	ensic	ons	Lead	d accu	ıracy	F	lun-ou	ıt	Mass	Permissible rotational	Nut internal	Standard grease	SS
I	3olt	hole	Oil hole	Threaded length	Shaft	t end	, right	Shaft e	end, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	space	replenishment	
	Υ	Z	Q	Lt	d_1	L ₁	L2	d_2	L ₃	Lo	T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	Κ		N (min-1)	(cm ³)	(cm³)	
Ī				400			200		50	650	-0.010	0.025	0.020	0.060			3.8				
	11	6.5	M6×1	700	25	60	250	20.5	100	1 050	-0.017	0.035	0.025	0.090	0.019	0.012	5.1	2 800	9.7	4.9	
	11	0.0	IVIOXI	1 000	25	00	250	20.5	100	1 350	-0.024	0.040	0.027	0.120	0.019	0.013	6.1		9.7	4.9	
				1 500			300		100	1 900	-0.036	0.054	0.035	0.150			8.0	2 050			
				400			200		_	600	-0.010	0.025	0.020	0.050			3.7				
	1 1	۰.	NAC1	600	20	10	250	م م	100	950	-0.014	0.030	0.023	0.075	0.010	0.010	5.2	0.500	0.1	0.1	
	11	0.5	M6×1	800	28	40	250	25.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	6.1	2 500	6.1	3.1	
				1 200			300		100	1 600	-0.029	0.046	0.030	0.120			8.1				
Ī				400			200		_	600	-0.010	0.025	0.020	0.050			3.8				
		٥.	1.10 1	600		10	250	05.0	100	950	-0.014	0.030	0.023	0.075	0.040	0.040	5.3	0.500	0.4	0.4	
	11	6.5	M6×1	800	28	40	250	25.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	6.2	2 500	6.1	3.1	
				1 200			300		100	1 600	-0.029	0.046	0.030	0.120			8.2				

(Fine lead: Tube Recirculation)



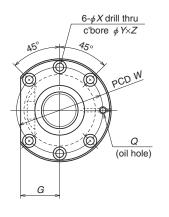
Nut: ZFT

Model No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle	HOOL	Effective ball turns Turns	Basic loa	id ratings ()	Preload	Dynamic friction torque,			ı	Nut	t		
Model No.		,	,		dia.	ļ .	X	Dynamic	Static	(N)	median	Outside dia.	FI	anç	ge	Overall length	Bolt	hole
	L_{t} - L_{n}	d	ı	D_{w}	$d_{\rm m}$	$u_{\rm r}$	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(,	(N·cm)	D	Α	G	В	L	W	X
W2804SS-2Z-C5Z5	314																	
W2806SS-2Z-C5Z5	514	28	5	2 175	20 E	25.2	2.5×2	20 600	10 700	1 225	21.5	55	85	21	12	86	60	6.6
W2808SS-2Z-C5Z5	714	20	5	3.173	20.5	25.2	2.0x2	20 000	40 /00	1 220	21.0	55	00	31	12	00	03	0.0
W2812SS-2Z-C5Z5	1 114																	
W2804SS-4Z-C5Z6	301																	
W2806SS-4Z-C5Z6	501	28	6	2 175	20 E	25.2	2.5×2	20 600	10 700	1 225	22.5	55	85	21	12	aa	60	6.6
W2808SS-4Z-C5Z6	701	20	0	0.170	20.5	25.2	2.582	20 000	40 /00	1 220	22.0	00	00	١٥١	12	23	UJ	0.0
W2812SS-4Z-C5Z6	1 101	[

Notes: 1. We recommend using NSK support units. See Page B389 for details.

- 2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
- 3. The permissible rotational speed is determined by the $d \cdot n$ value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

View X-X


Unit: mm

dir	ner	nsions				aft d					d accu	,		Run-ou	ıt	Mass	Permissible rotational	Nut internal	Standard grease	č
Bolt	hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	end, left	Overall length	Travel compensation	Deviation	Variation	Shaft	Radial	run-out		speed	space	replenishment	
Y	Z	Q	$L_{\rm t}$	d_1	L_1	L_2	d_2	L ₃	Ľ.	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	I	J	K		N(min-1)	(cm³)	(cm³)	
			400			200		_	600	-0.010	0.025	0.020	0.050			4.7				
11	6.5	M6×1	600	28	40	250	25.3	100	950	-0.014	0.030	0.023	0.075	0.019	0.012	5.5	2 500	9.2	4.6	F
11	0.5	IVIOXI	800	20	40	250	25.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	6.4	2 500	9.2	4.0	
			1 200			300		100	1 600	-0.029	0.046	0.030	0.120			8.4				
			400			200		_	600	-0.010	0.025	0.020	0.050			4.2				
11	6.5	M6×1	600	28	40	250	25.3	100	950	-0.014	0.030	0.023	0.075	0.010	0.013	5.7	2 500	9.5	4.8	
' '	0.5	IVIOXI	800	20	40	250	20.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	6.6	2 500	9.5	4.0	
			1 200			300		100	1 600	-0.029	0.046	0.030	0.120			8.6				

B329 B330

Screw shaft ø32

Lead 5, 6

View X-X

Center hole

Center hole

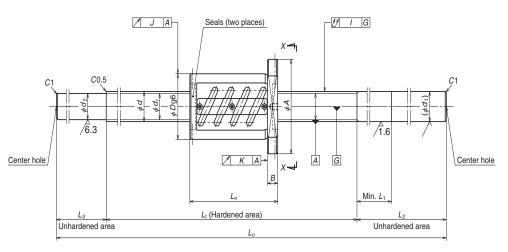
Conter hole

Nut: PFT

Reference No.	Stroke Max. L _t -L _n	Screw shaft dia. d	Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective ball turns Turns × Circuits	Basic loa (N Dynamic C_a		Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang <i>G</i>		Overall length
W3204SS-1P-C5Z5	344															
W3206SS-1P-C5Z5	544															
W3208SS-1P-C5Z5	744	32	5	3.175	32.5	29.2	2.5×2	13 700	28 000	590	10.8	58	85	32	12	56
W3212SS-1P-C5Z5	1 144															
W3215SS-1P-C5Z5	1 444															
W3206SS-3P-C5Z6	537															
W3210SS-1P-C5Z6	937	32	6	3.969	32.5	28.4	2.5×2	18 300	34 700	780	15.6	62	89	34	12	63
W3215SS-3P-C5Z6	1 437															

Notes: 1. We recommend using NSK support units. See Page B389 for details.

- Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
 for details.
- 3. The permissible rotational speed is determined by the *d·n* value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

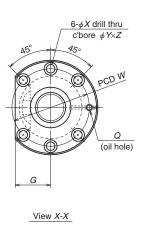

Unit: mm

	dim	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun-oı		Mass	Permissible rotational	Nut internal	Standard grease	SS
E	Bolt	hole	Э	Oil hole	Threaded length	Shaft	end,	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out		speed	l '	replerishment	
W	X	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 1}$	L_1	L_2	d_2	L ₃	Ľ.	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	Κ		N (min-1)	(cm³)	(cm³)	
					400			200		50	650	-0.010	0.025	0.020	0.060			4.8				
					600			250		100	950	-0.014	0.030	0.023	0.075			6.5				
71	6.6	11	6.5	M6×1	800	32	40	250	29.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	7.7	2 180	6.9	3.5	
					1 200			300		100	1 600	-0.029	0.046	0.030	0.120			10.3				
					1 500			300		100	1 900	-0.036	0.054	0.035	0.150			12.1				
					600			250			950	-0.014	0.030	0.023	0.075			6.7				
75 6.6	6.6	11	6.5	M6×1	1 000	32	40	300	28.4	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	9.2	2 180	9.4	4.7	
, 0					1 500			300			1 900	-0.036	0.054	0.035	0.150			12.1				

B331 B332

(Fine lead: Tube Recirculation)

Screw shaft ø32

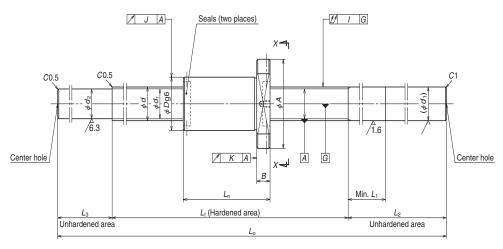


Nut: ∠	∠⊢ I
--------	------

Reference No.	Stroke Max. L _t -L _n	Screw shaft dia. d	Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective ball turns Turns × Circuits	(N Dynamic	·	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut ang <i>G</i>		Overall length
W3204SS-2Z-C5Z5	314															
W3206SS-2Z-C5Z5	514															
W3208SS-2Z-C5Z5	714	32	5	3.175	32.5	29.2	2.5×2	21 800	56 000	1 270	22.5	58	85	32	12	86
W3212SS-2Z-C5Z5	1 114															
W3215SS-2Z-C5Z5	1 414															
W3206SS-4Z-C5Z6	501															
W3210SS-2Z-C5Z6	901	32	6	3.969	32.5	28.4	2.5×2	29 100	69 300	1 720	34.5	62	89	34	12	99
W3215SS-4Z-C5Z6	1 401															
W3206SS-5Z-C5Z8	518	518														
W3210SS-3Z-C5Z8	918	32	8	4.762	32.5	27.5	2.5×1	20 600	40 900	1 320	30.5	66	100	38	15	82
W3215SS-5Z-C5Z8	1 418															

Notes: 1. We recommend using NSK support units. See Page B389 for details.

- 2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
- 3. The permissible rotational speed is determined by the d·n value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

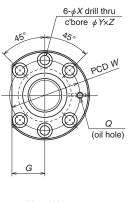


Unit: mm

	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	F	lun-oı	ut	Mass	Permissible rotational	internal		
	Bolt	hole	Э	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out		speed	l '	replenishment	
И	/ X	Y	Z	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 1}$	$L_{\scriptscriptstyle 1}$	L_2	d_2	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)	(cm³)	
					400			200		50	650	-0.010	0.025	0.020	0.060			5.1				
					600			250		100	950	-0.014	0.030	0.023	0.075			6.9				
71	6.6	11	6.5	M6×1	800	32	40	250	29.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	8.0	2 180	10	5.0	
					1 200			300		100	1 600	-0.029	0.046	0.030	0.120			10.1				
					1 500			300		100	1 900	-0.036	0.054	0.035	0.150			12.4				
					600			250		100	950	-0.014	0.030	0.023	0.075			7.1				
75	6.6	11	6.5	M6×1	1 000	32	40	300	28.4	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	9.7	2 180	15	7.5	
					1 500			300		100	1 900	-0.036	0.054	0.035	0.150			12.6				
					600			250		100	950	-0.014	0.030	0.023	0.075			7.3				
82	9	14	8.5	M6×1	1 000	32	50	300	27.5	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	9.8	2 180	7.9	4.0	
					1 500			300		100	1 900	-0.036	0.054	0.035	0.150			12.6				

B333 B334

Screw shaft ø32 Lead 5, 10



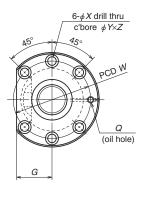
Nut: ZFD

Reference No.	Stroke Max. L _t -L _n		Lead <i>l</i>	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia. <i>d</i> _r	Turns	Dynamic	۷)	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang <i>G</i>		Overall length
W3204SS-3ZY-C5Z5	323															
W3206SS-6ZY-C5Z5	523															
W3209SS-1ZY-C5Z5	823	32	5	3.175	32.75	29.4	4	16 800	40 600	1 080	19.6	48	75	29	12	77
W3212SS-3ZY-C5Z5	1 123															
W3216SS-1ZY-C5Z5	1 523															
W3205SS-3ZY-C5Z10	380															
W3207SS-3ZY-C5Z10	580															
W3210SS-6ZY-C5Z10	880	32	10	6.35	33.75	27.1	3	30 500	52 500	1 860	49.0	54	88	34	15	120
W3214SS-3ZY-C5Z10	1 280															
W3218SS-3ZY-C5Z10	1 680															

Notes: 1. We recommend using NSK support units. See Page B389 for details.

- Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
 for details.
- 3. The permissible rotational speed is determined by the *d-n* value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

View X-X


Unit: mm

	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	F	lun-oı	ut	Mass	Permissible rotational	Nut internal	Standard	SS
	3olt	hole	Э	Oil hole	Threaded length	Shaft	end	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out		speed		replenishment	
W	X	Y	Z	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 1}$	L_1	L ₂	d_2	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)	(cm³)	
					400			200		50	650	-0.009	0.025	0.020	0.060			4.6				
					600			250		100	950	-0.013	0.030	0.023	0.075			6.4				
61	6.6	11	6.5	M6×1	900	32	40	250	29.4	100	1 250	-0.021	0.040	0.027	0.090	0.015	0.011	8.1	2 180	22	11	
					1 200			300		100	1 600	-0.028	0.046	0.030	0.120			10.2				
					1 600			300		100	2 000	-0.037	0.054	0.035	0.150			12.6				
					500			250		100	850	-0.010	0.027	0.020	0.075			6.2				
					700			250		100	1 050	-0.015	0.035	0.025	0.090			7.3				
70	9	14	8.5	M6×1	1 000	32	60	300	27.1	100	1 400	-0.022	0.040	0.027	0.120	0.019	0.013	9.3	2 180	23	12	
					1 400			350		120	1 870	-0.032	0.054	0.035	0.150			11.9				
					1 800			350		120	2 270	-0.041	0.065	0.040	0.200			14.1				

Unit: mm

20.8

Screw shaft ø32, ø36 Lead 10 Screw shaft ø40 Lead 5

View X-X

1 600

350

C1	C0.5 6.3	Seals (two places) X A B C A A G A G A A G	(F)	C1 Center hole
	L ₃	\leftarrow \leftarrow \rightarrow \leftarrow	L ₂	
	Unhardened area	L _o	Unhardened area	

Nut: ZFT

Reference No.	Stroke Max. L _t -L _n	Screw shaft dia. d	Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective ball turns Turns × Circuits	Dasic loa (N Dynamic	1)	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.	FI A	Nu lang <i>G</i>		Overall length
W3205SS-1Z-C5Z10	400															
W3207SS-1Z-C5Z10	600															
W3210SS-4Z-C5Z10	900	32	10	6.350	33	26.4	2.5×1	30 000	55 100	1 960	50	74	108	41	15	100
W3214SS-1Z-C5Z10	1 300															
W3218SS-1Z-C5Z10	1 700															
W3607SS-1Z-C5Z10	597															
W3612SS-1Z-C5Z10	1 097	36	10	6.350	37	30.4	2.5×1	32 000	61 100	2 060	56	75	120	45	18	103
W3620SS-1Z-C5Z10	1 897															
W4006SS-1Z-C5Z5	511															
W4010SS-1Z-C5Z5	911	40	5	3.175	40.5	37.2	2.5×2	23 900	70 500	1 420	28.5	67	101	39	15	89
W4016SS-1Z-C5Z5	1 511															

Notes: 1. We recommend using NSK support units. See Page B389 for details.

- Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
 for details
- 3. The permissible rotational speed is determined by the *d-n* value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

		dim	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	F	lun-ou	ut	Mass	Permissible rotational	Nut internal	Standard grease	SS
	E	Bolt	hole)	Oil hole	Threaded length	Shaft	end	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out		speed		replenishment	
	W	Χ	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 1}$	L_1	L ₂	$d_{\scriptscriptstyle 2}$	L ₃	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	Κ		N (min-1)	(cm³)	(cm³)	
Ī						500			250		100	850	-0.012	0.027	0.020	0.075			7.5				
						700			250		100	1 050	-0.017	0.035	0.025	0.090			8.5	2 180			
	90	9	14	8.5	M6×1	1 000	32	60	300	26.4	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	10.5	2 100	22	11	
						1 400			350		120	1 870	-0.034	0.054	0.035	0.150			13.1				
						1 800			350		120	2 270	-0.043	0.065	0.040	0.200			15.2	1 820			
						700			300		100	1 100	-0.017	0.035	0.025	0.065			10.9				
	98	11	17.5	11	M6×1	1 200	36	60	350	30.4	120	1 670	-0.029	0.046	0.030	0.100	0.019	0.013	14.9	1 940	27	14	
_						2 000			350		120	2 470	-0.048	0.065	0.040	0.130			20.4				
						600			300			1 000	-0.014	0.030	0.023	0.050			11.1				
	83	9	14	8.5	Rc1/8	1 000	40	50	300	37.2	100	1 400	-0.024	0.040	0.027	0.080	0.019	0.013	14.8	1 750	14	7.0	

2 050 -0.038 0.054 0.035 0.130

B337 B338

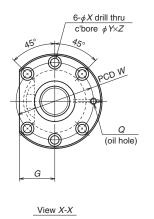
Center hole

Unhardened area

1 J A

Seals (two places)

Center hole


A G

Min. L₁

Unhardened area

Screw shaft ø32, ø36

Lead 10

Nut: DFT

Lt (Hardened area)

/ K A >

Reference No.	Stroke Max. L _t -L _n		Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective ball turns Turns X Circuits	Basic loa (N Dynamic <i>C</i> _a		Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.	F A	Nu lang		Overall length
W3205SS-2D-C5Z10	310															
W3207SS-2D-C5Z10	510															
W3210SS-5D-C5Z10	810	32	10	6.350	33	26.4	2.5×2	54 500	110 000	3 240	83	74	108	41	15	190
W3214SS-2D-C5Z10	1 210															
W3218SS-2D-C5Z10	1 610															
W3607SS-2D-C5Z10	507															
W3612SS-2D-C5Z10	1 007	36	10	6.350	37	30.4	2.5×2	58 000	122 000	3 430	93	75	120	45	18	193
W3620SS-2D-C5Z10	1 807															

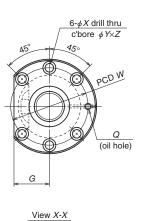
Notes: 1. We recommend using NSK support units. See Page B389 for details.

- Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
 for details.
- 3. The permissible rotational speed is determined by the *d-n* value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

Unit: mm

	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun-oı			Permissible rotational	Nut internal	Standard grease	SS
	3olt	hole	Э	Oil hole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out	(kg)	speed	l .	replenishment	
W	X	Y	Z	Q	$L_{\rm t}$	d_1	L_1	L_2	$d_{\scriptscriptstyle 2}$	L ₃	L _o	T	$e_{\scriptscriptstyle p}$	υu	I	J	K		N (min-1)	(cm³)	(cm³)	
					500			250		100	850	-0.012	0.027	0.020	0.075			9.5				
					700			250		100	1 050	-0.017	0.035	0.025	0.090			10.6	2 180			
90	9	14	8.5	M6×1	1 000	32	60	300	26.4	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	12.5	2 100	57	29	
					1 400			350		120	1 870	-0.034	0.054	0.035	0.150			15.1				
					1 800			350		120	2 270	-0.043	0.065	0.040	0.200			17.2	1 910			
					700			300		100	1 100	-0.017	0.035	0.025	0.065			12.8				
98	11	17.5	11	M6×1	1 200	36	60	350	30.4	120	1 670	-0.029	0.046	0.030	0.100	0.019	0.013	16.8	1 940	67	34	
					2 000			350		120	2 470	-0.048	0.065	0.040	0.130			22.3				

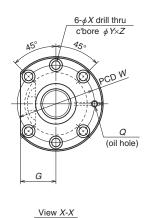
B339 B340


(Fine lead: Tube Recirculation)

Lead 8, 10, 12

D (N	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns Turns	Basic loa (N		Preload	Dynamic friction			Nut		
Reference No.			,		dia.		X	Dynamic	Static	(N)	torque, median	Outside dia.	F	lang	е	Overall length
	$L_{t}-L_{n}$	d	ι	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	Ca	C_{0a}		(N·cm)	D	Α	G	В	L
W4007SS-1Z-C5Z8	570															
W4012SS-1Z-C5Z8	1 070	40	8	4.762	40.5	35.5	2.5×2	41 100	103 000	2 450	64	74	108	41	15	130
W4018SS-1Z-C5Z8	1 670															
W4007SS-2Z-C5Z10	597															
W4010SS-2Z-C5Z10	897															
W4014SS-1Z-C5Z10	1 297	40	10	6.350	41	34.4	2.5×1	33 700	68 300	2 160	64	82	124	47	18	103
W4018SS-2Z-C5Z10	1 697															
W4024SS-1Z-C5Z10	2 297															
W4010SS-4Z-C5Z12	883															
W4016SS-2Z-C5Z12	1 483	40	12	7.144	41.5	34.1	2.5×1	39 500	77 200	2 550	83	86	128	48	18	117
W4025SS-1Z-C5Z12	2 383															

- Notes: 1. We recommend using NSK support units. See Page B389 for details.
 - 2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details
 - 3. The permissible rotational speed is determined by the *d·n* value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.



Unit: mm

	dim	nens	sion	S	Screw shaft dimension Threaded Shaft end, right Shaft end, left					ns	Lead	accu	racy	R	lun-oı	ut		Permissible rotational	Nut internal			
Е	3olt	hole	Э	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out		speed	l '	replerishment	
W	Χ	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 1}$	L_1	L ₂	$d_{\scriptscriptstyle 2}$	L ₃	L	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	Κ		N (min-1)	(cm³)	(cm³)	
					700			300		100	1 100	-0.017	0.035	0.025	0.065			13.0				
90	9	14	8.5	Rc1/8	1 200	40	50	350	35.5	100	1 650	-0.029	0.046	0.030	0.100	0.019	0.013	18.0	1 750	27	14	
					1 800			350		120	2 270	-0.043	0.065	0.040	0.130			23.5				
					700			300		100	1 100	-0.017	0.035	0.025	0.065			13.3				
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			15.9				
102	11	17.5	11	Rc1/8	1 400	40	60	350	34.4	120	1 870	-0.034	0.054	0.035	0.100	0.025	0.015	20.0	1 750	30	15	
					1 800			350		120	2 270	-0.043	0.065	0.040	0.130			23.4				
					2 400			400		150	2 950	-0.058	0.077	0.046	0.170			29.4				
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			16.7	. ===			
106	11	17.5	11	Rc1/8	1 600	40	70	350	34.1	150	2 100	-0.038	0.054	0.035	0.130	0.025	0.015	22.9	1 750	35	18	
					2 500			400		150	3 050	-0.060	0.077	0.046	0.170			31.1	1 220			

B341 B342

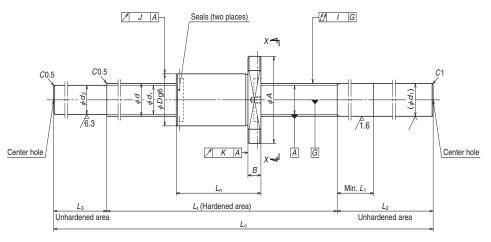
Screw shaft ø40 Lead 10, 12

																				UIII	t. IIIIII	
	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	F	lun-oı	ut	Mass	Permissible rotational	Nut internal	Standard grease	33
E	Bolt	hole	9	Oil hole	Threaded length	Shaft	end,	, right	Shaft e	end, left	Overall length	Travel compensation	Deviation	Variation	Shaft strainhtness	Radial	run-out		speed	l '	replerishment	
W	X	Y	Ζ	Q	$L_{\rm t}$	d_1	L_1	L ₂	d_2	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	υu	I	J	Κ		N (min-1)	(cm³)	(cm³)	
					700			300		100	1 100	-0.017	0.035	0.025	0.065			15.5				
			1 000			300		100	1 400	-0.024	0.040	0.027	0.080			18.1	4 750					
102	12 11 17.5 11 Ro	Rc1/8	1 400	40	60	350	34.4	120	1 870	-0.034	0.054	0.035	0.100	0.025	0.015	22.2	1 750	74	37			
					1 800			350		120	2 270	-0.043	0.065	0.040	0.130			25.6				
					2 400			400		150	2 950	-0.058	0.077	0.046	0.170			31.6	1 370			
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			19.7	4 750			
106	11	17.5	11	Rc1/8	1 600	40	70	350	34.1	150	2 100	-0.038	0.054	0.035	0.130	0.025	0.015	25.8	1 750	93	47	
					2 500			400		150	3 050	-0.060	0.077	0.046	0.170			34.0	1 260			

Conter hole	C0.5 (6.3	Seals (two places) X A G L A G	(i) (i) (i) (ii) (ii) (iii) (i	C1
	L ₃	L _t (Hardened area)	L_2	
	Unhardened area	L _o	Unhardened area	

Nut: DFT

Reference No.	Stroke Max. L _t -L _n	Screw shaft dia. d	Lead <i>l</i>	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective ball turns Turns X Circuits			Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang <i>G</i>		Overall length
W4007SS-3D-C5Z10	507															
W4010SS-3D-C5Z10	807															
W4014SS-2D-C5Z10	1 207	40	10	6.350	41	34.4	2.5×2	61 200	137 000	3 630	108	82	124	47	18	193
W4018SS-3D-C5Z10	1 607															
W4024SS-2D-C5Z10	2 207															
W4010SS-5D-C5Z12	775															
W4016SS-3D-C5Z12	1 375	40	12	7.144	41.5	34.1	2.5×2	71 700	154 000	4 310	138	86	128	48	18	225
W4025SS-2D-C5Z12	2 275															

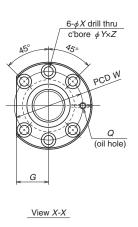

Notes: 1. We recommend using NSK support units. See Page B389 for details.

- Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
 for details
- 3. The permissible rotational speed is determined by the *d·n* value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

B343 B344

Screw shaft ø40, ø50

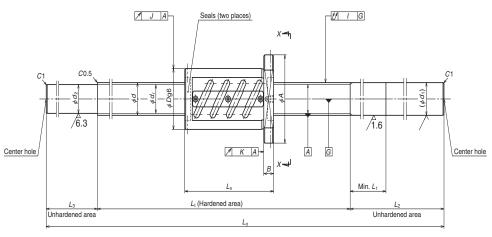
Lead 10



Nut: ZFD

								Basic loa	nd ratings		Dunamia					
D. f. N	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective	1)		Preload	Dynamic friction			Nut		
Reference No.	l		l	_	dia.	aia.	ball turns	Dynamic	Static	(N)	torque, median	Outside dia.	F	lang	je	Overall length
	$L_{t}-L_{n}$	d	ι	D_w	$d_{\rm m}$	d _r	tuilis	$C_{\rm a}$	$C_{\scriptscriptstyle 0a}$		(N·cm)	D	Α	G	В	Ln
W4007SS-4ZY-C5Z10	557															
W4010SS-6ZY-C5Z10	857															
W4014SS-3ZY-C5Z10	1 257	40	10	6.350	41.75	35.1	4	45 200	93 100	2 840	83	62	104	40	18	143
W4018SS-4ZY-C5Z10	1 657															
W4024SS-3ZY-C5Z10	2 257															
W5007SS-1ZY-C5Z10	557															
W5010SS-3ZY-C5Z10	857															
W5015SS-3ZY-C5Z10	1 357	50	10	6.350	51.75	45.1	4	51 500	122 000	3 240	108	72	114	44	18	143
W5020SS-3ZY-C5Z10	1 857															
W5026SS-3ZY-C5Z10	2 457															

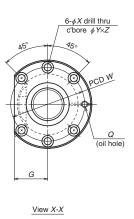
Notes: 1. We recommend using NSK support units. See Page B389 for details.


- Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13
 for details.
- 3. The permissible rotational speed is determined by the *d-n* value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

Unit: mm

	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	F	lun-oı	ut	Mass	Permissible rotational	Nut internal	Otanuaru	SS
	3olt	hole	9	Oil hole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Radial	run-out		speed	l '	replerishment	
W	X	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 1}$	L_1	L2	$d_{\scriptscriptstyle 2}$	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	υu	I	J	K		N (min-1)	(cm³)	(cm³)	
					700			300		100	1 100	-0.015	0.035	0.025	0.065			12.1				
					1 000			300		100	1 400	-0.022	0.040	0.027	0.080			14.7	1 750			
82	11	17.5	11	Rc1/8	1 400	40	60	350	35.1	120	1 870	-0.032	0.054	0.035	0.100	0.019	0.013	18.9	1 750	32	16	
					1 800			350		120	2 270	-0.041	0.065	0.040	0.130			22.5				
					2 400			400		150	2 950	-0.056	0.077	0.046	0.170			28.5	1 320			
					700			300		100	1 100	-0.015	0.035	0.025	0.065			18.3				
					1 000			300		100	1 400	-0.022	0.040	0.027	0.080			22.5				
92	11	17.5	11	Rc1/8	1 500	50	60	400	45.1	150	2 050	-0.034	0.054	0.035	0.130	0.019	0.013	31.8	1 400	39	20	
					2 000			400		150	2 550	-0.046	0.065	0.040	0.170			38.9				
					2 600			500		200	3 300	-0.060	0.093	0.054	0.220			49.5				

(Fine lead: Tube Recirculation)



N	ut:	ZΗ	

Reference No.	Stroke Max. L _t -L _n	Screw shaft dia. d	Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Turns	Basic loa (N Dynamic <i>C</i> _a	۷)	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang <i>G</i>		Overall length L
W4510SS-1Z-C5Z10	897															
W4516SS-1Z-C5Z10	1 497	45	10	6.350	46	39.4	2.5×1	36 300	78 500	2 260	69	88	132	50	18	103
W4525SS-1Z-C5Z10	2 397															
W5010SS-1Z-C5Z10	897															
W5015SS-1Z-C5Z10	1 397	50	10	6.350	51	44.4	2.5×1	37 500	87 200	2 450	78	93	135	51	18	103
W5020SS-1Z-C5Z10	1 897	50	10	0.330	31	44.4	Z.3X1	37 300	07 200	2 400	/0	93	133	51	10	103
W5026SS-1Z-C5Z10	2 497															
W5010SS-2Z-C5Z10	837	-														
W5015SS-2Z-C5Z10	1 337			6.350	51	44.4	2.5×2	68 100	17/ 000	4 020	138	93	135	51	18	163
W5020SS-2Z-C5Z10	1 837	50	10	0.350	31	44.4	Z.UXZ	00 100	174 000	4 020	130	33	133	וני	10	103
W5026SS-2Z-C5Z10	2 437															

Notes: 1. We recommend using NSK support units. See Page B389 for details.

- 2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details.
- 3. The permissible rotational speed is determined by the d·n value, critical speed, and maximum rotational speed. See Pages B47 and B299 for details. The values shown for permissible rotational speed apply when the mounting configuration is Fixed-Fixed.

Unit: mm

	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	้นท-ดเ	ut	Mass	Permissible rotational		Standard grease	00
Е	3olt	hole	Э	Oil hole	Threaded length	Shaft	end	, right	Shaft e	end, left	Overall length	Travel compensation	Deviation	Variation	Shaft strainhtness	Radial	run-out		speed		replenishment	
W	X	Y	Ζ	Q	Lt	d_1	L_1	L ₂	d_2	L ₃	L	T	$e_{\scriptscriptstyle p}$	υu	I	J	Κ		N (min-1)	(cm³)	(cm³)	
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			19.7	1 550			
110	11	17.5	11	Rc1/8	1 600	45	60	400	39.4	150	2 150	-0.038	0.054	0.035	0.130	0.025	0.015	28.1	1 550	34	17	
					2 500			450		150	3 100	-0.060	0.077	0.046	0.170			38.8	1 400			
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			23.8				•
110		47.5	4.4	D 4/0	1 500			400		150	2 050	-0.036	0.054	0.035	0.130	0.005	0.045	32.9	400		10	
113	11	17.5	11	Rc1/8	2 000	50	60	400	44.4	150	2 550	-0.048	0.065	0.040	0.170	0.025	0.015	39.8	1 400	37	19	
					2 600			450		150	3 200	-0.062	0.093	0.054	0.220			48.9				
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			25.5				
110	١,,	47.5		D 4/0	1 500			400		150	2 050	-0.036	0.054	0.035	0.130	0.005	0.045	34.6			00	
113	11	17.5	11	Rc1/8	2 000	50	60	400	44.4	150	2 550	-0.048	0.065	0.040	0.170	0.025	0.015	41.5	1 400	59	30	
					2 600			450		150	3 200	-0.062	0.093	0.054	0.220			50.7				

B347 B348

B-3-1.6 Ball Screws for Transfer Equipment

1. Features

Transporting mechanism

Models with accuracy grades of Ct7 and Ct10 demonstrate high performance for transport mechanisms in Cartesian robots and single-axis actuators.

We offer a variety of models of ball screws for transfer equipment. VFA and RMA models have finished shaft ends, while RMS and R models with RNFTL, RNFBL, RNCT, RNFCL, and RNSTL ball nuts have blank shaft ends.

Table 1 Classifications of ball screws for transfer equipment

Finished shaft end	VFA model, RMA model
	RMS model
DI I I 6	R Model
Blank shaft end	Nut Assemblies: RNFTL, RNFBL,
	RNCTL, RNFCL, RNSTL

• Interchangeable screw shaft and ball nut Screw shaft and nut assembly components are sold separately. The maximum axial play after assembly is shown in the dimension tables.

2. Specifications

(1) Ball recirculation system

Figs. 1, 2, and **3** show the structures of tube, deflector (bridge), and end cap ball recirculation systems.

Deflector (bridge) recirculation systems feature compact nut outside diameters for small leads. End cap recalculation systems suit screws with high helix leads and multiple start threads. Since the leads are up to 3 times larger than the screw shaft diameter, they are well-suited for high speeds.

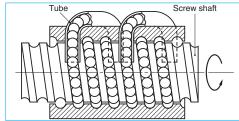


Fig. 1 Structure of tube recirculation system

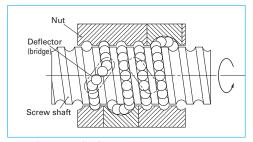


Fig. 2 Structure of deflector (bridge) recirculation system

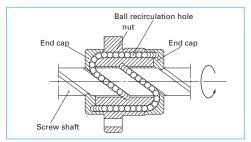


Fig. 3 Structure of end cap recirculation system

(2) Accuracy grade and axial play

Standard lead accuracy and axial play are shown on **Table 2**. Axial play varies with internal specification. Refer to the dimension tables.

Table 2 Accuracy grade and axial play

Accuracy grade	VFA model, RMA model, RMS model: Ct7 R Model: Ct10
Axial play	See dimension tables

(3) Allowable d·n value and the criterion of maximum rotational speed

The allowable $d \cdot n$ value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

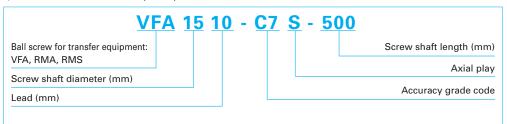
Table 3 Allowable d·n value and the criterion of maximum rotational speed

Allowable <i>d∙n</i> value	50 000 or less
Criterion of maximum rotational speed	3 000 min ⁻¹
d•n value: shaft dia. c	$[mm] \times rotational speed n [min^{-1}]$

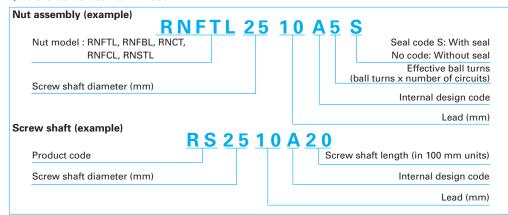
Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

3. Lineup

Ball screws for transfer equipment are available in the following models:


Table 4 Lineup of ball screws for transfer equipment

Nut	Shape	Flange shape	Recirculation system	Preload	Page
VFA		Flanged rectangular	Tube	No preload Slight axial play	B353 - B358
RMA RMS		Flanged Circular II	Deflector (bridge)	No preload Slight axial play	B359 - B372
RNFTL	rassassassas and annumentation	Flanged Circular I Projecting tube type	Tube	No preload Slight axial play	B373 - B378
RNFBL		Flanged Circular II	Tube	No preload Slight axial play	B379 - B380
RNCT		V-thread (no flange) Projecting tube type	Tube	No preload Slight axial play	B381 - B382
RNFCL		Flanged Circular II	End cap	No preload Slight axial play	B383 - B386
RNSTL	mondaya Section of the contraction	Square type	Tube	No preload Slight axial play	B387 – B388


4. Structure of reference number

Ball screws for transfer equipment have the following reference number structures:

♦ Reference number for VFA, RMA, and RMS models

○Reference number for R model

5. Combinations of shaft diameter and lead

Combinations of shaft diameter and lead are shown below.

For details on standard stock products, contact NSK.

Table 5 Combinations of shaft diameter and lead for VFA, RMA, and RMS models

Lead Screw shaft diameter	1	1.5	2	10	20
6	B359, 371				
8	B361, 371	B363, 371	B365, 371		
10			B367, 371		
12			B369, 371	B353	
15				B355	B357

Table 6 Combinations of shaft diameter and lead for R model

Screw shaft						Lead (m	nm)								
diameter (mm)	3	4	5	6	8	10	12	16	20	25	32	40	50	64	80
10	○B373 △B381			○B373●B379											
12					○B373 ●B379		○B377@B383								
14		○B373 ●B379 △B381 □B387	○B373 ●B379 △B381 ■B387												
15									©B383						
16						○B373		○B377 ○B383			◎B385				
18					○B373 ●B379 △B381 □B387										
20			○B373 ●B379 △B381 □B387			○B373●B379 □B387			○B377 ○B383			©B385			
25			○B373 ●B379 △B381 □B387			○B359 ●B365 △B367 □B373				○B377 ○B383			©B385		
28				○B375 ●B379 △B381 □B387											
32						○B375 ●B379 △B381 □B387					○B377 ○B383			○B385	
36						○B375 ●B379 △B381 □B387									
40						○B375△B381 ●B379						○B377 ○B383			◎B385
45			·				○B375 △B381 ☐B387								
50						○B375 △B201		○B375					©B383		

O: RNFTL ●: RNFBL △: RNCT Ø: RNFCL □: RNSTL

6. Precautions for design

Please reference the general precautions on Pages B83 and B103.

(1) Nut assembly

The nut assemblies and screw shafts of R models are separate when delivered. The nut assembly comes on an arbor and must be moved onto the screw shaft during mounting.

(a) Consideration to end configuration of screw

The balls may fall out from the nut when moving the assembly from the arbor to the screw shaft if dimensions or shapes are not appropriate.

If the end of the ball groove can touch the end of the arbor, connect both ends and move the assembled nut from the arbor to the screw shaft (Fig. 4). If not, wrap tape around the outside of the ball screw shaft so that tape's thickness matches the outside diameter of the arbor (Fig. 5).

If there are gaps or nicks along the groove, fill these before moving the nut.

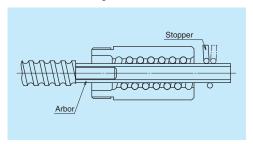


Fig. 4 Inserting nut into screwshaft

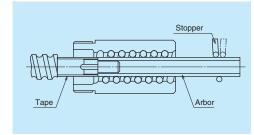


Fig. 5 Arbor and shaft end configuration

(b) Installation of arbor

Confirm the correct nut orientation for installation. Remove the stop ring on the side from where the assembled nut is to be removed. Align the centers of the screw shaft and the arbor while pressing the screw shaft end firmly against the arbor.

(c) Moving the nut

Slide the nut until it lightly touches the ball groove shoulder. With the arbor pressed against the shaft, turn the nut counter to the thread so that it moves onto the screw. Do not separate the arbor from the screw shaft shaft until the ball goove end is completey visible.

(2) Shaft end processing

RMS and R models have blank shaft ends that must be machined. See page B27 for details on shaft end configurations for NSK support units.

(a) Cutting screw shafts

Carry out the same process as that used for machining blank shaft ends for precision ball scer-

(b) Shaft end annealing

Heat the shaft end with an acetylene torch or similar and gradually cool it at room temperature. Note that non-machined areas will lose hardness if heated, which could impact the life of the ball screw. Use water cooling or other means to prevent heat conduction in these areas.

(c) Turning by lathe

Cut to length, process steps, perform triangular threading, and provide the center hole. Refer to JIS B 1192 which specifies shape accuracies.

(d) Processing by grinding

The precautions for centering, securing the nut, and providing a steady rest, etc. are the same as those for cutting. Grind the sections where bearings or Spann rings will be installed.

(e) Milling processing

Process keyways and tooth seats for lock wash-

(f) Deburring, washing, and rust prevention

Wash with clean white kerosene after processing is finished. Apply lubricant if the screw will be used immediately; otherwise apply a rust preventive agent. Contact NSK if the nut is accidentally removed from the shaft.

φ3

(oil hole)

40

1 0.014 A ⇒

50

L_t (Hardened area)

5.5

4.5

Lo

11 * * G−

Min. 180

(range of 12h8 dia.)

25

C0.5 % 8421

√ 0.014 *E*

√ 0.025 A

10

/M10×1

45

€ 1 0.008 E

30

Ė

C0.5 C0.5

15

G

 $(\phi 14.5)$

5.5

30

 ϕ 4 drill 9 deep

Screw shaft ø12

Lead 10

Unit: mm

ı	Ball screw sp	pecifications
Shaft dia.xLead	/ Direction of turn	12 × 10 / Right
Ball reci	rculation	Tube
Ball dia. / B	all circle dia.	2.381 / 12.5
Screw sha	aft root dia.	10.0
Effective ball turns		2.5 × 1
Effective Accuracy grade Basic load ratings (N)	/ Axial play code	Ct7 / S
ratings	Dynamic C _a	4 430
	Static C _{0a}	6 430
Axia	l play	0.010 or less
•	ction torque cm)	1.5 or less
Spac	er ball	None
Factory-pag	cked grease	NSK grease LR3
Nut internal	space (cm³)	1.4
Reference standard	grease replenishment	0.7

54	30° 4-\phi4.5 drill thru
32	32 View <i>X-X</i>

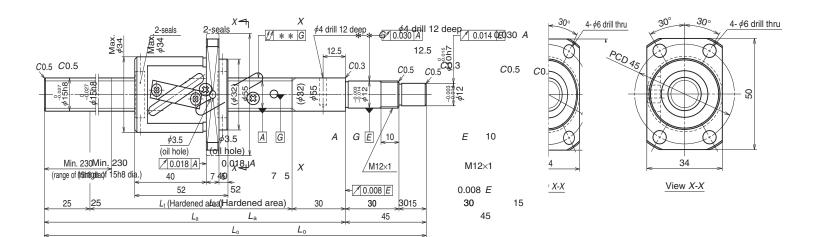
Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)	
WBK10-01A (square)	WBK12SF-01 (square)	
WBK10-11 (round)		

	Str	oke	Carayy aboft langth			
Reference No.	Namainal	Maximum	Screw shaft length		igtri	
	Nominal	(L_t -nut length)	$L_{\rm t}$	La	L。	
VFA1210C7S-410	250	260	310	365	410	
VFA1210C7S-610	450	460	510	565	610	

Notes: 1. We recommend using NSK support units. See Page B389 for details. WBK12SF-01 units (on the simple support side) support the ball screw directly on the shaft outside diameter.

- 2. We recommend using NSK Grease LR3 filled to about 50% of the ball nut's internal space. See Page D16 for details.
- 3. Permissible rotational speed is determined by the $d \cdot n$ value and critical speed. See Pages B47 and B349 for details.


						Unit: mm	
Lood cocuracy		Shaft		Permissible rotational speed N (min ⁻¹)			
L	Lead accuracy		Lead accuracy		run-out** Mass - - <u>f</u> (kg) -	Configuration	
Т	$e_{\scriptscriptstyle m p}$	υ ₃₀₀	Fixed - Simple	Fixed - Free			
0	0.085	0.052	0.100	0.56	3 000	3 000	
0	0.155	0.052	0.160	0.73	3 000	1 300	

B353 B354

Screw shaft ø15

Lead 10

Unit: mm

	D - II	!6!
	Ball screw s	pecifications
Shaft dia.xLead	/ Direction of turn	15 × 10 / Right
Ball reci	rculation	Tube
Ball dia. / B	all circle dia.	3.175 / 15.5
Screw sha	aft root dia.	12.2
Effective	ball turns	2.5 × 1
Accuracy grade / Axial play code		Ct7/S
Basic load ratings (N)	Dynamic C _a	8 140
	Static C _{0a}	12 800
Axia	l play	0.010 or less
	ction torque cm)	2.5 or less
Spac	er ball	None
Factory-pag	cked grease	NSK grease LR3
Nut internal	space (cm³)	2.3
Reference standard	grease replenishment	1.2

Recommended support unit

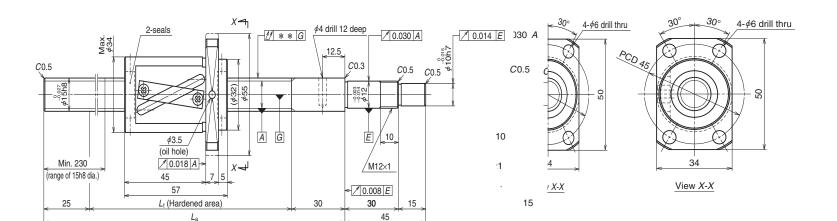
For drive side (Fixed)	For non-drive side (Simple)	
WBK12-01A (square)	WBK15SF-01 (square)	ľ
WBK12-11 (round)		

Reference No.	Str	oke	Screw shaft length		
	Nominal	Maximum			
		(L _t -nut length)	$L_{\rm t}$	La	L。
VFA1510C7S-500	300	348	400	455	500
VFA1510C7S-700	500	548	600	655	700
VFA1510C7S-1000	800	848	900	955	1 000

Notes: 1. We recommend using NSK support units. See Page B389 for details. WBK12SF-01 units (on the simple support side) support the ball screw directly on the shaft outside diameter.

- 2. We recommend using NSK Grease LR3 filled to about 50% of the ball nut's internal space. See Page D16 for details.
- 3. Permissible rotational speed is determined by the $d \cdot n$ value and critical speed. See Pages B47 and B349 for details.

Lead accuracy		Shaft		Permissible rotational speed N (min ⁻¹)		
		run-out**	Mass	Configuration		
T	$e_{\scriptscriptstyle m p}$	υ ₃₀₀		(kg)	Fixed - Simple	Fixed - Free
0	0.120	0.052	0.075	0.89	3 000	2 600
0	0.195	0.052	0.110	1.1	3 000	1 150
0	0.310	0.052	0.180	1.5	2 340	510


B355 B356

Unit: mm

Screw shaft ø15

Lead 20

Unit: mm

I	Ball screw sp	oecifications
Shaft dia.xLead	/ Direction of turn	15 × 20 / Right
Ball reci	rculation	Tube
Ball dia. / B	all circle dia.	3.175 / 15.5
Screw sha	aft root dia.	12.2
Effective	ball turns	1.5 × 1
Accuracy grade	/ Axial play code	Ct7 / S
Basic load	Dynamic $C_{\scriptscriptstyle a}$	5 080
ratings (N)	Static C _{0a}	7 460
Axia	l play	0.010 or less
Dynamic friction torque (N·cm)		2.5 or less
Spac	er ball	None
Factory-pag	cked grease	NSK grease LR3
Nut internal space (cm³)		2.3
Reference standard	nrease renlenishment	1.4

Recommended support unit

For drive side (Fixed)	For non-drive side (Simple)	
WBK12-01A (square)	WBK15SF-01 (square)	
WBK12-11 (round)		

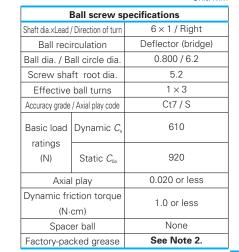
Reference No.	Str	oke	Screw shaft length		
	Namainal	Maximum			
	Nominal	(L _t -nut length)	$L_{\rm t}$	La	Lo
VFA1520C7S-500	300	343	400	455	500
VFA1520C7S-700	500	543	600	655	700
VFA1520C7S-1000	800	843	900	955	1 000

Notes: 1. We recommend using NSK support units. See Page B389 for details. WBK12SF-01 units (on the simple support side) support the ball screw directly on the shaft outside diameter.

- 2. We recommend using NSK Grease LR3 filled to about 50% of the ball nut's internal space. See Page D16 for details.
- 3. Permissible rotational speed is determined by the $d \cdot n$ value and critical speed. See Pages B47 and B349 for details.

Lead accuracy		Shaft		Permissible rotational speed N (min ⁻¹)		
		run-out**	Mass (kg)	Configuration		
Т	$e_{\scriptscriptstyle m p}$	$v_{\scriptscriptstyle 300}$		(kg)	Fixed - Simple	Fixed - Free
0	0.120	0.052	0.075	0.94	3 000	2 630
0	0.195	0.052	0.110	1.2	3 000	1 160
0	0.310	0.052	0.180	1.6	2 350	510

B357 B358


Unit: mm

C0.3

Screw shaft ø6

Lead 1

Unit: mm

φ24 + + + + + + + + + + + + + + + + + + +	PCD 18
.₩	2 42 4 distill the
	2-\(\phi\)3.4 drill thru
	< 10 →

View X-X

Recommended support unit

For drive side (Fixed)	
WBK04R-11 (round)	

Reference No.	Str	oke	Carayy ab aft la a ath		
	Nominal	Maximum	Screw shaft length		
	INOITIIIIai	(L _t -Nut length)	$L_{\rm t}$	L。	
RMA0601C7S-160	100	124	139	160	
RMA0601C7S-260	200	224	239	260	

15

L_t (Hardened area)

 $X \longrightarrow$

G

11 ** G

 ϕ 4f8

Max. 7

15

R0.15

Or less

7.5

Incompletely hardened area

M4×0.5

*ф*3h9

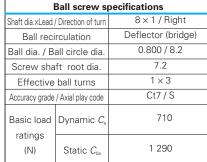
6

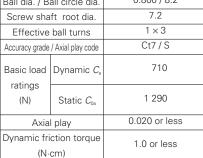
C0.3, C0.3

Notes: 1. We recommend using NSK support kits. See Page B401 for details.

Incompletely hardened area

Max. 7


Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details.


3. The permissible rotational speed is determined by the d·n value and critical speed. See Pages B47 and B349 for details.

Target compensation <i>T</i>	Lead accuracy Deviation e_p	Variation $v_{\scriptscriptstyle 300}$	Shaft run-out** <i>Lf</i>	Mass (kg)	Permissible rotational speed N (min ⁻¹)
0	0.052	0.052	0.060	0.045	3 000
0	0.085	0.052	0.090	0.065	3 000

 ϕ 27

PCD 21 $2-\phi 3.4$ drill thru

View X-X

18

Recommended support unit

Spacer ball

Factory-packed grease

None

See Note 2.

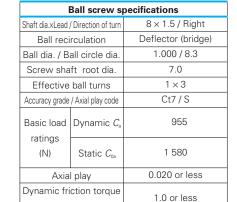
For drive side (Fixed)				
WBK06R-11 (round)				

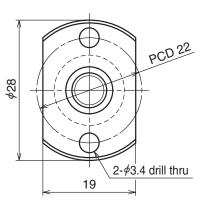
Unit:	mm	

Lead accuracy			Shaft run-out**	Mass (kg)	Permissible rotational speed
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\scriptscriptstyle 300}$	П	(Ng)	N (min ⁻¹)
0	0.052	0.052	0.060	0.085	3 000
0	0.085	0.052	0.090	0.12	3 000

CO.3 Co.3 Co.4 Co.5 C	** G C0.3 M6×0.75 C0.3 C0.3 9 9 7.5 Incompletely hardened area Max. 7
L _t (Hardened area)	26 8
L ₀ ⁺² 0	>

Reference No.	Stro	oke	Screw shaft length	
	Nominal	Maximum		
	NOMINAL	(L_t -Nut length)	$L_{\rm t}$	L _o
RMA0801C7S-180	100	130	146	180
RMA0801C7S-280	200	230	246	280


Notes: 1. We recommend using NSK support kits. See Page B401 for details.


2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details.

3. The permissible rotational speed is determined by the d·n value and critical speed. See Pages B47 and B349 for details.

Screw shaft length

View	X-X	

Recommended support unit

None

See Note 2.

(N·cm)

Spacer ball

Factory-packed grease

For drive side (Fixed)	
WBK06R-11 (round)	

Hr	·it·	mm	

Lead accuracy			Shaft run-out**	Mass (kg)	Permissible rotational speed
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $v_{\scriptscriptstyle 300}$		(Ng)	N (min ⁻¹)
0	0.052	0.052	0.060	0.093	3 000
0	0.085	0.052	0.090	0.13	3 000

C0.3	Incompletely hardened area Max. 7		CO.3 CO.3 Proprietely hardened area Max. 7	M6×0.75 C0.3 C0.3
	$L_{\rm t}$ (Hardened area)		26	8
<		L ₀ ⁺² 0		

 $X \longrightarrow$

Stroke

Notes: 1. We recommend using NSK support kits. See Page B401 for details.

Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details.

3. The permissible rotational speed is determined by the d·n value and critical speed. See Pages B47 and B349 for details.

φ 6.10 **φ16**

Incompletely hardened area Max. 7

C0.3

M6×0.75

φ4.5h9

8

_7.5

C0.3 C0.3

11 ** G

9

 ϕ_{10}

G

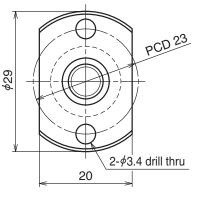
 $X \rightarrow I$

26

Lt (Hardened area)

C0.3

ø6f8


Incompletely hardened area Max. 7

26

Screw shaft ø8

Lead 2

Unit: mm

φ29 ×	PCD 23
<u></u>	2-\$\phi_3.4 \text{ drill thru}

		Unit: mm			
l	Ball screw specifications				
Shaft dia.xLead	Direction of turn	8 × 2 / Right			
Ball recirculation		Deflector (bridge)			
Ball dia. / B	all circle dia.	1.200 / 8.3			
Screw sha	ft root dia.	6.9			
Effective	ball turns	1×3			
Accuracy grade	/ Axial play code	Ct7/S			
Basic load	Dynamic C _a	1 260			
ratings (N)	Static C _{0a}	1 940			
Axia	l play	0.020 or less			
Dynamic friction torque (N·cm)		1.0 or less			
Spac	er ball	None			
Factory-pag	cked grease	See Note 2.			

Recommended support unit

For drive side (Fixed)
WBK06R-11 (round)

Unit: mm

Lead accuracy			Shaft run-out**	Mass (kg)	Permissible rotational speed
Target compensation T	Deviation <i>e</i> _p	Variation $v_{\scriptscriptstyle 300}$		(Ng)	N (min ⁻¹)
0	0.052	0.052	0.060	0.10	3 000
0	0.085	0.052	0.090	0.14	3 000

Reference No.	Stroke		Screw shaft length	
	Nominal Maximum (<i>L</i> ₋ -Nut length)			
		(L_{t} -Nut length)	L_{t}	L_{\circ}
RMA0802C7S-180	100	120	146	180
RMA0802C7S-280	200	220	246	280

Notes: 1. We recommend using NSK support kits. See Page B401 for details.

2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details.

3. The permissible rotational speed is determined by the d·n value and critical speed. See Pages B47 and B349 for details.

B365

\$10.05 \$4.05 \$4.05

0

Incompletely hardened area Max. 7

C0.3

ത≬

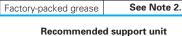
M8×1

 ϕ 6h9

10

9

C0.5 C0.5


1.0 or less

None

Shaft dia.xLead	Direction of turn	10 × 2 / Right
Ball reci	rculation	Deflector (bridge)
Ball dia. / B	all circle dia.	1.200 / 10.3
Screw sha	ft root dia.	8.9
Effective ball turns		1 × 3
Accuracy grade / Axial play code		Ct7/S
Basic load	Dynamic $C_{\scriptscriptstyle a}$	1 460
ratings (N)	Static C _{0a}	2 620
Axial play		0.020 or less

Ball screw specifications

Dynamic friction torque

(N·cm)

Spacer ball

For drive side (Fixed)
WBK08-01A (square)
WBK08-11 (round)

φ32 φ32	30°	300	PCD 27
V	22	4-\$4.5	5 drill thru

View	X-X

Reference No.	Str	oke	Screw shaft length	
	Nominal	Maximum		
		(L _t -Nut length)	L_{t}	L _o
RMA1002C7S-250	150	173	201	250
RMA1002C7S-350	250	273	301	350

 $X \rightarrow$

11 ** G

12

 $\phi_{11.5}$

Ġ

28

L₀⁺²0

L_t (Hardened area)

C0.3

 ϕ 8f8

Incompletely hardened area Max. 7

39

Notes: 1. We recommend using NSK support units. See Page B389 for details.

2. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details.

3. The permissible rotational speed is determined by the d·n value and critical speed. See Pages B47 and B349 for details.

	Lead accuracy		Shaft run-out**	Mass (kg)	Permissible rotational speed
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\scriptscriptstyle 300}$	U	(ivg)	<i>N</i> (min⁻¹)
0	0.085	0.052	0.070	0.19	3 000
0	0.085	0.052	0.100	0.25	3 000

B367 B368

Unit: mm

Incompletely hardened area Max. 7

C0.3

M10×1

φ8h9

15

10

C0.5 C0.5

11 ** G

15

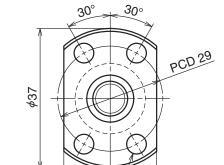
G

5

 L_0^{+2}

28

L_t (Hardened area)


C0.3

φ10f8

Incompletely hardened area Max. 7

45

View X-X

24

 $4-\phi 4.5$ drill thru

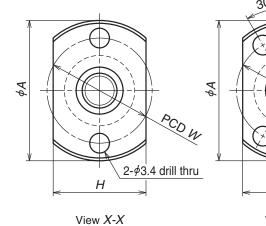
Offit: Hilli						
I	Ball screw specifications					
Shaft dia.xLead	/ Direction of turn	12 × 2 / Right				
Ball reci	rculation	Deflector (bridge)				
Ball dia. / Ball circle dia.		1.200 / 12.3				
Screw sha	ft root dia.	10.9				
Effective	ball turns	1×3				
Accuracy grade	/ Axial play code	Ct7 / S				
	Dynamic $C_{\scriptscriptstyle a}$	1 590				
ratings (N)	Static C _{0a}	3 190				
Axia	l play	0.020 or less				
Dynamic friction torque (N·cm)		1.0 or less				
Spac	er ball	None				
Factory-page	cked grease	See Note 2.				

Recommended support unit

For drive side (Fixed)	
WBK10-01A (square)	
WBK10-11 (round)	ı

	mm

Touris and the T	Lead accuracy	I	Shaft run-out** <i>Lf</i>	Mass (kg)	Permissible rotational speed N (min ⁻¹)
Target compensation T	Deviation <i>e</i> _p	Variation v_{300}			70 (111111)
0	0.060	0.052	0.070	0.26	3 000
0	0.085	0.052	0.100	0.34	3 000


	Str	oke	Carranala		
Reference No.	Nominal	Maximum (L,-Nut length) L.		art length	
RMA1202C7S-250	150	162	190	250	
RMA1202C7S-350	250	262	290	350	

Notes: 1. We recommend using NSK support units. See Page B389 for details.

Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details.

3. The permissible rotational speed is determined by the d·n value and critical speed. See Pages B47 and B349 for details.

B369 B370

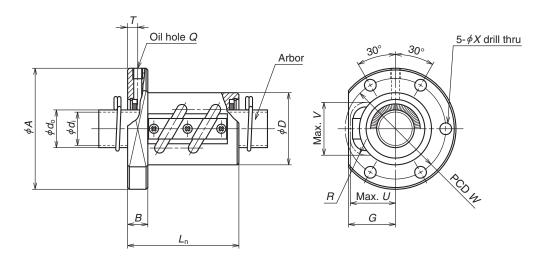
 $^{\prime}$ 4- ϕ 4.5 drill thru

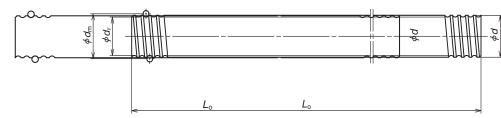
(for screw shaft of 6 and 8 dia.) (for screw shaft of 10 and 12 dia.)

Unit: mm

	N	ut dim	ensior	าร		Screw	shaft o	dimensi	ions	Le	ead accur	асу	Shaft run-out**	Mass	Permissible rotational	
						Effective thread length	Shaf	Shaft end		Target compensation	Deviation	Variation	11	(Kg)	speed	
D	Α	Н	В	Ln	W	L _t	L_1	d_2	length L_{\circ}	T	$e_{\scriptscriptstyle m p}$	υ ₃₀₀			N (min ⁻¹)	
12	24	16	3.5	15	18	250	50	4	300	0	0.085	0.052	0.09	0.075		
14	27	18		16	21									0.13		
15	28	19	4	22	22	250	50	6	300	0	0.085	0.052	0.09	0.14	3 000	
16	29	20		26	23									0.15		
18	35	22	5	28	27	290	60	8	350	0	0.085	0.052	0.10	0.25		
20	37	24	5	28	29	290	60	10	350	0	0.085	0.052	0.10	0.35		

	_ X- 1	
C0.3		C0.3
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
<u>v</u> ,		<u>5</u>
Incompletely hardened area Max. 7	$ \begin{array}{c c} B \\ X \longrightarrow \\ L_n \end{array} $	Incompletely hardened area Max. 7
L _t (Hai	rdened area)	L ₁ (Unhardened area)
<	L ₀ ⁺⁵ 0	


Defenses No	Stroke	Shaft			Ball circle	Root	Effective	Basic loa (N		Axial	
Reference No.	Max. L _t -L _n	dia. d	Lead <i>l</i>	Ball dia.	dia. $d_{\scriptscriptstyle m}$	dia.	ratings	Dynamic $C_{\scriptscriptstyle a}$	Static C _{0a}	play Max.	
RMS0601C7S-300	235	6	1	0.800	6.2	5.3	3	610	920	0.02	
RMS0801C7S-300	234		1	0.800	8.2	7.3		710	1 290		
RMS0801.5C7S-300	228	8	1.5	1.000	8.3	7.2	3	955	1 580	0.02	
RMS0802C7S-300	224		2	1.200	8.3	7.0		1 260	1 940		
RMS1002C7S-350	262	10	2	1.200	10.3	9.0	3	1 460	2 620	0.02	
RMS1202C7S-350	262	12	2	1.200	12.3	11.0	3	1 590	3 190	0.02	


Notes: 1. We recommend using NSK support units (Page B389) or support kits (Page B401).

Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use. See Page D13 for details.

3. Seals are not installed.

4. The permissible rotational speed is determined by the *d-n* value and critical speed. See Pages B47 and B349 for details.

	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.			ad ratings	Axial	Ball nut dimensions
Nut Ref. No.	d	l	D _w	dia. d _m	d_{r}	Turns × Circuits	Dynamic $C_{\scriptscriptstyle 0}$	N) Static C _{0a}	play Max.	Outside dia.
RNFTL 1003A3.5	10	3	2.381	10.65	8.1	3.5×1	4 440	6 700	0.10	20
RNFTL 1006A2.5S	10	6	2.381	10.65	8.1	2.5×1	3 280	4 730	0.10	20
RNFTL 1208A2.5S	12	8	2.778	12.65	9.6	2.5×1	4 290	6 610	0.10	25
RNFTL 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	6 310	10 800	0.10	25
RNFTL 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	6 170	9 940	0.10	30
RNFTL 1610A2.5 RNFTL 1610A2.5S	16	10	3.175	16.75	13.3	2.5×1	6 810	11 600	0.10	30
RNFTL 1808A3.5 RNFTL 1808A3.5S	18	8	4.762	18.5	13.6	3.5×1	15 500	26 200	0.15	34
RNFTL 2005A2.5 RNFTL 2005A2.5S	20	5	3.175	20.5	17.0	2.5×1	7 500	14 200	0.10	40
RNFTL 2010A2.5 RNFTL 2010A2.5S	20	10	4.762	21.25	16.2	2.5×1	12 700	21 600	0.15	40
RNFTL 2505A5 RNFTL 2505A5S	25	5	3.175	25.5	22.0	2.5×2	15 100	36 300	0.10	42
RNFTL 2510A2.5 RNFTL 2510A2.5S	- 25	10	6.35	26	19.0	2.5×1	20 500	34 900	0.20	44
RNFTL 2510A5 RNFTL 2510A5S	25	10	0.35	20	19.0	2.5×2	37 300	69 800	0.20	44

Notes: 1. The protrusion of the tube will not cause interference if the mating section of the nut body has dimensions greater than U and V.

B373

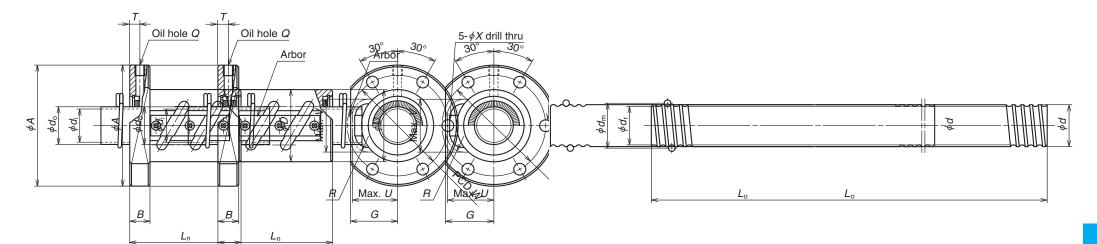
 Actual screw shaft length may become slightly longer than nominal length L₀ due to manufacturing tolerances.
 A Nut Ref. No. ending in "S" has seals. The external dimensions of these are identical to those without seals. The figure shows a seal above the center line and no seal below. Synthetic resin seals are used for shaft diameters of 14 mm or less and brush seals for shaft diameters of 16 mm or more.

																			Ullil	. 1111111
				Ва	ll nut	dimensio	ns				Nut	Ar	bor		Sc	rew s	haft	Shaft mass	Nut	Standard grease
F	lang	е	Length	Bolt	hole	Oil ho	le	Proje	ecting	tube	mass	Outside dia.	Bore	Stand	dard l	ength	Shaft Ref.	per meter	internal space	replenish- ment
Α	G	В	L	W	Χ	Q	Т	U	V	R	(kg)	$d_{\scriptscriptstyle 0}$	d		L _o		No.	(kg)	(cm³)	(cm ³)
40	15	6	34	30	4.5	M3×0.5	3.0	15	15	7	0.092	8.1	6.1	400	800	-	RS1003A··	0.50	-	_
40	15	6	36	30	4.5	M3×0.5	3.5	15	15	5	0.095	8.1	6.1	400	800	-	RS1006A··	0.56	1.1	0.6
45	19	8	46	35	4.5	M3×0.5	5.5	19	18	7	0.18	9.6	7.6	400			RS1208A··	0.74	1.8	0.9
50	19	10	43	40	4.5	M6×1	5.0	19	20	7	0.20	11.5	9.5	500			RS1404A··	1.02	2.0	1.0
50	22	10	45	40	4.5	M6×1	5.0	22	21	8	0.26	11.0	9.0	500	1 000	-	RS1405A··	1.00	2.4	1.2
53	23	10	54	41	5.5	M6×1	5.5	23	22.5	8	0.28	13.3	11.3	500	1 000	1 500	RS1610A··	1.37	2.7	1.4
63	27	12	58	49	6.6	M6×1	6.0	27	27	8	0.43	13.6	11.6	500	1 000	1 500	RS1808A··	1.60	5.2	2.6
60	28	10	46	50	4.5	M6×1	5.0	28	27	10	0.42	17.0	14.6	500	1 000	2 000	RS2005A··	2.17	3.5	1.8
67	30	12	59	53	6.6	M6×1	6.0	30	29	12	0.55	16.2	13.8	500	1 000	2 000	RS2010A··	2.18	7.1	3.6
71	28	12	66	57	6.6	M6×1	6.0	28	31	10	0.62	22.0	19.6	1 000	2 000	2 500	RS2505A··	3.47	6.5	3.3
80	34	15	62	62	9	M6×1	7.5	34	37	17	0.75	10.0	16.6	1 000	2 000	2 500	DC2E10A	2 12	13	6.5
											0.75	19.0	ט.סון	11 000	Z UUU	2 500	RS2510A··	3.13		

7.5 34 37

4. The nut assembly is separate from the screw shaft and comes delivered on an arbor.5. The last digits (**) in the Shaft Ref. No. will show the value for screw shaft length in 100 mm units.

M6×1

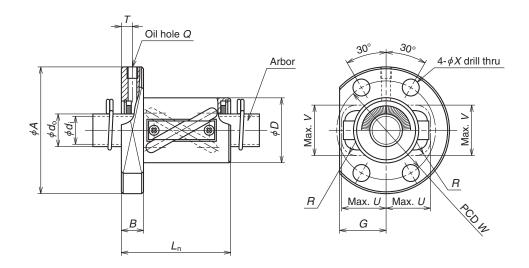

15 92 62 9

6. Standard inventory products have not undergone surface treatments.
7. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use.
8. Values for nut internal space and standard grease replenishment are for ball screws with seals. The standard quantity for replenishment is about 50% of the nut's internal space. For ball screws without seals, apply grease to the screw shaft surface or move the nut by hand while filling to ensure that grease reaches all areas inside. See Page D16 for details.

Unit: mm

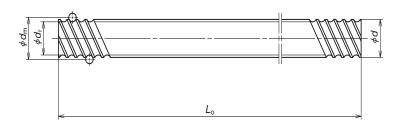
9.0

Nut Ref. No.	Shaft dia.	Lead l	Ball dia.	Ball circle dia. d _m	Root dia.	Effective ball turns Turns X Circuits	Basic Ioa (N Dynamic <i>C</i> _a	1)	Axial play Max.	Ball nut dimensions Outside dia. D
RNFTL 2806A2.5 RNFTL 2806A2.5S	28	6	3.175	28.5	25.0	2.5×1	8 760	20 200	0.10	50
RNFTL 2806A5 RNFTL 2806A5S	20		3.175	20.0	25.0	2.5×2	15 900	40 500	0.10	50
RNFTL 3210A5 RNFTL 3210A5S	32	10	6.35	33.75	27.0	2.5×2	42 000	91 800	0.20	55
RNFTL 3610A2.5 RNFTL 3610A2.5S	26	10	6.35	37	30.0	2.5×1	24 700	50 800	0.20	60
RNFTL 3610A5 RNFTL 3610A5S	36 40	10	0.55	0,	30.0	2.5×2	44 900	102 000	0.20	60
RNFTL 4010A7 RNFTL 4010A7S	40	10	6.35	41.75	35.0	3.5×2	63 100	164 000	0.20	65
RNFTL 4512A5 RNFTL 4512A5S	45	12	7.144	46.5	39.0	2.5×2	58 500	147 000	0.23	70
RNFTL 5010A7 RNFTL 5010A7S	50	10	6.35	51.75	45.0	3.5×2	70 100	205 000	0.20	80
RNFTL 5016A5 RNFTL 5016A5S	50	16	9.525	52	42.0	2.5×2	117 000	299 000	0.23	85


Notes: 1. The protrusion of the tube will not cause interference if the mating section of the nut body has dimensions greater than U and V.

 Actual screw shaft length may become slightly longer than nominal length L₀ due to manufacturing tolerances.
 A Nut Ref. No. ending in "S" has seals. The external dimensions of these are identical to those without seals. The figure shows a seal above the center line and no seal below. Synthetic resin seals are used for shaft diameters of 14 mm or less and brush seals for shaft diameters of 16 mm or more.

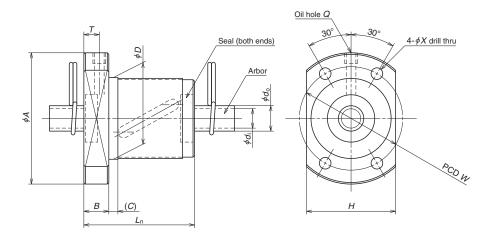
				Ва	ll nut	dimensio	ns				Nut	Ar	bor		Sc	rew sl	Shaft mass	. ivut	Standard grease	
F	lang	nge Length Bolt hole Oil hole Projecting tube		mass	Outside dia. Bore		Standard length			Shaft Ref.	per meter	space	replenish- ment							
Α	G	В	L	W	Χ	Q	Τ	U	V	R	(kg)	d ₀	d _i	L _o			No.	(kg)	(cm³)	(cm ³)
79	33	15	55	65	6.6	M6×1	7.5	33	34	10	0.85	25.0	20.6	1 000	2 000	2 500	RS2806A··	4 47	5.9	3.0
79	33	15	79	65	6.6	M6×1	7.5	33	34	10	1.07	25.0	22.0	1 000	2 000	2 500	IN32800A	4.47	8.4	4.2
97	39	18	97	75	11	M6×1	9.0	39	42	17	1.55	27.0	24.6	1 000	2 000	3 000	RS3210A··	5.53	29	15
102	42	18	68	80	11	M6×1	9.0	42	46	17	1.47	20.0	27.6	1 000	2 000	2 000	RS3610A··	6.91	21	11
102	42	18	98	80	11	M6×1	9.0	42	46	17	1.80	30.0	27.0	1 000	2 000	3 000	N53010A	6.91	33	17
114	44	20	120	90	14	M6×1	10.0	44	50	20	2.49	35.0	31.8	2 000	3 000	4 000	RS4010A··	8.87	42	21
130	47	22	116	100	18	M6×1	11.0	47	55	20	3.07	39.0	35.8	2 000	3 000	4 000	RS4512A··	11.16	49	25
140	52	22	122	110	18	M6×1	11.0	52	59	20	4.06	45.0	41.8	2 000	3 000	4 000	RS5010A··	14.15	53	27
163	57	28	146	125	22	M6×1	14.0	57	63	25	6.42	42.0	38.8	2 000	3 000	4 000	RS5016A··	13.48	94	47


The nut assembly is separate from the screw shaft and comes delivered on an arbor.
 The last digits (**) in the Shaft Ref. No. will show the value for screw shaft length in 100 mm units.
 Standard inventory products have not undergone surface treatments.
 Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use.

8. Values for nut internal space and standard grease replenishment are for ball screws with seals. The standard quantity for replenishment is about 50% of the nut's internal space. For ball screws without seals, apply grease to the screw shaft surface or move the nut by hand while filling to ensure that grease reaches all areas inside. See Page D16 for details.

Nut Ref. No.	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns	(nd ratings N)	Axial play	Ball nut dimensions Outside dia.
	d	l	$D_{\rm w}$	dia. <i>d</i> _m	d _r	× Circuits	Dynamic C _a	Static C_{0a}	Max.	D
RNFTL 1212A3	12	12	2.381	12.65	10.1	1.5×2	3 900	6 250	0.10	24
RNFTL 1616A3 RNFTL 1616A3S	16	16	2.778	16.65	13.6	1.5 × 2	5 440	9 550	0.10	30
RNFTL 2020A3 RNFTL 2020A3S	20	20	3.175	20.75	17.3	1.5 × 2	8 080	15 700	0.10	35
RNFTL 2525A3 RNFTL 2525A3S	25	25	3.969	26	22.0	1.5 × 2	12 100	24 500	0.12	45
RNFTL 3232A3 RNFTL 3232A3S	32	32	4.762	33.25	28.0	1.5 × 2	17 600	37 700	0.15	55
RNFTL 4040A3 RNFTL 4040A3S	40	40	6.35	41.75	35.0	1.5 × 2	28 100	62 900	0.20	70

Notes: 1. The protrusion of the tube will not cause interference if the mating section of the nut body has dimensions gr	eater than
U and V .	


B378

																					т
			Ва	ll n	ut dir	mensio	ns				Nut	Arl	bor		Scr	ew s	haft	Shaft mass	Nut	Standard grease	
F	ang	е	Length	Во	t hole	Oil h	ole	Proje	cting	tube	mass	Outside dia.	Bore	Stand	dard le	ength	Shaft	meter	space	ment	
Α	G	В	L	W	X	Q	Τ	U	V	R	(kg)	$d_{\scriptscriptstyle 0}$	di		L_{\circ}		Ref. No.	(kg)	(cm³)	(cm³)	
44	17	8	44	34	4.5	M3 × 0.5	4.0	17	16	5	0.16	10.1	8.1	400	800	-	RS1212A··	0.74	1.7	0.9	
55	22	10	50	43	6.6	M6 × 1	5.0	22	22	7	0.29	13.6	11.6	500	1 000	1 500	RS1616A··	1.37	2.8	1.4	
68	25	12	59	52	9	M6 × 1	6.0	25	27	8	0.49	17.3	14.9	500	1 000	2 000	RS2020A··	2.19	4.9	2.5	
80	31	12	69	63	9	M6 × 1	6.0	31	32	10	0.80	22.0	19.6	1 000	2 000	2 500	RS2525A··	3.43	9.1	4.6	•
100	37	15	84	80	11	M6 × 1	7.5	37	40	12	1.46	28.0	25.6	1 000	2 000	3 000	RS3232A··	5.71	19	9.5	
120	46	18	103	95	14	M6 × 1	9.0	46	49	15	2.69	35.0	31.8	2 000	3 000	4 000	RS4040A··	8.82	39	20	•

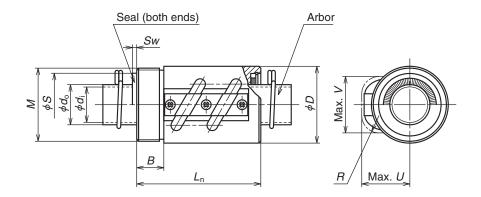
4. The nut assembly is separate from the screw shaft and comes delivered on an arbor.
5. The last digits (**) in the Shaft Ref. No. will show the value for screw shaft length in 100 mm units.
6. Standard inventory products have not undergone surface treatments.
7. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use.
8. Values for nut internal space and standard grease replenishment are for ball screws with seals. The standard quantity for replenishment is about 50% of the nut's internal space. For ball screws without seals, apply grease to the screw shaft surface or move the nut by hand while filling to ensure that grease reaches all areas inside. See Page D16 for details.

Actual screw shaft length may become slightly longer than nominal length L₀ due to manufacturing tolerances.
 A Nut Ref. No. ending in 'S' has seals. The external dimensions of these are identical to those without seals. The figure shows a seal above the center line and no seal below. Synthetic resin seals are used for shaft diameters of 14 mm or less and brush seals for shaft diameters of 16 mm or more.

Nut Ref. No.	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns		ad ratings N)	Axial	Bal rut dimensions Outside dia.
Nut Ret. No.	d	l	$D_{\rm w}$	dia. d _m	d _r	×	Dynamic C _a	Static C _{oa}	play Max.	D
RNFBL 1006A2.5S	10	6	2.381	10.65	8.1	2.5×1	3 280	4 730	0.10	26
RNFBL 1208A2.5S	12	8	2.778	12.65	9.6	2.5×1	4 290	6 610	0.10	29
RNFBL 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	6 310	10 800	0.10	31
RNFBL 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	6 170	9 940	0.10	32
RNFBL 1808A3.5S	18	8	4.762	18.5	13.6	3.5×1	15 500	26 200	0.15	50
RNFBL 2005A2.5S	20	5	3.175	20.5	17.0	2.5×1	7 500	14 200	0.10	40
RNFBL 2010A2.5S	20	10	4.762	21.25	16.2	2.5×1	12 700	21 600	0.15	52
RNFBL 2505A2.5S	25	5	3.175	25.5	22.0	2.5×1	8 340	18 100	0.10	43
RNFBL 2505A5S	25	5	3.175	25.5	22.0	2.5×2	15 100	36 300	0.10	43
RNFBL 2510A2.5S	25	10	6.35	26	19.0	2.5×1	20 500	34 900	0.20	60
RNFBL 2510A5S	25	10	0.33	20	19.0	2.5×2	37 300	69 800	0.20	60
RNFBL 2806A2.5S	28	6	3.175	28.5	25.0	2.5×1	8 760	20 200	0.10	50
RNFBL 2806A5S	20	O	3.175	20.0	25.0	2.5×2	15 900	40 500	0.10	50
RNFBL 3210A2.5S	32	10	6.35	33.75	27.0	2.5×1	23 100	45 900	0.20	67
RNFBL 3210A5S	32	10	0.35	33.75	27.0	2.5×2	42 000	91 800	0.20	07
RNFBL 3610A2.5S	36	10	6.35	37	30.0	2.5×1	24 700	50 800	0.20	70
RNFBL 3610A5S	30	10	0.35	37	30.0	2.5×2	44 900	102 000	0.20	_ ′0 _
RNFBL 4010A5S	40	10	6.35	41.75	35.0	2.5×2	47 200	116 000	0.20	76

Notes: 1. Actual screw shaft length may become slightly longer than nominal length L_0 due to manufacturing tolerances.

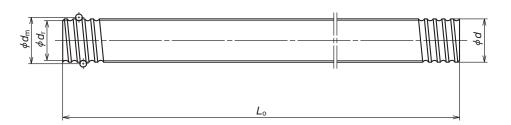
- 2. The nut assembly is separate from the screw shaft and comes delivered on an arbor.
- 3. The last digits (**) in the Shaft Ref. No. will show the value for screw shaft length in 100 mm units.


Unit: mm

						nsions			Nut	Ark		0.		rew sh	aft	Shaft mass	Nut	Standard
	lange)	Len Overal length	gtn	Bolt	hole	Oil hol	e	mass	Outside dia.	Bore	Star	ndard le	engtn	Shaft Ref.	per	internal space	iehieilizii-
Α	Н	В	L	(C)	W	X	Q	Т	(kg)	$d_{\scriptscriptstyle 0}$	d _i		Lo		No.	meter (kg)	(cm ³)	ment (cm³)
42	29	8	36	3	34	4.5	M3×0.5	5.0	0.16	8.1	6.1	400	800	_	RS1006A··	0.56	1.1	0.6
45	32	8	44	3	37	4.5	M3×0.5	5.5	0.21	9.6	7.6	400	800	_	RS1208A··	0.81	1.6	0.8
50	37	10	40	4	40	4.5	M6×1	5.0	0.25	11.5	9.5	500	1 000	ı	RS1404A··	1.02	2.4	1.2
50	38	10	40	4	40	4.5	M6×1	5.0	0.26	11.0	9.0	500	1 000	-	RS1405A··	1.00	1.9	1.0
80	60	12	61	4	65	6.6	M6×1	6.0	1.00	13.6	11.6	500	1 000	1 500	RS1808A··	1.60	5.8	2.9
60	46	10	40	4	50	4.5	M6×1	5.0	0.37	17.0	14.6	500	1 000	2 000	RS2005A··	2.17	2.8	1.4
82	64	12	61	5	67	6.6	M6×1	6.0	1.05	16.2	13.8	500	1 000	2 000	RS2010A··	2.18	7.6	3.8
67	50	10	40	4	55	5.5	M6×1	5.0	0.40	22.0	19.6	1 000	2 000	2 500	RS2505A··	3.47	3.5	
			55	· ·		0.0	1110/11	0.0	0.50			. 000	2 000	2 000		0,	4.7	2.4
96	72	15	66	5	78	9.0	M6×1	7.5	1.52	19.0	16.6	1 000	2 000	2 500	RS2510A··	3.13	14	7.0
	, _		96	Ů	, 0	0.0	1110/11	7.0	1.99	10.0		. 000	2 000	2 000	110201071	00	19	9.5
80	60	12	47	5	65	6.6	M6×1	6.0	0.70	25.0	22.6	1 000	2 000	2 500	RS2806A··	4.47	4.5	_
			65	Ů		0.0	1110/11	0.0	0.87	20.0		. 000	2 000	2 000			7.6	
103	78	15	67	5	85	9.0	M6×1	7.5	1.72	27.0	24.6	1 000	2 000	3 000	RS3210A··	5.53	20	10
	, 0		97	Ŭ		0.0	1110/11	7.0	2.25	27.0	20	. 000	2 000	0 000		0.00	28	14
110	82	17	69	5	90	11.0	M6×1	8.5	1.97	30.0	27.6	1 000	2 000	3 000	RS3610A··	6.91	21	11
			99	Ť					2.53								29	15
116	88	17	99	5	96	11.0	M6×1	8.5	2.86	35.0	31.8	2 000	3 000	4 000	RS4010A··	8.87	36	18

- 4. Products in standard inventory have not had surface treatments.
- 5. Synthetic resin seals are used for shaft diameters of 14 mm or less and brush seals for shaft diameters of 16 mm or more.
- 6. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use.
- 7. The standard quantity for grease replenishment is about 50% of the nut's internal space. See Page D16 for details.

B379 B380



Nut Ref. No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.		Effective ball turns Turns ×		d ratings N) Static	Axial play	Ball nut dimensions Outside dia.
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	C _a	C_{oa}	Max.	D
RNCT 1003A3.5	10	3	2.381	10.65	8.1	3.5×1	4 440	6 700	0.10	20
RNCT 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	6 310	10 800	0.10	25
RNCT 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	6 170	9 940	0.10	30
RNCT 1808A3.5 RNCT 1808A3.5S	18	8	4.762	18.5	13.6	3.5 × 1	15 500	26 200	0.15	34
RNCT 2005A2.5 RNCT 2005A2.5S	20	5	3.175	20.5	17.0	2.5 × 1	7 500	14 200	0.10	40
RNCT 2505A5 RNCT 2505A5S	25	5	3.175	25.5	22.0	2.5 × 2	15 100	36 300	0.10	42
RNCT 2510A5 RNCT 2510A5S	25	10	6.35	26	19.0	2.5 × 2	37 300	69 800	0.20	44
RNCT 2806A5 RNCT 2806A5S	28	6	3.175	28.5	25.0	2.5 × 2	15 900	40 500	0.10	50
RNCT 3210A5 RNCT 3210A5S	32	10	6.35	33.75	27.0	2.5 × 2	42 000	91 800	0.20	55
RNCT 3610A5 RNCT 3610A5S	36	10	6.35	37	30.0	2.5 × 2	44 900	102 000	0.20	60
RNCT 4010A7 RNCT 4010A7S	40	10	6.35	41.75	35.0	3.5 × 2	63 100	164 000	0.20	65
RNCT 4512A5 RNCT 4512A5S	45	12	7.144	46.5	39.0	2.5 × 2	58 500	147 000	0.23	70
RNCT 5010A7 RNCT 5010A7S	50	10	6.35	51.75	45.0	3.5 × 2	70 100	205 000	0.20	80
RNCT 5016A5 RNCT 5016A5S	50	16	9.525	52	42.0	2.5 × 2	117 000	299 000	0.23	85

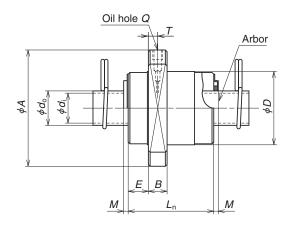
Notes: 1. The protrusion of the tube will not cause interference if the mating section of the nut body has dimensions greater than U and V.

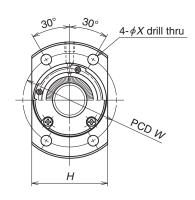
2. Actual screw shaft length may become slightly longer than nominal length L_0 due to manufacturing tolerances.

3. A Nut Ref. No. ending in "S" has seals. The external dimensions of these are identical to those without seals. The figure shows a seal above the center line and no seal below. Synthetic resin seals are used for shaft diameters of 14 mm or less and brush seals for shaft diameters of 16 mm or more.

Unit: mm

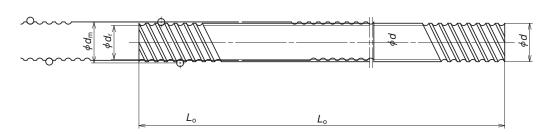
Ва	all nu	t dime	nsion	s		Nut	Seal dim	ensions	Ark	oor		Sc	rew s	haft	Shaft mass	Nut	Standard grease
V-thread	l	Length	Proje	ecting	tube	mass	Diameter	Thickness	Outside dia.	Bore	Stand	dard le	ength	Shaft Ref.	per	internal space	replenish-
М	В	Ln	U	V	R	(kg)	S	Sw	$d_{\scriptscriptstyle 0}$	d _i		L _o		No.	meter (kg)	(cm³)	ment (cm³)
M18 × 1	10	38	15	15	7	0.049	-	-	8.1	6.1	400	800	-	RS1003A··	0.50	-	-
M24 × 1	10	43	19	20	7	0.083	-	-	11.5	9.5		1 000		RS1404A··	1.02	2.7	1.4
M26 × 1.5	10	45	22	21	8	0.15	-	-	11.0	9.0	500	1 000	-	RS1405A··	1.00	3.1	1.6
M32 × 1.5	12	58	27	27	8	0.21	28.5	2.5	13.6	11.6	500	1 000	1 500	RS1808A··	1.60	6.6	3.3
M36 × 1.5	12	48	28	27	10	0.28	29.5	2.5	17.0	14.6	500	1 000	2 000	RS2005A··	2.17	4.8	2.4
M40 × 1.5	15	69	28	31	10	0.38	34.5	2.5	22.0	19.6	1 000	2 000	2 500	RS2505A··	3.47	8.4	4.2
M42 × 1.5	15	92	34	37	17	0.49	38.5	2.5	19.0	16.6	1 000	2 000	2 500	RS2510A··	3.13	21	1
M45 × 1.5	15	79	33	34	10	0.68	37.5	2.5	25.0	22.6	1 000	2 000	2 500	RS2806A··	4.47	9.7	4.9
M50 × 1.5	18	97	39	42	17	0.79	45.5	2.5	27.0	24.6	1 000	2 000	3 000	RS3210A··	5.53	32	16
M55 × 2	18	98	42	46	17	0.97	50.5	3.0	30.0	27.6	1 000	2 000	3 000	RS3610A··	6.91	32	16
M60 × 2	25	125	44	50	20	1.37	54.5	3.0	35.0	31.8	2 000	3 000	4 000	RS4010A··	8.87	51	26
M65 × 2	30	124	47	55	20	1.42	60.5	3.0	39.0	35.8	2 000	3 000	4 000	RS4512A··	11.16	60	30
M75 × 2	40	140	52	59	20	2.41	64.5	3.0	45.0	41.8	2 000	3 000	4 000	RS5010A··	14.15	76	38
M80 × 2	40	158	57	63	25	3.14	68.5	3.0	42.0	38.8	2 000	3 000	4 000	RS5016A··	13.48	114	57


4. The nut assembly is separate from the screw shaft and comes delivered on an arbor.
5. The last digits (**) in the Shaft Ref. No. will show the value for screw shaft length in 100 mm units.
6. Standard inventory products have not undergone surface treatments.


7. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use.

8. Values for nut internal space and standard grease replenishment are for ball screws with seals. The standard quantity for replenishment is about 50% of the nut's internal space. For ball screws without seals, apply grease to the screw shaft surface or move the nut by hand while filling to ensure that grease reaches all areas inside. See Page D16 for details.

B381 B382



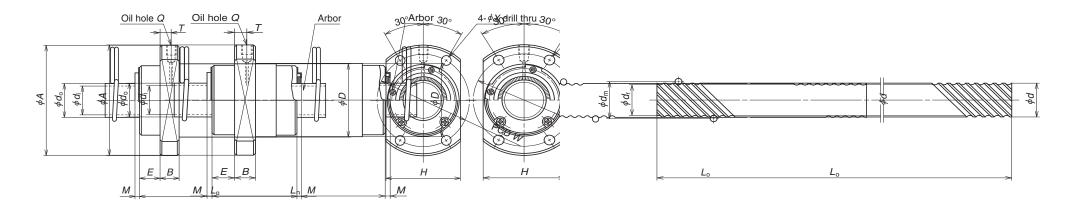
						Effective ball	Basic Ina	d ratings		Ball nut dimensions
	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Turns		V)	Axial	
Nut Ref. No.		,	_	dia.		X	Dynamic	Static		Outside dia.
	d	l	$D_{\scriptscriptstyle m w}$	d _m	d_{r}	Circuits	, C _a	$C_{\scriptscriptstyle \mathrm{OB}}$	Max.	D
RNFCL 1212A3	12	12	2.381	12.65	10.1	1.7 × 2	4 350	6 580	0.10	26
RNFCL 1212A6	12	12	2.501	12.00	10.1	1.7 × 4	7 890	13 200	0.10	20
RNFCL 1520A3	15	20	3.175	15.5	12.2	1.7 × 2	7 510	12 300	0 10	33
RNFCL 1520A3S	15	20	3.175	15.5	12.2	1.7 X Z	7 510	12 300	0.10	33
RNFCL 1616A3						1.7 × 2	6 060	10 300		
RNFCL 1616A3S	16	16	2.778	16.65	13.5	1.7 \ \ \ \ \ \	0 000	10 300	0.10	32
RNFCL 1616A6	10	10	2.770	10.00	15.5	1.7 × 4	11 000	20 500		52
RNFCL 1616A6S						1.7 × 4	11 000	20 500		
RNFCL 2020A3						1.7 × 2	9 000	16 700		
RNFCL 2020A3S	20	20	3.175	20.75	17.3	1.7 \ \ \ \ \ \	3 000	10 700	0.10	39
RNFCL 2020A6	20	20	3.173	20.75	17.5	1.7 × 4	16 300	33 400		
RNFCL 2020A6S						1.7 🗡	10 000	00 400		
RNFCL 2525A3						1.7 × 2	13 400	26 100		
RNFCL 2525A3S	25	25	3.969	26	22.0	1.7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10 400	20 100	0.12	47
RNFCL 2525A6	20	20	0.000	20	22.0	1.7 × 4	24 400	52 200	-	7/
RNFCL 2525A6S						1.7 🗡	24 400	32 200		
RNFCL 3232A3						1.7 × 2	19 600	39 800		
RNFCL 3232A3S	32	32	4.762	33.25	28.0	1.7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	13 000	00 000	0.15	58
RNFCL 3232A6	02	02	1.702	00.20	20.0	1.7 × 4	35 600	79 600		
RNFCL 3232A6S						1.7 / 1	00 000	70 000		
RNFCL 4040A3						1.7 × 2	31 300	66 800		
RNFCL 4040A3S	40	40	6.35	41.75	35.0	1.7 \ 2	01 000	00 000	0.20	73
RNFCL 4040A6	10	10	0.00	11.70	00.0	1.7 × 4	56 900	134 000		, 0
RNFCL 4040A6S						1.7 🔨 🕇	20 000	. 5 1 000		
RNFCL 5050A3						1.7 × 2	46 800	104 000		
RNFCL 5050A3S	50	50	7.938	52.25	44.0	1., , , 2	10 000	101000	0.25	90
RNFCL 5050A6	50	30	7.000	02.20	74.0	1.7 × 4	85 000	209 000		
RNFCL 5050A6S						1./ ^ 4	0000	200 000		

^{2.} The nut assembly is separate from the screw shaft and comes delivered on an arbor.

Unit: mm

			Bal	l nut	dime	nsion	ns			Nut	Arl	oor		Sc	rew sł	naft	Shaft mass	Nut	Standard grease
	lange		_	.engt	_		hole	Oil ho	_	mass (kg)	-		Stan	dard le	ength	Shaft Ref.	per meter	internal space	replenish-
Α	Н	В	Ε	L _n	М	W	Χ	Q	T	(kg)	$d_{\scriptscriptstyle 0}$	d _i		L _o		No.	(kg)	(cm)	ment (cm³)
44	28	6	9	30	-	35	4.5	M3 × 0.5	3.0	0.12	10.1	8.1	400	800	-	RS1212A··	0.74	-	-
51	35	10	11	45	3	42	4.5	M6 × 1	5.0	0.28	12.2	10.2	500	1 000	1 500	RS1520A··	1.15	3.3	1.7
53	34	10	10	38	3	42	4.5	M6 × 1	5.0	0.23	13.5	11 5	500	1 000	1 500	RS1616A··	1.37	2.6	1.3
55	54	10	10	50	3	42	4.5	IVIO X I	5.0	0.23	13.5	11.5	300	1 000	1 500	NSTOTOA	1.57	2.6	1.3
62	41	10	11.5	46	3	50	5.5	M6 × 1	5.0	0.37	17.3	1/1 0	500	1 000	2 000	RS2020A··	2.19	4.4	2.2
	41	10	11.5	40	3	30	3.3	1010 × 1	3.0	0.57	17.5	14.5	300	1 000	2 000	1132020A	2.10	4.9	2.5
74	49	12	13	55	3	60	6.6	M6 × 1	6.0	0.62	22.0	10.6	1 000	2 000	2 500	RS2525A··	3.43	8.2	4.1
74	43	12	13	55	3	00	0.0	IVIOXI	0.0	0.02	22.0	13.0	1 000	2 000	2 500	1132323A	3.43	8.9	4.5
92	60	12	16	70	3	74	9	M6 × 1	E E	1 10	20.0	25.6	1 000	2 000	2 000	RS3232A··	5.71	16	8.0
92	00	12	10	70	- 3	/4	9	IVIOXI	0.0	1.10	20.0	20.0	1 000	2 000	3 000	N33232A	5.71	17	8.5
114	75	15	19.5	85	- 3.5	00	11	M6 × 1	٥٦	2.00	۵۲.۵	01.0	0.000	2 000	4 000	DC 40 40 A	0.00	32	16
114	75	15	19.5	85	- 3.5	93	11	IVIDXI	0.5	2.09	35.0	31.8	2 000	3 000	4 000	RS4040A··	8.82	33	17
135	92	20	21.5	107	- 3.5	112	1/	M6 × 1	7.0	2 00	44.0	40.0	2 000	2 000	4 000	RS5050A··	13.81	64	32
130	92	20	21.5	107	3.5	1112	14	I X GIVI	7.0	3.90	44.U	40.8	2 000	S 000	4 000	INODUDUA	13.81	68	34

6. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use.


^{3.} The last digits (**) in the Shaft Ref. No. will show the value for screw shaft length in 100 mm units.

^{4.} Products in standard inventory have not had surface treatments.

^{5.} A Nut Ref. No. ending in "S" has seals. These are brush seals, and the nut total length becomes longer (by 2 x M) when seals are equipped.

^{7.} Values for nut internal space and standard grease replenishment are for ball screws with seals. The standard quantity for replenishment is about 50% of the nut's internal space. For ball screws without seals, apply grease to the screw shaft surface or move the nut by hand while filling to ensure that grease reaches all areas inside. See Page D16 for details.

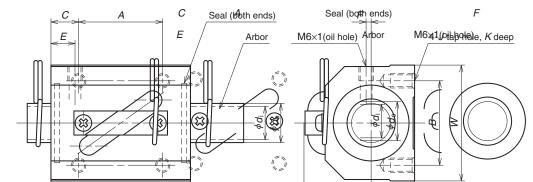
	nit:	

Nut Ref. No.	Shaft dia.	Lead l	Ball dia.	Ball circle dia. d _m	Root dia.	Effective ball turns Turns × Circuits		nd ratings N) Static C _{oo}	Axial play Max.	Ball nut dimensions Outside dia. D
RNFCL 1632A2 RNFCL 1632A2S RNFCL 1632A3 RNFCL 1632A3S RNFCL 1632A6 RNFCL 1632A6S	16	32	2.778	16.65	13.5	0.7×4 1.7×2 1.7×4	4 880 5 760 10 500	8 330 10 300 20 500	0.10	32
RNFCL 2040A2 RNFCL 2040A2S RNFCL 2040A3 RNFCL 2040A3S RNFCL 2040A6 RNFCL 2040A6S	20	40	3.175	20.75	17.3	0.7×4 1.7×2 1.7×4	7 170 8 480 15 400	13 200 16 500 33 100	0.10	38
RNFCL 2550A2 RNFCL 2550A2S RNFCL 2550A3 RNFCL 2550A3S RNFCL 2550A6 RNFCL 2550A6S	25	50	3.969	26	22.0	0.7×4 1.7×2 1.7×4	10 700 12 700 23 000	20 700 26 500 53 000	0.12	46
RNFCL 3264A3 RNFCL 3264A3S RNFCL 3264A6 RNFCL 3264A6S	- 32	64	4.762	33.25	28.0	1.7 × 2 1.7 × 4	17 900 32 400	40 200 80 300	0.15	58
RNFCL 4080A3 RNFCL 4080A3S RNFCL 4080A6 RNFCL 4080A6S	- 40	80	6.350	41.75	35.0	1.7 × 2 1.7 × 4	29 500 53 600	67 900 136 000	0.20	73

Notes: 1. Actual screw shaft length may become slightly longer than nominal length L_n due to manufacturing tolerances.

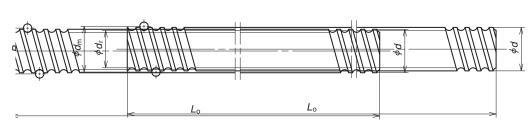
2. The nut assembly is separate from the screw shaft and comes delivered on an arbor.

3. The last digits (**) in the Shaft Ref. No. will show the value for screw shaft length in 100 mm units.


 The last digital in the shart has a shart and the shart length in the sha seals are equipped.

			Ball	nut di	imens	sions				Nut	Arl	oor		Ç	Screv	v sha	ıft	Shaft mass	Nut	Standard grease	1
-	Flange	9		engtl	h	Bolt	hole	Oil h			Outside dia.	Bore	Sta	ndar	d len	gth	Shaft Ref.			ropionian	
Α	Н	В	Ε	Ln	М	W	X	Q	T	(kg)	$d_{\scriptscriptstyle 0}$	d _i		L	0		No.	meter (kg)	(cm³)	ment (cm³)	
				34	3					0.21									2.4	1.2	
50	34	10	10	66	3	41	4.5	M6 × 1	5.5	0.33	13.5	11.5	500	1 000	1 500	-	RS1632A··	1.34	3.9	2.0	N OE
				66	3					0.33									4.1	2.1	5
				41	3					0.31									4.1	2.1	
58	40	10	11	81	3	48	5.5	M6 × 1	5.5	0.53	17.3	14.9	500	1 000	1 500	2 000	RS2040A··	2.15	6.3	3.2	F
				81	3					0.53									7.0	3.5	
				50	3					0.53									8.4	4.2	
70	48	12	13	100	3	58	6.6	M6 × 1	7.0	0.91	22.0	19.6	1 000	2 000	2 500	-	RS2550A··	3.37	14	7.0	
				100	3					0.91									15	7.5	
92	60	12	15.5	126	3	74	9	M6 × 1	7.5	1.76	28.0	25.6	1 000	2 000	2 000	4 000	RS3264A	5.63	24	12	_
	00	12	10.0	120	3	74	3	IVIO X I	7.0	1.70	20.0	25.0	1 000	2 000	3 000	4 000	1133204A	5.05	26	13	_
114	75	15	19	158	3.5	93	11	M6 × 1	10.0	3 1/1	35.0	21.9	2 000	3 000	4 000	5 000	RS4080A··	8.69	52	26	
114	75	10	19	100	3.5		11	IVIO X I	10.0	0.44	30.0	31.0	2 000	000	+ 000	3 000	1134000A	0.03	55	28	

6. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use.


7. Values for nut internal space and standard grease replenishment are for ball screws with seals. The standard quantity for replenishment is about 50% of the nut's internal space. For ball screws without seals, apply grease to the screw shaft surface or move the nut by hand while filling to ensure that grease reaches all areas inside. See Page D16 for details.

B385 B386

Max. U

Max. U

Nut Ref. No.	Shaft dia. Lead		Ball dia.	Ball circle dia.	Root dia.	Effective ball turns Turns	Basic load ratings (N)		Axial play	Ball nut dimensions Length
Nut Her. No.	d	l	$D_{\rm w}$	d _m	d_{r}	× Circuits	Dynamic Static C _{oa}		Max.	Ln
RNSTL 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	6 310	10 800	0.10	38
RNSTL 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	6 170	9 940	0.10	38
RNSTL 1808A3.5S	18	8	4.762	18.5	13.6	3.5 × 1	15 500	26 200	0.15	56
RNSTL 2005A2.5S	20	5	3.175	20.5	17.0	2.5×1	7 500	14 200	0.10	38
RNSTL 2010A2.5S	20	10	4.762	21.25	16.2	2.5 × 1	12 700	21 600	0.15	58
RNSTL 2505A2.5S	25	5	3.175	25.5	22.0	2.5×1	8 340	18 100	0.10	35
RNSTL 2510A5S	25	10	6.35	26	19.0	2.5×2	37 300	69 800	0.20	94
RNSTL 2806A2.5S	28	6	3.175	28.5	25.0	2.5 × 1	8 760	20 200	0.10	42
RNSTL 2806A5S	28	О	3.175	28.5	25.0	2.5 × 2	15 900	40 500	0.10	67
RNSTL 3210A2.5S	32	10	6.35	33.75	27.0	2.5 × 1	23 100	45 900	0.20	64
RNSTL 3210A5S	32	10	0.35	33.75	27.0	2.5 × 2	42 000	91 800	0.20	94
RNSTL 3610A2.5S	36	10	6.35	37	30.0	2.5 × 1	24 700	50 800	0.20	64
RNSTL 3610A5S	36	10	0.35	37	30.0	2.5 × 2	44 900	102 000	0.20	96
RNSTL 4512A5S	45	12	7.144	46.5	39.0	2.5×2	58 500	147 000	0.23	115

Notes: 1. Actual screw shaft length may become slightly longer than nominal length L_0 due to manufacturing tolerances. 2. The nut assembly is separate from the screw shaft and comes delivered on an arbor. 3. The last digits (**) in the Shaft Ref. No. will show the value for screw shaft length in 100 mm units.

 Arbor	Screw shaft	Shaft	NI+ Stand	dard

			Ball	nut d	imens	ions				Nut	Ark		Screw shaft				Shaft	Nut	Standard
Width	Center height		В	olt ho	le		Oil h	ole		mass	Outside dia.	Bore	Stand	dard le	ength	Shaft Ref.	mass	internal	
W	Н	Α	В	С	J	Κ	Ε	F	U	(kg)	$d_{\scriptscriptstyle 0}$	d _i		L。		No.	meter (kg)	space (cm³)	ment (cm³)
34	13	22	26	8	M4	7	7	3	20	0.20	11.5	9.5	500	1 000	-	RS1404A··	1.02	1.6	0.8
34	13	22	26	8	M4	7	7	3	21	0.20	11.0	9.0	500	1 000	-	RS1405A··	1.00	1.8	0.9
48	17	35	35	10.5	M6	10	8	3	26	0.31	13.6	11.6	500	1 000	1 500	RS1808A··	1.60	3.4	1.7
48	17	22	35	8	M6	9	6	2	27	0.24	17.0	14.6	500	1 000	2 000	RS2005A··	2.17	2.5	1.3
48	18	35	35	11.5	M6	10	10	2	28	0.35	16.2	13.8	500	1 000	2 000	RS2010A··	2.18	6.3	3.2
60	20	22	40	6.5	M8	10	6	0	27	0.31	22.0	19.6	1 000	2 000	2 500	RS2505A··	3.47	2.6	1.3
60	23	60	40	17	M8	12	10	0	32	1.32	19.0	16.6	1 000	2 000	2 500	RS2510A··	3.13	18	9.0
60	22	18	40	12	1.40	12	8		32	0.65	۵۶ ۵	00.0	1 000	0.000	0 500	DCGGGGA	4 47	3.5	1.8
60	22	40	40	13.5	M8	12	8	0	32	1.04	25.0	22.6	1 000	2 000	2 500	RS2806A··	4.47	7.0	3.5
70	26	45	50	9.5	M8	12	10		38	1.12	07.0	04.0	1 000	0.000	2 000	DC0010A	F F2	18	9.0
70	26	60	50	17	IVI8	12	10	0	38	1.75	27.0	24.6	1 000	2 000	3 000	RS3210A··	5.53	27	14
86	29	45	60	9.5	M10	16	11	0	11	1.76	20.0	27.6	1 000	2 000	3 000	DC2610A	6.01	18	9.0
86	29	60	60	18	IVITU	10	11	0	41	2.64	30.0	27.6	1 000	2 000	3 000	RS3610A··	6.91	27	14
100	36	75	75	20	M12	20	13	0	46	1.22	39.0	35.8	2 000	3 000	4 000	RS4512A··	11.16	47	24

- 4. Products in standard inventory have not had surface treatments.5. Synthetic resin seals are used for shaft diameters of 14 mm or less and brush seals for shaft diameters of 16 mm or
- 6. Only a rust preventive agent is applied before delivery. Apply lubricant (grease or oil) before use.7. The standard quantity for grease replenishment is about 50% of the nut's internal space. See Page D16 for details.

Unit: mm

NS

B-3-1.7 Accessories

Accessories to use with NSK ball screws are available.

Table 1 Support unit lineup

			Table 1 Support				
Applicat	tion		Shape	Support side	Bearing in use	Bearing bore, Bearing seat diameter	Page
	WE	WBK**-01*	Fixed support side	Angular contact ball bearing	φ4 – φ25	B395 -	
Small equipm light loa	Small equipment, ^l light load	Square	WBK**S-01*	Simple support	Deep groove ball bearing	φ6- φ25	B399 -
	WBK**SF-01		side	Deep groove ball bearing	φ 12, φ 15 (exclusively for VFA model)	B399	

1. Classification

Ball screw support units are classified by their shape (**Table 1**). Select the type that best suits your particular needs.

2. Features

Bearings and seals

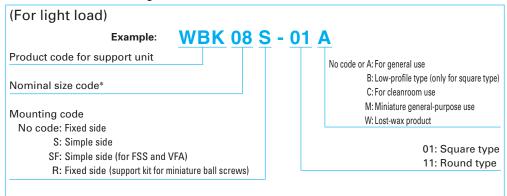
On the fixed support side, an angular contact ball bearing is used. It has great rigidity and low friction torque, which match the rigidity of the ball screw. A thrust angular contact ball bearing with high precision and great rigidity is another choice for the fixed support side.

An oil seal is installed to the fixed support side with an angular contact ball bearing. Fine clearance may occur with this seal.

A deep-groove ball bearing with a shield on both sides is used on the simple support side.

Lock nut provided

A lock nut with fine grade finish is provided to fix the bearing with high precision.


The lock nuts are designed to be difficult to loosen, but they can still loosen if subjected to strong mechanical vibration. If necessary, this should be prevented by applying threadlocking adhesive or similar precautions.

ı	Application		Shape	Support side	Bearing in use	Bearing bore, Bearing seat diameter	Page	
	Small	nall pulpment, ht load Round WBK**-11* Fixed support side		Deep groove ball bearing (arranged to have angular contact)	φ4, φ6 (exclusively for RMA and RMS models)	B401		
	ight load		Angular contact ball bearing	φ4 – φ25	B397 -			
	Machine tools, high speed, heavy load	Round	WBK**DF*-31H	Fixed support side	Thrust angular contact ball bearing	φ17 – φ40	B407 –	Support units

B389 B390

Support units

3. Reference number coding

*) Nominal size codes of 12 or less for support units mounted on the simple side do not strictly represent internal bore of bearing in millimeters. Please refer to the dimensional tables for details.

(For high speed and heavy load) Example: WBK 25 DF - 31H Product code for support unit Nominal size code (internal bore of bearing) Bearing combination code DF: Face to face two-row arrangement (paired mounting) DFD: Face to face three-row arrangement DFF: Face to face four-row arrangement

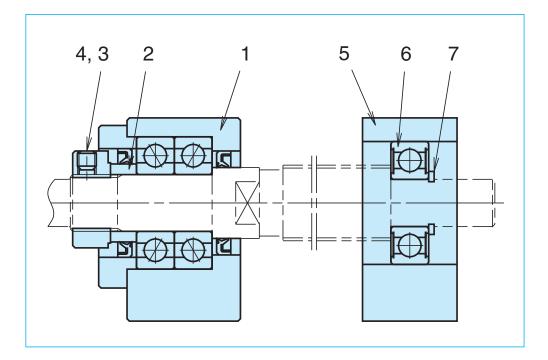
(1) Support Units for Light Loads and Small Equipment

Support units for light load and small equipment provide both fixed and support side bearing assemblies to support screw shafts. They provide all required parts such as bearing locknuts so that you can mount them directly to standard NSK machined ball screws.

Please refer to the dimensions listed on the dimension tables for the configuration of standard screw shaft ends for NSK standard ball screws with blank shaft ends. Ball screws for transfer equipment require spacers (sold separately) to use support units.

(a) Features

- Prompt deliverySupport units are standard products.
- Best selection of bearings for your application


 Construction of bearings for fixed support

General use support units for fixed support are equipped with highly rigid angular contact ball bearings that have been assembled with proper preload and packed with the appropriate volume of grease. On the other hand, clean support units for fixed support low dust emission grease and low torque special bearings. Sealed deep groove ball bearings are used for simple support side units for both general and cleanroom use.

B391 B392

Support units provide everything necessary for mounting ball screws to machines. (Please refer to the table below.)

* Do not disassemble fixed-side support units as they are equipped with bearings and oil seals.

Antirust treatment

The table on the right shows details on parts, the surface treatment, and materials.

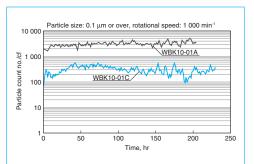
	Fixed side		Simple side
Part No.	Name of part	Part No.	Name of part
1	Bearing housing	5	Bearing housing
2	Spacer	6	Bearing
3	Locknut	7	Snap ring
4	Set screw		
4	with brass pad		

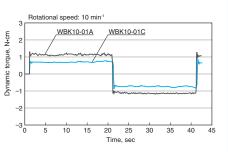
Details for Gener	ral Support Units
Bearings and grease	Angular contact ball bearings, PS2
Surface treatment	Black oxide
Screws and snap rings	Standard material

(b) Features of Clean Support Units

Outstanding low dust emissions
Clean support units use NSK Cleanroom
Grease LG2 with proven low dust
emissions. These units reduce dust
emissions to 1/10th that of general support
units.

Low torque


Specialized bearings provide significantly lower torque than standard units (50% lower than general support units.)


High antirust specifications

Low temperature chrome plating is applied to bearing housings, retaining plates, locknuts and spacers to improve antirust properties. Moreover, bolts and snap rings are made of stainless steel.

The table below shows details on parts, the surface treatment, and materials.

Details for Cleanroom Support Units									
Bearings and grease	Specialized angular contact ball bearings LG2								
Surface treatment	Low temperature chrome plating								
Set screw and snap ring material	Stainless steel								

oulport units

B393 B394

Support Units for Light Loads and Small Equipment

NSK

Set screw

69 (M3)

69 (M3)

69 (M3)

147 (M4)

147 (M4)

147 (M4)

147 (M4)

147 (M4)

490 (M6)

Fightening torque (reference) [N-cm]

Locknut

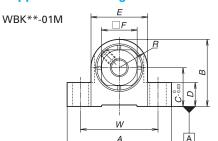
100

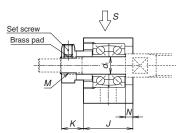
190

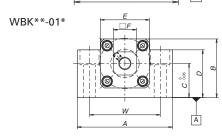
230

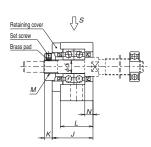
280

630

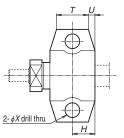

790

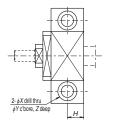

910

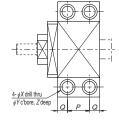

1670

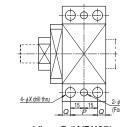

2060

Support Units for Light Load and Small Equipment




Fixed-side support units (square type)


Reference No.	Use	d ₁	А	В	С	D	Ε	F	L	J	К	R
WBK04-01M	General	4	27	17	10	6	14	10	_	14	5.5	7
WBK06-01M	General	6	35	22.5	13	8	19	12	_	17	7.5	9.5
WBK06-01A*1	General	6	42	25	13	20	18	12	20	20	5.5	_
WBK08-01A*1	General		52	32	17	26	25		23	23	7	
WBK08-01B	Low type	8	62	31	15.5	31	_	14	21.5	25.5	4.5	
WBK08-01C*1	Cleanroom		52	32	17	26	25		23	23	7	
WBK10-01A	General			43	25	35	36					
WBK10-01B	Low type	10	70	38	20	38	_	17	24	30	5.5	_
WBK10-01C	Cleanroom			43	25	35	36					
WBK12-01A	General			43	25	35	36					
WBK12-01B	Low type	12	70	38	20	38	_	19	24	30	5.5	-
WBK12-01C	Cleanroom			43	25	35	36					
WBK15-01A	General			50	30	40	41					
WBK15-01B	Low type	15	80	42	22	42	_	22	25	31	12	_
WBK15-01C	Cleanroom			50	30	40	41					
WBK17-01A	General	17	86	64	39	55	50	24	35	44	7	_
WBK20-01	General	20	95	58	30	45	56	30	42	52	10	_
WBK25-01W	General	25	105	68	35	25	66	36	48	61	13	_


Notes: 1. Use datum surface A for mounting to the machine base.

- 2. After the locknut has been adjusted and tightened, insert the provided brass pad and set screw, then tighten the set screw.
- 3. Insert the provided set piece (brass pad) before tightening the set screw.
- Single-row deep groove ball bearings and C-shaped snap rings are provided (excluding WBK04-01M, WBK06-01M, and WBK06-01A.

Reference No.

WBK04-**

WBK06-**

WBK08-**

WBK10-**

WBK12-**

WBK15-**

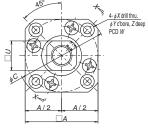
WBK17-**

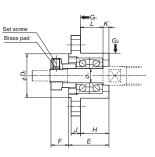
WBK20-**

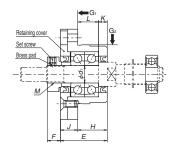
WBK25-**

View S (WBK06 – 15)

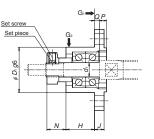
View S (WBK17 – 20)

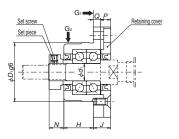

View S (WBK25)


Units:	mm
--------	----


Т	U	N		Co	unterb	ore di	mensi	ons		Mass	Locknut screw	Attached bearing for support side	Silun moddine
			Н	P	Q	W	X	Y	Ζ	(kg)	M	Support side	Ē
9	2.5	2	7	_	_	21	3.5	_	_	0.03	M4×0.5	_	
12	2.5	2.5	8.5	_	_	26	5.5	_	_	0.05	M6×0.75	_	
_	_	3.5	10	_	_	30	5.5	9.5	11	0.15	M6×0.75	_	
		4	11.5			38	6.6	11	12	0.25		606ZZ	
_	_	3.5	11	_	_	46	9	14	18	0.3	M8×1	606ZZ	
		4	11.5			38	6.6	11	12	0.25		606VV	
									11	0.5		608ZZ	
_	_	6	12	_	_	52	9	14	19	0.45	M10×1	608ZZ	
									11	0.5		608VV	
									11	0.5		6000ZZ	
_	_	6	12	_	_	52	9	14	19	0.4	M12×1	6000ZZ	
									11	0.5		6000VV	
									15	0.7		6002ZZ	
_	_	5	12.5	_	_	60	11	17	23	0.6	M15×1	6002ZZ	
									15	0.7		6002VV	
_	_	7	_	19	8	68	9	14	x11	1.3	M17×1	6203ZZ	
_	_	10	_	22	10	75	11	17	15	1.4	M20×1	6204ZZ	
_	_	14	_	30	9	85	11	_	_	1.9	M25×1.5	6205ZZ	
							_						

- 5. Bearings for WBK04-01M and WBK06-01M have non-contact metal shields on both sides.
- *1. WBK06-01A, WBK08-01A, and WBK08-01C do not have seals on the retaining cover side.
- 6. Contact NSK if the rotational speed will be 50 min⁻¹ or less.


View X-X (example 1)


Fixed-side support units (round type)

Reference No.	Use	d_1	Α	С	D_1	D_2	Ε	Н	L	К	F	N
WBK04-11M	General	4	14	26	14	14	13.5	8.5	7	1.5	5.5	6.6
WBK06-11M	General	6	19	34	19	18.5	17	12	9.5	2.5	7.5	8
WBK06-11*	General	6	28	35	22	_	20	13	9.5	3.5	5.5	6.5
WBK08-11B	High-load type		42	52	34		25.5	15.5	12	3.5	4.5	7
WBK08-11*	General	8	35	43	28	_	23	14	10	4	7	8
WBK08-11C*	Cleanroom		30	43	20		23	14	10	4	,	
WBK10-11	General	10	42	52	34		27	17	12	5	7.5	8.5
WBK10-11C	Cleanroom	10	42	52	34	_	21	17	12	5	7.5	0.5
WBK12-11	General	12	44	54	36		27	17	12	5	7.5	8.5
WBK12-11C	Cleanroom	12	44	34	30	_	21	17	12	5	7.5	0.5
WBK15-11	General	15	52	63	40		32	17	11	6	12	14
WBK15-11C	Cleanroom	15	52	03	40		32	17	' '	U	12	14
WBK20-11	General	20	68	85	57	_	52	30	20	10	10	14
WBK25-11	General	25	79	98	63	_	57	30	20	10	13	20

Notes: 1. Tighten the set screw after the locknut has been adjusted and tightened.

- 2. Insert the provided set piece (brass pad) before tightening the set screw.
- 3. Single-row deep groove ball bearings and C-shaped snap rings are provided (excluding WBK04-11M, WBK06-11M, and WBK06-11.

(example 2)

	Reference No.	Tightening torque	(reference) [N·cm]
_	nererence no.	Locknut	Set screw
	WBK04-**	100	69 (M3)
	WBK06-**	190	69 (M3)
	WBK08-**	230	69 (M3)
	WBK10-**	280	147 (M4)
	WBK12-**	630	147 (M4)
	WBK15-**	790	147 (M4)
	WBK17-**	910	147 (M4)
	WBK20-**	1670	147 (M4)
	WBK25-**	2060	490 (M6)

	Units: mm												
U	P Q		С	ounterb	ore dir	nensior	าร	Mass	Locknut screw	Attached bearing for support side			
			J	W	Χ	Y	Ζ	(kg)	М	support side			
10	2.6	2.4	3	20	3.5	_	_	0.02	M4×0.5	_			
12	3	2	4	26	4.5	_	_	0.04	M6×0.75	_			
12	4.5	2.5	7	28	2.9	5.5	3.5	0.1	M6×0.75	_			
	6		10	42	4.5	8		0.2		606ZZ			
14	5	4	9	35	3.4	6.5	4	0.15	M8×1	606ZZ			
	5		9	30	3.4	0.5		0.15		606VV			
17	6	4	10	42	4.5	8	4	0.2	M10×1	608ZZ			
17	0	4	10	42	4.5	0	4	0.2	1011021	608VV			
19	6	4	10	44	4.5	8	4	0.25	M12×1	6000ZZ			
19	0	4	10	44	4.5	0	4	0.25	IVITZAT	6000VV			
22	8	7	15	50	5.5	9.5	6	0.4	M15×1	6002ZZ			
22	0	/	15	50	0.5	9.5	0	0.4	WITSXT	6002VV			
30	14	8	22	70	6.6	11	10	1.1	M20×1	6204ZZ			
36	17	10	27	80	9	15	13	1.5	M25×1.5	6205ZZ			

- 4. Bearings for WBK04-11M and WBK06-11M have non-contact metal shields on both sides.
- *1. WBK06-11, WBK08-11, and WBK08-11C do not have seals on the retaining cover side.
- 5. Contact NSK if the rotational speed will be 50 min⁻¹ or less.
- 6. Use datum surface G₁ and G₂ for mounting to the machine base.

Simple-side	support units	(square	type)
-------------	---------------	---------	-------

Simple-side support units (square type) Units: mm													
Reference No.	Use	d ₂	A	В	С	D	Ε	R	Coun	terbore	dimen	sions	Mass
									W	X	Y	Z	(kg)
WBK08S-01	General		52	32	17	26	25	15	38	6.6	11	12	0.15
WBK08S-01B	Low type	6	62	31	15.5	31	_	16	46	9	14	18	0.2
WBK08S-01C	Cleanroom		52	32	17	26	25	15	38	6.6	11	12	0.15
WBK10S-01	General	8	70	43	25	35	36	20	52	9	14	11	0.4
WBK10S-01C	Cleanroom	8	70	43	25	35	30	20	52	9	14		0.4
WBK12S-01	General			43	25	35	36			52	14	11	0.35
WBK12S-01B	Low type	10	70	38	20	38	_	20	E0.			19	0.4
WBK12S-01C	Cleanroom	12	/0	43	25	35	36	20	52	9		11	0.35
WBK12SF-01*2	General			43	25	35	30					11	0.3
WBK12SF-01B*1	Low type	12	62	31	15.5	31	_	18	46		18	0.2	
WBK15S-01	General			50	30	40	41					11	0.45
WBK15S-01B	Low type		80	42	22	42		20	60			23	0.4
WBK15S-01C	Cleanroom	15		50	30	40	41	20		9	14	11	0.45
WBK15SF-01*2	General		70	43	25	35	36						0.0
WBK15SF-01B*1	Low type		/0	38	20	38		18	52			19	0.3
WBK17S-01	General	17	86	64	39	55	50	23	68	9	14	11	0.8
WBK20S-01	General	20	95	58	30	45	56	26	75	11	17	15	0.8
WBK20SF-01B	Low type	20	80	42	22	42	_	22	60] ' '	17	23	0.4
WBK25S-01W	Conoral	25	105	68	35	25	66	30	85	11	_	_	0.9
WBK25SF-01*1	General	25	95	58	30	45	56	22	75	11	17	15	0.55

Notes: 1. Use datum surface G for mounting to the machine base.
2. Note that the inner dimensions of the bearing differ for products with nominal size codes of 12 or

3. WBK**SF supports the ball screw outside diameter.

4. See page B400 for bearing designations and basic dynamic load ratings in the radial direction.

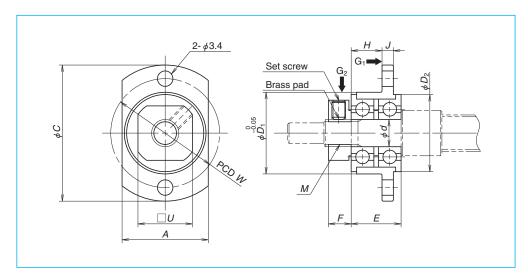
*1 Exclusively for FSS models.

*2 Exclusively for VFA models.

B399

Support Units for Light Loads and Small Equipment

Specifications of support units


-									
	Fix	ed-side suppo	rt units			Simple-side support units			
Reference No.	Use	Axia Basic dynamic load rating Ca [N]	Allowable load	Rigidity [N/µm]	Maximum starting torque [N·cm]	Reference No.	Bearing reference No.	Radial direction Basic dynamic load rating C [N]	
WBK04-01M	General	1 470	320	39	0.2	_	_	—	
WBK04-11M	General	1 470	320	39	0.2	_	_	_	
WBK06-01A	General	2 670	725	28	0.49	_	_	_	
WBK06-01M	General	2 760	595	60	0.35	_	_	_	
WBK06-11	General	2 670	725	28	0.49	_	_	_	
WBK06-11M	General	2 760	595	60	0.35	_	_	_	
WBK08-01A	General	4 400	1 020	49	0.88	WBK08S-01	606ZZ	2 260	
WBK08-01B	Low type	6 600	1 890	94	1.9	WBK08S-01B	606ZZ	2 260	
						WBK12SF-01B*1	6801ZZ	1 920	
WBK08-01C	Cleanroom	3 100	770	36	0.52	WBK08S-01C	606VV	2 260	
WBK08-11	General	4 400	1 020	49	0.88	WBK08S-01	606ZZ	2 260	
WBK08-11B	High load	6 600	1 890	94	1.9	_	606ZZ	2 260	
WBK08-11C	Cleanroom	3 100	770	36	0.52	WBK08S-01C	606VV	2 260	
WBK10-01A	General	6 600	1 910	94	1.9	WBK10S-01	608ZZ	3 300	
						WBK12SF-01*2	6001ZZ	5 100	
WBK10-01B	Low type	6 600	1 910	94	1.9	_	608ZZ	3 300	
WBK10-01C	Cleanroom	4 250	950	50	1.1	WBK10S-01C	608VV	3 300	
WBK10-11	General	6 600	1 910	94	1.9	WBK10S-01	608ZZ	3 300	
WBK10-11C	Cleanroom	4 250	950	50	1.1	WBK10S-01C	608VV	3 300	
WBK12-01A	General	7 100	2 130	104	2.1	WBK12S-01	6000ZZ	4 550	
						WBK15SF-01*2	6902ZZ	4 350	
WBK12-01B	Low type	7 100	2 130	104	2.1	WBK12S-01B	6000ZZ	4 550	
						WBK15SF-01B*1	6902ZZ	4 350	
WBK12-01C	Cleanroom	4 700	1 710	57	1.2	WBK12S-01C	6000VV	4 550	
WBK12-11	General	7 100	2 130	104	2.1	WBK12S-01	6000ZZ	4 550	
WBK12-11C	Cleanroom	4 700	1 710	57	1.2	WBK12S-01C	6000VV	4 550	
WBK15-01A	General	7 600	2 360	113	2.4	WBK15S-01	6002ZZ	5 600	
WBK15-01B	Low type	7 600	2 360	113	2.4	WBK15S-01B	6002ZZ	5 600	
						WBK20SF-01B*1	6804ZZ	4 000	
WBK15-01C	Cleanroom	5 100	1 925	63	1.3	WBK15S-01C	6002VV	5 600	
WBK15-11	General	7 600	2 360	113	2.4	WBK15S-01	6002ZZ	5 600	
WBK15-11C	Cleanroom	5 100	1 925	63	1.3	WBK15S-01C	6002VV	5 600	
WBK17-01A	General	13 400	4 050	120	3.5	WBK17S-01	6203ZZ	9 550	
WBK20-01	General	17 900	5 750	155	6.2	WBK20S-01	6204ZZ	12 800	
		.=				WBK25SF-01*1	6005ZZ	10 100	
WBK20-11	General	17 900	5 750	155	6.2	WBK20S-01	6204ZZ	12 800	
WBK25-01W	General	20 200	6 950	192	7.2	WBK25S-01W	6205ZZ	14 000	
WBK25-11	General	20 200	6 950	192	7.2	WBK25S-01W	6205ZZ	14 000	
WBK04R-11	General	615	340	6.5	0.59	_	_	_	
WBK06R-11	General	1 280	650	9	0.59	_	_	_	

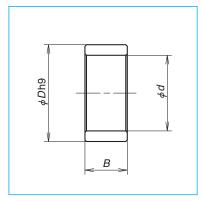
Notes: *1 Exclusively for FSS models. *2 Exclusively for VFA models.

Support kits for ball screws for transfer equipment

Support kits are for RMA model ball screws.

In case of RMA1002 or larger rolled ball screws, please use support units for general use.

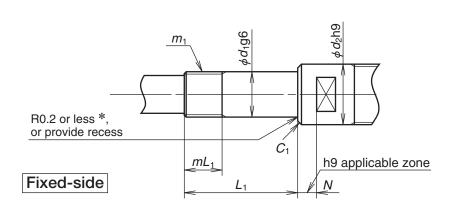
- 1	Inits:	mm


Reference No.	Α	С	d	<i>D</i> ₁	D_2	Ε	F	J	Н	W	U	М	Mass (kg)
WBK04R-11	14	25	4	13	12.5	9	5	2.5	5	19	10	M4×0.5	0.13
WBK06R-11	19	30	6	18	17	11	5	2.5	6.8	24	12	M6×0.75	0.23

Reference No.	Applicable ball screw	Locknut tightening torque (reference) [N·cm]	Set screw tightening torque (reference) [N·cm]	
WBK04R-11	RMA0601	100	38 (M2.5)	
WBK06R-11	RMA0801 RMA0801.5 RMA0802	190	69 (M3)	

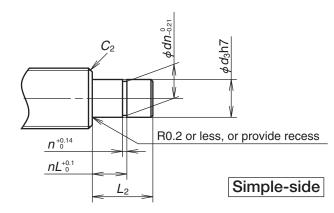
- 1. When mounting, adjust the bearing and and locknut phase to minimize the runout of the flange mounting surface. Use datum surface G₁ and G₂ for mounting to the machine base.
- 2. Support kits are delivered on a temporary shaft (bolt).
- 3. Insert the provided set piece (brass pad) before tightening the set screw.

Spacers


When using a fixed-side support unit, a spacer may be required to have an effective shoulder surface when the ball thread is threaded to the end of the shoulder, as common in R models for transfer equipment.

					Units: mm
Reference No.	Internal	Outside	Width	Mass	Applicable
	diameter, d	diameter, D	В	(g)	support unit
WBK06K	6	9.5	5.0	2	WBK06-**
WBK08K	8	11.5	5.5	2	WBK08-**
WBK10K	10	14.5	5.5	4	WBK10-**
WBK12K	12	15.0	5.6	3	WBK12-**
WBK15K	15	19.5	10.0	10	WBK15-**
WBK17K	17	24.4	7.0	13	WBK17-**
WBK20K	20	25.5	11.0	17	WBK20-**
WBK25K	25	32.0	14.0	34	WBK25-**

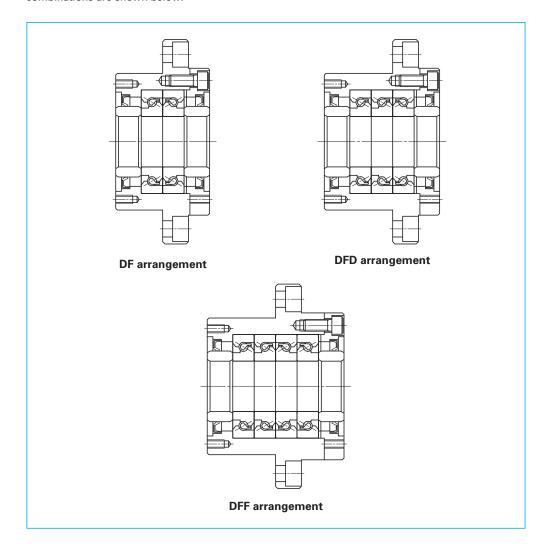
Screw shaft end configuration

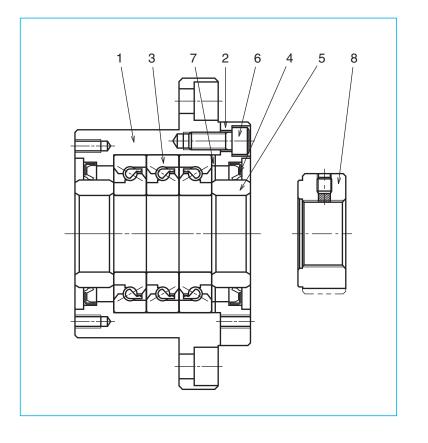

Dimensions of shaft end configurations for light load and small equipment support units are shown in the table below. When using a spacer with a ball screw for transfer equipment, add the width of the spacer (B from spacer dimensions on page B402) to the L_1 dimension below.

Radius marked with * above is 0.15 or less for WBK04R-11 and WBK06R-11.

l.	Inits:	mm
_	THEO.	

Fixed-side support units												
Reference No.	Bearing	journal	Locknut	t thread	Sealin	Chamfer						
nererence No.	<i>d</i> ₁	L ₁	m₁	mL ₁	d ₂	N	C ₁					
WBK06- * *	6	22.5	M6×0.75	7	9.5	3.5	0.2					
WBK08- * *	8	27	M8×1	9	11.5	4	0.2					
WBK10- * *	10	30	M10×1	10	14	6	0.2					
WBK12- * *	12	30	M12×1	10	15	6	0.2					
WBK15- * *	15	40	M15×1	15	19.5	5	0.3					
WBK17- * *	17	46	M17×1	17	24	7	0.3					
WBK20- * *	20	53	M20×1	16	25	10	0.3					
WBK25- * *	25	62	M25×1.5	20	32	14	0.5					
WBK04R-11	4	15	M4×0.5	7.5	_	_	0.3					
WBK06R-11	6	17	M6×0.75	7.5	_	_	0.3					




Units: mm

	Simple-side support units											
Reference No.	Bearing	journal	S	Snap ring groove								
nererence no.	d ₃	L ₂	n	dn	nL	C_2						
	_	_	_	_	_	_						
WBK08S- * *	6	9	0.8	5.7	6.8	0.2						
WBK10S- * *	8	10	0.9	7.6	7.9	0.2						
WBK12S- * *	10	22	1.15	9.6	9.15	0.5						
WBK15S- * *	15	25	1.15	14.3	10.15	0.5						
WBK17S- * *	17	16	1.15	16.2	13.15	0.5						
WBK20S- * *	20	19	1.35	19	15.35	0.5						
WBK25S- * *	25	20	1.35	23.9	16.35	0.5						

(2) Support units for ball screws for high-speed and heavy-load machine tools

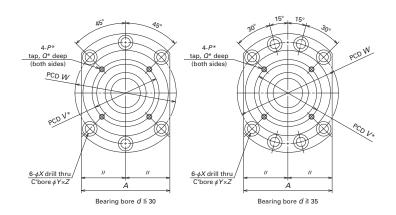
Support units for high-speed and heavy-load machine tools use NSKHPS™ BSBD Series ball screw support bearings with an optimal structure and functions. Possible bearing combinations are shown below:

Parts list


Part No.	Part name	Quantity
1	Housing	1
2	Retaining cover	1
3	High accuracy thrust angular contact ball bearing	One set
4	Dust seal	2
5	Collar	2
6	Preload bolt	6 or 8
7	Shim	One set
8	Lock nut	1

Notes:

- NSK support units are precisely preloaded and adjusted. Parts 1–7 come as a unit and should not be disassembled.
- 2. Grease is pre-packed in the bearings.
- 3. The lock nut (Part 8) is specialized for ball screws and has an end surface that is strictly controlled to be precisely perpendicular to the V thread. Secure the lock nut using a set screw. Lock nuts are also available separately (see page B409).
- See page B415 for details on NSKTAC C Series angular contact thrust ball bearings for ball screw support.


Support Units for High-Speed, Heavy-Load Machine Tools

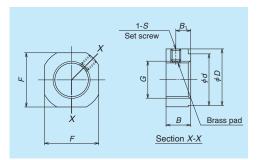
Support Unit Reference No.		Support unit											Basic dynamic load rating	Limiting static axial load					
	d	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							Q*	C _a [N]	[N]								
WBK17DF-31H	17	70	106	72	60	32	15	80	88	9	14	8.5	45	3	58	M5	10	23 000	26 600
WBK20DF-31H	20	70	106	72	60	32	15	80	88	9	14	8.5	45	3	58	M5	10	23 000	26 600
WBK25DF-31H					66	33												29 900	40 500
WBK25DFD-31H	25	85	130	90	81	48	18	100	110	11	17.5	11	57	4	70	M6	12	48 500 (29 900)	81 500 (40 500)
WBK30DF-31H					66	33												30 500	43 000
WBK30DFD-31H	30	85	130	90	81	48	18	100	110	11	17.5	11	57	4	70	M6	12	50 000 (30 500)	86 000 (43 000)
WBK35DF-31H					66	33												32 500	50 000
WBK35DFD-31H	35	95	142	102	81	48	18	106	121	11	17.5	11	69	4	80	M6	12	53 000 (32 500)	100 000 (50 000)
WBK35DFF-31H					96	48												53 000	100 000
WBK40DF-31H					66	33												33 500	52 000
WBK40DFD-31H	40	95	142	102	81	48	18	106	121	11	17.5	11	69	4	80	M6	12	54 000 (33 500)	104 000 (52 000)
WBK40DFF-31H					96	48												54 000	104 000

- **Notes:** 1. Rigidity values in the table are theoretical values obtained from the elastic deformation between the ball groove and the balls.
 - 2. Starting torque values indicate torque from bearing preload. Seal torque is not included.
 - 3. We recommend h5 class tolerance for the shaft outside diameter of the bearing seats.
 - 4. Values in parentheses for basic dynamic load ratings and permissible axial loads reflect values when axial load is applied in a line.

Unit: mm

ι. ΠΠΠ	٥.											
	Permissible					t	Lock nu					
Mass	rotational	or unit	ıg seat f	Bearin	Screwing torque (reference)		Dimension			Starting torque	Axial rigidity	Preload
[kg]	[min ⁻¹]	Ls	L ₄	d	[N · cm]	L ₃	$D_{\scriptscriptstyle 3}$	Н	М	[N · cm]	[N/µm]	C _a [N]
1.9	6 900	23	81	17	4 100	18	37	32	M17×1.0	14	630	1 450
1.9	6 900	23	81	20	4 500	18	40	36	M20×1.0	14	630	1 450
3.1			89							21	850	2 280
3.4	5 200	26	104	25	8 500	20	45	41	M25×1.5	28	1 250	3 100
3.0			89							23	890	2 400
3.3	4 900	26	104	30	10 100	20	50	46	M30×1.5	30	1 310	3 260
3.4			92							27	1 030	2 750
4.3	4 100	30	107	35	13 800	22	55	50	M35×1.5	34	1 500	3 740
5.0			122							43	2 060	5 490
3.6			92							28	1 080	2 860
4.2	4 100	30	107	40	15 500	22	60	55	M40×1.5	36	1 590	3 900
4.7			122							46	2 150	5 730

- Dimensions marked with an asterisk (*) are used to install seal units for NSK hollow shaft ball screws; however, these can also be used to install dust covers and dampers.
- 6. Grease comes pre-packed in the bearing, allowing bearings to be used as is.
- 7. Permissible axial load is 0.7 times the limiting static axial load.
- 8. Contact NSK if the rotational speed will be 50 min⁻¹ or less.
- 9. Use datum surface G₁ and G₂ for mounting to the machine base.


Lock Nuts

In addition to support units, NSK has other components for ball screws as shown below.

(3) Lock nuts

Ball screw support bearings must be installed

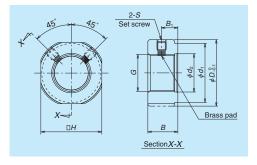
with minimum inclination against the ball screw center. NSK lock nuts for ball screw support bearings help to reduce this inclination.

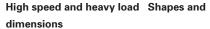
Light load Shapes and dimensions

Light load lock nuts

Light load lock nuts

Lock nut Refer	ence No.	G	D	F	В	d
WBK04L	-01	M4×0.5	11.5	10	5	6
WBK06L	-01	M6×0.75	14.5	12	5	10
WBK08L	-01	M8×1	17	14	6.5	13
WBK10L	-01	M10×1	20	17	8	16
WBK12L	-01	M12×1	22	19	8	17
WBK15L	-01	M15×1	25	22	10	21
WBK17L	-01	M17×1	29	24	13	24
WBK20L	-01	M20×1	35	30	13	26
WBK25L	-01	M25×1.5	42	36	16	34


Notes: 1. Insert brass pad and then tighten securing set screw.


2. The tightening torque is a reference value when support bearings are used in a face-to-face arrangement.

High speed and heavy load lock nuts

Lock nut Reference No.	G	D-0.1	В	d₁	d_2
WBK17L-31H	M17×1	37	18	30	18
WBK20L-31H	M20×1	40	18	30	21
WBK25L-31H	M25×1.5	45	20	40	26
WBK30L-31H	M30×1.5	50	20	40	31
WBK35L-31H	M35×1.5	55	22	49	36
WBK40L-31H	M40×1.5	60	22	49	41

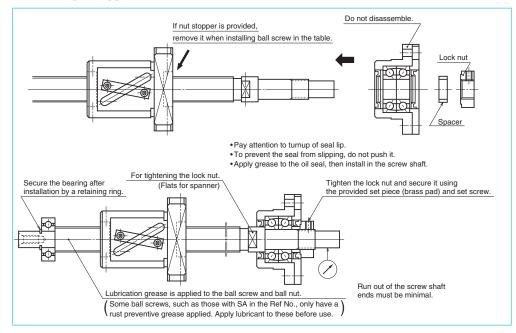
Note: The tightening torque is a reference value when support bearings are used in a face-to-face arrangement.

High speed and heavy load lock nuts

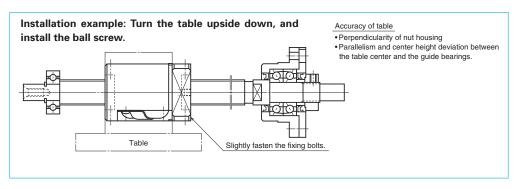
				01.11.11
B ₁	S	Tightening torque (reference) [N · cm]	Set screw tightening torque (reference) [N · cm]	Mass (g)
2.75	M3, with a brass pad	100	69 (M2.5)	3.0
2.75	M3, with a brass pad	190	69 (M3)	3.8
4	M3, with a brass pad	230	69 (M3)	6.4
5	M4, with a brass pad	280	147 (M4)	11.2
5	M4, with a brass pad	630	147 (M4)	12.8
6	M4, with a brass pad	790	147 (M4)	20.0
8	M4, with a brass pad	910	147 (M4)	33.1
8	M4, with a brass pad	1 670	147 (M4)	50.0
10	M6, with a brass pad	2 060	490 (M6)	87.0

Unit: mm

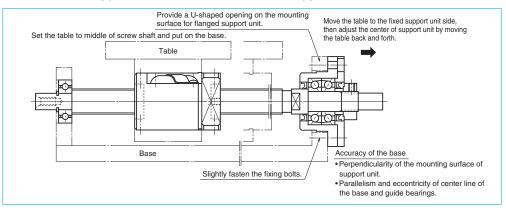
Unit: mm

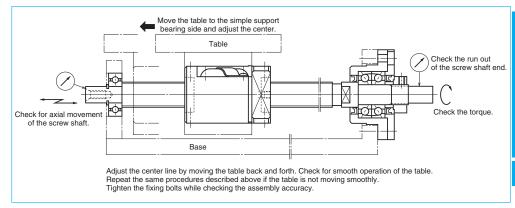

B_1	Н	S	Tightening torque (reference) [N · cm]	Set screw tightening torque (reference) [N · cm]	Mass (g)
10	32	M6	4 100	490 (M6)	100.9
10	36	M6	4 500	490 (M6)	117.3
11	41	M6	8 500	490 (M6)	163.8
11	46	M6	10 100	490 (M6)	186.7
12	50	M6	13 800	490 (M6)	233.4
12	55	M6	15 500	490 (M6)	258.8

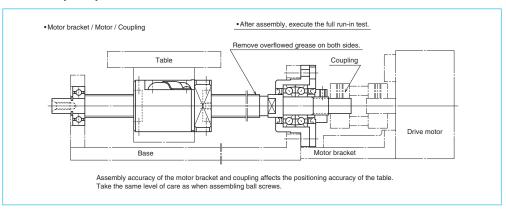
B409 B410


Installation of Ball Screw and Support Unit

The illustrations below show typical installation procedures for a standard ball screw and a support unit.


1) Assembly of support unit


2) Installation of ball nut to the table


3) Base and the support unit installation on the fixed support side

4) Base and bearing installation on simple support side, and confirming assembling accuracy.

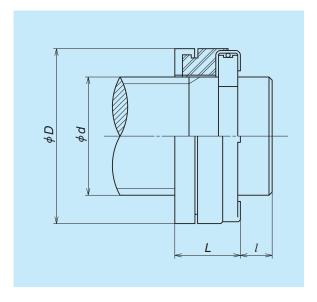
5) Assembly completed.

B411 B412

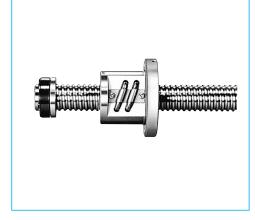
(4) Grease units

NSK has numerous grease types exclusive for ball screw lubrication. They come in bellowsshaped tubes, which can be attached to a hand grease pump quickly. For details of grease types, see page D13 and for a hand grease pump and nozzles, see page D19.

NSK grease


Lubricant greases

Name	Use	Base oil viscosity mm²/s (40°C)
NSK Grease AS2	For heavy load	130
NSK Grease PS2	High-speed, light load	15
NSK Grease LR3	High-speed, medium load	30
NSK Grease LG2	Clean environment	30
NSK Grease LGU	Clean environment	100


(5) Travel stoppers (made-to-order)

A travel stopper is installed in some cases to prevent the ball nut from overrunning to the end of ball thread due to a malfunction of the safety system or by human error. NSK has several series of shock-absorbing travel stoppers. The travel stopper is not sold as a standalone item since it is not for general

use. Also, a travel stopper cannot be used for ball screws with end cap ball recirculation systems because the stopper would come directly into contact with components for ball recirculation. Please request NSK for the installation of travel stoppers when ordering a ball screw.

				Unit: mm
Stopper Ref. No.	Applicable shaft dia.	Outer dia. <i>D</i>	Length <i>L</i>	Shaft end width (Min.) <i>l</i>
BSR 20	20	32	16	5
BSR 25	25	38	16	5
BSR 32	32	46	20	6
BSR 40	40	60	22	6
BSR 50	50	72	24	7
BSR 63	63	85	25	7

Shock-absorbing travel stopper

NSK

(6) NSKHPS angular contact thrust ball bearings for ball screw support

1. Features

This is highly rigid and accurate ball screw support bearing often used for the machine tool driving mechanism.

Reliability has been improved by focusing on material cleanliness, which has the biggest impact on bearing life, by employing NSK's proprietary material evaluation technology. The dynamic load rating has been improved by 5% compared with that of conventional bearings.

The NSKTAC C Series features high axial rigidity and is suitable for machine tool feeding mechanisms, while the NSKTAC 03 Series with its high axial load capacity is well suited for the support of large ball screws in high-load drive applications such as electric injection molding machines. With these series, users can achieve much lower torque and higher accuracy than with roller bearings.

(a) High axial rigidity

The axial rigidity is high because of a higher contact angle of 60°

(b) Low starting torque

Compared with tapered roller bearings or cylindrical roller bearings, this type has lower starting torque; so smoother rotation is possible with driving force.

(c) Easy Installation

The clearance in each individual bearing in an arrangement is adjusted to obtain the optimum preload. With universal arrangement bearings (arrangement code SU), a specific preload is obtained when used with others having the same bearing designation in any combination (DB, DF, and others).

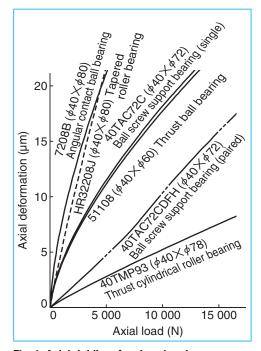


Fig. 1 Axial rigidity of various bearings

(d) Structural simplicity

Since this type can sustain both axial and radial loads, the surrounding structure is simpler and more compact than when using a combination of radial and thrust bearings.

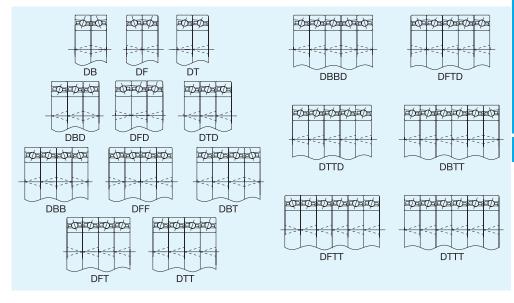
(e) Easy handling

Since the Inner and outer rings are inseparable, handling is easy.

Table 2 Comparison with other types of bearings

Bearing type	Bearing rigidity (See Fig. 1)	Starting torque	Preload adjustment	Installation structure
Ball screw support bearings	High	Low	Not required	Simple
Combined angular contact ball bearing	Low	Low	Not required	Simple
Tapered roller bearing	Low	High	Complicated	Simple
Thrust ball bearing and radial bearing	High	Low	Complicated	Complicated
Thrust cylindrical roller bearing and radial bearing	Extremely high	Extremely high	Complicated	Complicated

Note: Consult NSK if bearings will be used for an application besides ball screw support.


2. Bearing arrangements

Angular contact thrust ball bearings for ball screw support are generally used in two or more rows with preload applied.

Universal Arrangement Bearings

NSK manufactures universal arrangement bearings which have been controlled to have the same amount of stand-out (offset) on their front and back faces. That way, for bearings with the same bearing designation, users will achieve the specified amount for each standard preload, regardless of which combination they chose. Each universal arrangement bearing comes with a V-shaped mark on the surface of the outer ring to simplify identification of the correct direction when mounting and to ensure that the correct combination is achieved. The V-shaped mark points to the direction of the axial load that the inner ring supports (contact angle).

Arrangement Mark and Matching Method for Universal Arrangement Bearings

NSK has defined the limiting static axial load as the smaller of the two values listed below:

- (1) Limiting axial load that produces shoulder override The limiting load at which the contact ellipse generated between the ball and the raceway overrides the shoulder of the raceway groove (Fig. 2)
- (2) Limiting axial load in terms of surface pressure
 The limiting load at which the contact stress
 at the center of the contact area between the
 ball and the raceway groove reaches a level
 that leaves an indentation as defined in the
 basic static load rating (Fig. 3)

To maintain optimal bearing performance, NSK has defined permissible static axial load values by applying a safety factor to the limiting axial load based on many years of experience.

The formula for calculating the basic static axial load rating $C_{\scriptscriptstyle 0a}$ does not take the shoulder height of the raceway groove into account. Therefore, in some cases the $C_{\scriptscriptstyle 0a}$ value may exceed the limiting axial load that produces shoulder override.

In such cases, the maximum load that the bearing can sustain is lower than the C_{0a} value, making the C_{0a} value unsuitable (Fig. 4). Therefore, instead of C_{0a} values, we have listed limiting axial load values in the bearing tables where necessary, particularly for angular contact thrust ball bearings as they are usually used to support heavy axial loads.

4. Rolling contact fatigue life

The relationship between basic load rating, bearing load, and basic rating life for the rolling bearing is presented in the following formula.

$$L_{\rm h} = \frac{10^6}{60n} \left(\frac{C_{\rm a}}{P}\right)^3$$

Where, L_b: Basic rating life (h)

C_a: Basic dynamic load rating (N)

P: Dynamic equivalent load (N)

n: Rotational speed (min⁻¹)

See the table on the right for dynamic equivalnet load by arrangement.

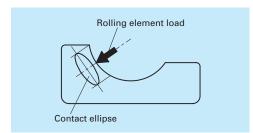


Fig. 2 Ride-over limit axial load

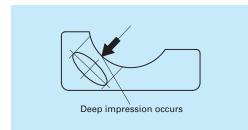


Fig. 3 Contact pressure limit axial load

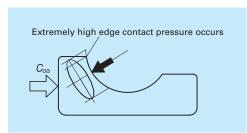


Fig. 4 C_{oa} and limit axial load

Dynamic equivalent load $P_a = XF_r + YF_a$

Bearing config		Two	-row	Tł	ree-re	OW	Four-row			
Number of lear-sistering	case	DF	DT	Df	DFD		DFT	DFF	DFT	
e = 2.17	19 TONS	One	Two	One Two		Three	One	Two	Three	
<i></i>	Χ	1.9	-	1.43	2.33	-	1.17	1.9	2.53	
$F_a/F_r \leq e$	Y	0.55	-	0.77	0.35	-	0.89	0.55	0.26	
$F_a/F_r > e$	Χ	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
r _a /r₁∕e	Y	1	1	1	1	1	1	1	1	

NSK

5. Fits

Recommended interference values for standard operating conditions of ball screws are listed in Table 3. When using angular contact thrust ball bearings for high-load drive ball screw support, in cases where a single end is supported and moment loads are high, it is advisable to increase shaft interference, for example by choosing k5 etc. as required.

Table 3 Tolerances for Shaft and Housing Bore Diameters Unit: um

Housing Bore Diameter (mm) bearing			Tolerance of shaft outer diameter ar contact thrust ball ngs for high-rigidity bearings for high-load drive applications					Tolerance of housing bore diameter			
Over	Incl.	applications Min. Max.			١	Min. Max.			Min.	Max.	
10	18		-8	0					IVIIII.	iviax.	
				Ü		-4	4		_	_	
18	30		-9	0		-4.5	4.5		-	-	
30	50		-10	0		-5.5	5.5		0	16	
50	80		-13	0		-6.5	6.5		0	19	
80	120	h5	_	-	js5	-7.5	7.5	H6	0	22	
120	180		-	-		-9.0	9.0		0	25	
180	250		_	-		_	-		0	29	
250	315		-	-		_	-		0	32	
315	400		-	-		-	-		0	36	

6. Bearing Accuracy

Table 4 to 6 shows accuracy for angular contact thrust ball bearings for ball screw support.

Tables 4 Tolerances for angular contact thrust ball bearings NSKTAC C for high-rigidity ball screw support (Class PN7C) Unit: um

Dian	ore (Outside) neter (mm)	Bore Diame	ane Mean ter Deviation			Single Pla Outside Diam	eter Deviation		Diameter		ng Width	Axial Runout of Inner (Outer) Ring of Assembled Bearing S_{∞} (S_{∞})
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	Max.
10	18	0	-4	0	-4	-	-	-	-	0	-120	2.5
18	30	0	-5	0	-5	-	-	-	-	0	-120	2.5
30	50	0	-6	0	-6	0	-6	0	-6	0	-120	2.5
50	80	0	-7	0	-7	0	-7	0	-7	0	-150	2.5
80	120	-	-	-	-	0	-8	0	-8	-	-	2.5

Note: 1. NSK specification

Table 5 Tolerances for angular contact thrust ball bearings NSKTAC 03 for high-load drive applications ball screw support (Class PN5D 12) Unit: um

Nominal Bore (Outside) Diameter d (D) (mm)		Bore Diamet	ane Mean ter Deviation	Outside Diam	ane Mean eter Deviation	Inner Rir	of Single ng Width	Axial Runout of Inner (Outer) Ring of Assembled Bearing S_{a} (S_{oa})
Over	Incl.	High Low		High	Low	High	Low	Max.
10	18	0	- 5	-	-	0	-80	5
18	30	0	-6	-	-	0	-120	5
30	50	0	-8	0	-7	0	-120	5
50	80	0	-9	0	-9	0	-150	8
80	120	0	-10	0	-10	0	-200	8
120	150	0	-13	0	-11	0	-250	10
150	180	0	-13	0	-13	0	-250	10
180	250	-	-	0	-15	-	-	10
250	315	-	-	0	-18	-	-	11
215	400	_		0	-20		_	12

Note: 2. NSK specification

Table 6 Tolerances for BSBD Series double-row bearings (Class P2B (3) BSF and BSN series)

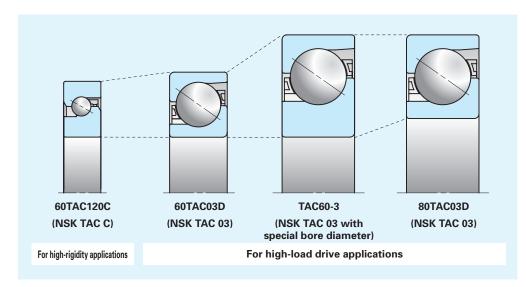
Tubic o Tolc	onic principles for bobb ocites double fow bearings (olds) 125 Bot and both serios														
Dian	re (Outside) neter (mm)			Outside Diam		Axial Runout of Inner Ring of Assembled Bearing Sio	Radial Runout of Assembled Brg. Inner Ring Kin	Width To	olerance						
Over	Incl.	High	Low	High	Low	Max.	Max.	High	Low						
10	18	0	-5	0	-10	1.5	1.5	0	-250						
18	30	0	-5	0	-10	2.5	2.5	0	-250						
30	50	0	-5	0	-10	2.5	2.5	0	-250						
50	80	0	-8	0	-15	2.5	2.5	0	-250						

Note: 3. NSK specification

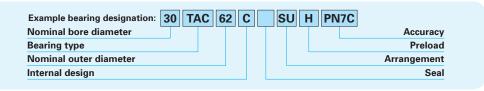
B417 B418

NSKTAC C Angular Contact Thrust Ball Bearings for Ball Screw Support in High-**Rigidity Applications**

A larger number of balls and a 60° contact angle provide high axial rigidity and make these bearings ideally suited for machine tool feeding mechanisms.


The "DDG" seals used for the sealed bearings of this series are light-contact seals for high-speed capability; a strong sealing effect is achieved by a labyrinth between the seal lip and the seal groove of the inner ring. This ensures that no foreign particles can get into the bearing and no grease can leak out, thus helping to keep the surrounding area clean. Some bearings from this series are also available as non-contact sealed bearings for even lower torque and lower heat generation.

For ease of handling and increased efficiency, NSKTAC C bearings come prepacked with "WPH" grease that resists high temperatures and is less likely to soften and leak.


NSKTAC 03 Angular Contact Thrust Ball Bearings for Ball Screw Support in High-**Load Drive Applications**

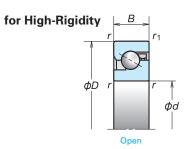
An optimized internal design has led to a higher limiting axial load. The number of rows may be reduced, contributing to smaller sized equipment. We also offer bearings with special bore diameters. That way, bearings with higher load capacity may be employed without any need to modify the shaft diameter, allowing for more compact screw shaft ends.

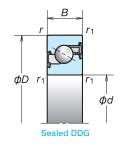
To confirm the suitability of this series for other applications, please ask NSK.

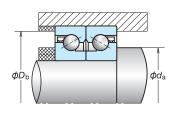
Designations of NSKTAC C Angular Contact Thrust Ball Bearings for Ball Screw **Support in High-Rigidity Applications**

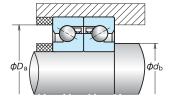
30	Nominal bore diameter	Bore diameter (mm)								
TAC	Bearing type	Angular contact thrust ball bearing								
62	Nominal outer diameter	Outer diameter (mm)								
С	Internal design	Contact angle 60°								
	Seal	No symbol: Open type DDG: Contact rubber seal V1V: Non-contact rubber seal								
SU	Arrangement	SU: Universal arrangement (single-row)								
Н	Preload H: Heavy preload (standard in the HPS Models)									
PN7C	Accuracy	PN7C: NES Class 7C (axial runout equivalent to P2)								

Designations of NSKTAC 03 Angular Contact Thrust Ball Bearings for Ball Screw **Support in High-Load Drive Applications**


Example bearing designation: | 60 | TAC | 03 | D T85 SU M PN5D Accuracy Nominal bore diameter Preload Bearing type **Dimension series** Arrangement Internal design Cage


60	Nominal bore diameter	Bore diameter (mm)
TAC	Bearing type	Angular contact thrust ball bearing
03	Dimension series	02: 02 Series
D	Internal design	Contact angle 55°
T85	Cage	T85: Polyamide cage M:Brass Cage
SU	Arrangement	SU: Universal arrangement (single-row)
M	Preload	M: Medium preload EL: Extra light preload
PN5D	Accuracy	PN5D: Standard accuracy (equivalent to ISO Class 5)


NSKHPS is not applicable for TAC160-3 and 180TAC03D.


B419 B420

NSKTAC C Series Ball Screw Support Bearings

Calculation of preload, axial rigidity and starting torque for bearing arrangements Multiply by factors in table B.

Table		DFD	DFF	DFT
В		ØØØ	ØØØØ	ØØØØ
		DBD	DBB	DBT
		ØØØ	ØØØØ	ØØØØ
	Preload factor	1.36	2.00	1.57
	Axial rigidity	1.49	2.00	1.89
	Starting torque	1.35	2.00	1.55

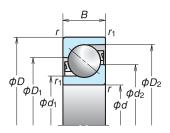
(Open)

Bearing	Во	undar	y Din (mm)		ons	Abutme		illet Dim m)	ensions	Recommended Grease	Contact	Limiting S ontact (min			
Designation	d	D	В	r (Min.)	<i>r</i> ₁ (Min.)	D₀ (Max.)	d₃ (Min.)	D _a (Max.)	d₀ (Min.)	Quantity (cc)	Angle (°)	Grease	Oil	(approx.)	
15TAC47C	15	47	15	1	0.6	42	19.5	41	19.5	2.2	60	6 900	9 200	0.146	
17TAC47C	17	47	15	1	0.6	42	23	41	23	2.2	60	6 900	9 200	0.140	
20TAC47C	20	47	15	1	0.6	42	25	41	25	2.2	60	6 900	9 200	0.135	
25TAC62C	25	62	15	1	0.6	57	31	56	31	3.0	60	5 200	6 900	0.252	
30TAC62C	30	62	15	1	0.6	57	36	56	36	3.2	60	4 900	6 400	0.224	
35TAC72C	35	72	15	1	0.6	67	42	66	42	3.8	60	4 100	5 800	0.310	
40TAC72C	40	72	15	1	0.6	67	47	66	47	3.9	60	4 100	5 500	0.275	
40TAC90C	40	90	20	1	0.6	85	48	84	48	8.8	60	3 500	4 600	0.674	
45TAC75C	45	75	15	1	0.6	68	54	67	54	4.2	60	3 700	4 900	0.270	
45TAC100C	45	100	20	1	0.6	93	55	92	55	9.7	60	3 000	4 100	0.842	
50TAC100C	50	100	20	1	0.6	92	60	91	60	10.2	60	3 000	3 900	0.778	
55TAC100C	55	100	20	1	0.6	92	63	91	63	10.2	60	3 000	3 900	0.714	
55TAC120C	55	120	20	1	0.6	112	63	111	63	12	60	2 500	3 500	1.23	
60TAC120C	60	120	20	1	0.6	112	70	111	70	12	60	2 500	3 500	1.16	

(Sealed)

Bearing	В	ounda	ry Dim (mm)	ensior	ns	Abutment and Fillet Dimensions (mm)				Contact	Limiting Speeds (min ⁻¹)	Mass (kg)	
Designation ⁽¹⁾	d	D	В	r (Min.)	/¹ (Min.)	D _b (Max.)	d₃ (Min.)	D _a (Max.)	d₀ (Min.)	Angle (°)	Grease	(approx.)	
* 15TAC47CDDG	15	47	15	1	0.6	42	19.5	41	19.5	60	6 900	0.146	
* 17TAC47CDDG	17	47	15	1	0.6	42	22	41	22	60	6 900	0.140	
* 20TAC47CDDG	20	47	15	1	0.6	42	25	41	25	60	6 900	0.135	
* 25TAC62CDDG	25	62	15	1	0.6	57	30	56	30	60	5 200	0.252	
30TAC62CDDG	30	62	15	1	0.6	57	36	56	36	60	4 900	0.224	
35TAC72CDDG	35	72	15	1	0.6	67	41	66	41	60	4 100	0.310	
40TAC72CDDG	40	72	15	1	0.6	67	46	66	46	60	4 100	0.275	
40TAC90CDDG	40	90	20	1	0.6	85	47	84	47	60	3 500	0.674	
45TAC100CDDG	45	100	20	1	0.6	93	54	92	54	60	3 000	0.842	
50TAC100CDDG	50	100	20	1	0.6	92	59	91	59	60	3 000	0.778	
55TAC100CDDG	55	100	20	1	0.6	92	63	91	63	60	3 000	0.714	

Note: 1. An asterisk (*) indicates bearings that are also available as non-contact sealed bearings.


- 2. Limiting speeds are based on high preload (H). The values shown are valid for all types of bearing arrangements.
- 3. To calculate permissible axial load, multiply limiting axial load by 0.7.

Preload (DB and DF Arrangements) (N)	Axial Rigidity (DB and DF Arrangements) (N/µm)	Starting Torque (DB and DF Arrangements) (N·m) (reference)		mic Load R of Rows Sus	,	Limiting Axial Load by Number of Rows Sustaining $F_a^{(3)}$			
Н	Н	Н	1 row (kN)	2 rows (kN)	3 rows (kN)	1 row (kN)	2 rows (kN)	3 rows (kN)	
1 450	630	0.09	23.0	37.5	49.5	26.6	53.0	79.5	
1 450	630	0.09	23.0	37.5	49.5	26.6	53.0	79.5	
1 450	630	0.09	23.0	37.5	49.5	26.6	53.0	79.5	
2 280	850	0.15	29.9	48.5	64.5	40.5	81.5	122	
2 400	890	0.16	30.5	50.0	66.0	43.0	86.0	129	
2 750	1 030	0.18	32.5	53.0	70.5	50.0	100	150	
2 860	1 080	0.19	33.5	54.0	72.0	52.0	104	157	
3 450	1 150	0.29	62.0	101	134	89.5	179	269	
3 100	1 170	0.20	34.5	56.0	74.5	57.0	114	170	
4 440	1 340	0.40	64.5	105	140	99.0	198	298	
4 650	1 410	0.42	66.0	107	142	104	208	310	
4 650	1 410	0.42	66.0	107	142	104	208	310	
5 450	1 660	0.49	70.5	115	153	123	246	370	
5 450	1 660	0.49	70.5	115	153	123	246	370	

Preload (DB and DF Arrangements) (N) Axial Rigidity (DB and DF Arrangements) (N/μm) Starting Torque (DB and DF Arrangements) (N/μm) (N/μm) (reference) Basic Dynamic Load Rating C by Number of Rows Sustaining F. Limiting Axial Load by Number of Rows Sustaining F. H H H 1 row (kN) 2 rows (kN) 3 rows (kN) 1 row (kN) 2 rows (kN) 1 row (kN) 2 rows (kN) 3 rows (kN) 1 row (kN) 2 rows (kN) 3 rows (kN) 1 row (kN) 2 rows (kN) 3 rows (kN) 1 row (kN) 2 rows (kN) 3 rows (kN) 1 row (kN) 2 rows (kN) 3 rows (kN) 1 row (kN) 2 rows (kN) 3 rows (kN) 1 row (kN) 2 rows (kN) 3 rows (kN) 1 row (kN) 2 rows (kN) 3 rows (kN) 1 row (kN) 2 rows (kN) 3 rows (kN) 1 row (kN) 2 rows (kN) 3 rows (kN) 1 row (kN) 2 rows (kN) 3 rows (kN) 1 row (kN) 2 rows (kN) 3 rows (kN) 1 row (kN) 2 rows (kN) 3 rows (kN) 1 row (kN) 2 rows (kN) 2 rows (kN) 3 rows (kN) 1 row (kN) 2 rows (kN) 2 rows (kN) 2 rows (kN) 3 rows (kN) 4 row (kN) 2 rows (kN) 4 row (kN)									
H H H (kN) (kN) <td></td> <td></td> <td></td> <td>,</td> <td></td> <td>0 ,</td> <td colspan="3"></td>				,		0 ,			
1 450 630 0.09 23.0 37.5 49.5 26.6 53.0 79.5 1 450 630 0.09 23.0 37.5 49.5 26.6 53.0 79.5 2 280 850 0.15 29.9 48.5 64.5 40.5 81.5 122 2 400 890 0.16 30.5 50.0 66.0 43.0 86.0 129 2 750 1 030 0.18 32.5 53.0 70.5 50.0 100 150 2 860 1 080 0.19 33.5 54.0 72.0 52.0 104 157 3 450 1 150 0.29 62.0 101 134 89.5 179 269 4 440 1 340 0.40 64.5 105 140 99.0 198 298 4 650 1 410 0.42 66.0 107 142 104 208 310	Н	Н	Н						
1 450 630 0.09 23.0 37.5 49.5 26.6 53.0 79.5 2 280 850 0.15 29.9 48.5 64.5 40.5 81.5 122 2 400 890 0.16 30.5 50.0 66.0 43.0 86.0 129 2 750 1 030 0.18 32.5 53.0 70.5 50.0 100 150 2 860 1 080 0.19 33.5 54.0 72.0 52.0 104 157 3 450 1 150 0.29 62.0 101 134 89.5 179 269 4 440 1 340 0.40 64.5 105 140 99.0 198 298 4 650 1 410 0.42 66.0 107 142 104 208 310	1 450	630	0.09	23.0	37.5	49.5	26.6	53.0	79.5
2 280 850 0.15 29.9 48.5 64.5 40.5 81.5 122 2 400 890 0.16 30.5 50.0 66.0 43.0 86.0 129 2 750 1 030 0.18 32.5 53.0 70.5 50.0 100 150 2 860 1 080 0.19 33.5 54.0 72.0 52.0 104 157 3 450 1 150 0.29 62.0 101 134 89.5 179 269 4 440 1 340 0.40 64.5 105 140 99.0 198 298 4 650 1 410 0.42 66.0 107 142 104 208 310	1 450	630	0.09	23.0	37.5	49.5	26.6	53.0	79.5
2 400 890 0.16 30.5 50.0 66.0 43.0 86.0 129 2 750 1 030 0.18 32.5 53.0 70.5 50.0 100 150 2 860 1 080 0.19 33.5 54.0 72.0 52.0 104 157 3 450 1 150 0.29 62.0 101 134 89.5 179 269 4 440 1 340 0.40 64.5 105 140 99.0 198 298 4 650 1 410 0.42 66.0 107 142 104 208 310	1 450	630	0.09	23.0	37.5	49.5	26.6	53.0	79.5
2 750 1 030 0.18 32.5 53.0 70.5 50.0 100 150 2 860 1 080 0.19 33.5 54.0 72.0 52.0 104 157 3 450 1 150 0.29 62.0 101 134 89.5 179 269 4 440 1 340 0.40 64.5 105 140 99.0 198 298 4 650 1 410 0.42 66.0 107 142 104 208 310	2 280	850	0.15	29.9	48.5	64.5	40.5	81.5	122
2 860 1 080 0.19 33.5 54.0 72.0 52.0 104 157 3 450 1 150 0.29 62.0 101 134 89.5 179 269 4 440 1 340 0.40 64.5 105 140 99.0 198 298 4 650 1 410 0.42 66.0 107 142 104 208 310	2 400	890	0.16	30.5	50.0	66.0	43.0	86.0	129
3 450 1 150 0.29 62.0 101 134 89.5 179 269 4 440 1 340 0.40 64.5 105 140 99.0 198 298 4 650 1 410 0.42 66.0 107 142 104 208 310	2 750	1 030	0.18	32.5	53.0	70.5	50.0	100	150
4 440 1 340 0.40 64.5 105 140 99.0 198 298 4 650 1 410 0.42 66.0 107 142 104 208 310	2 860	1 080	0.19	33.5	54.0	72.0	52.0	104	157
4 650 1 410 0.42 66.0 107 142 104 208 310	3 450	1 150	0.29	62.0	101	134	89.5	179	269
	4 440	1 340	0.40	64.5	105	140	99.0	198	298
4 650 1 410 0.42 66.0 107 142 104 208 310	4 650	1 410	0.42	66.0	107	142	104	208	310
	4 650	1 410	0.42	66.0	107	142	104	208	310

- 4. The starting torque values in the table apply to grease lubricated bearings. Contact seal torque is not included. For oil lubricated bearings, multiply by 1.4.
- Abutment and fillet dimensions are recomended values for standard machine tool applications. For heavy load applications, please contact NSK.

for High-Load Drive Applications

Bearing	Во	undar	y Din (mm)		ons	Refe		Dimens m)	ions	Recommended Grease Contact		Limiting (mi	Mass	
Designation ⁽¹⁾	d	D	В	r (Min.)	<i>f</i> 1 (Min.)	d ₁	d ₂	<i>D</i> ₁	D ₂	Quantity (cc/row)	Angle (°)	Grease	Oil	(kg) (approx.)
15TAC02D	15	35	11	0.6	0.3	19.1	24.5	26	31.9	1	55	12 000	14 800	0.047
20TAC03D	20	52	15	1.1	0.6	27.2	35.3	37.5	46.1	2.7	55	8 300	10 300	0.155
25TAC02D	25	52	15	1	0.6	30.8	38.1	39.6	47.3	3	55	7 700	9 700	0.137
TAC35-3	35	90	23	1.5	1	50.4	64.2	67.1	81.7	14	55	4 600	6 000	0.712
40TAC03D	40	90	23	1.5	1	50.4	64.2	67.1	81.7	14	55	4 600	5 700	0.659
TAC40-3	40	110	27	2	1	62	79.1	82.4	100.6	25	55	3 700	5 000	1.28
45TAC03D	45	100	25	1.5	1	56.5	71.7	74.7	90.8	18	55	4 100	5 200	0.877
TAC45-3	45	110	27	2	1	62	79.1	82.4	100.6	25	55	3 700	4 800	1.21
50TAC03D	50	110	27	2	1	62	79.1	82.4	100.6	25	55	3 700	4 700	1.14
TAC50-3	50	130	31	2.1	1.1	73.9	93.8	98	119	40	55	3 100	4 200	2.00
55TAC03D	55	120	29	2	1	68	86.4	90.2	109.7	32	55	3 400	4 300	1.44
60TAC03D	60	130	31	2.1	1.1	73.9	93.8	98	119	40	55	3 100	3 900	1.80
TAC60-3	60	170	39	2.1	1.1	98.5	123.6	128.7	157.5	85	55	2 400	3 300	4.47
70TAC03D	70	150	35	2.1	1.1	86.3	108.6	113.4	137.8	59	55	2 700	3 400	2.67
75TAC03D	75	160	37	2.1	1.1	92.4	116.2	121	146.2	67	55	2 500	3 200	3.20
80TAC03D	80	170	39	2.1	1.1	98.5	123.6	128.7	157.5	85	55	2 400	3 000	3.80
TAC80-3	80	215	47	3	1.1	124	154.9	160.4	194.5	156	55	1 900	2 600	8.66
100TAC03D	100	215	47	3	1.1	124	154.9	160.4	194.5	156	55	1 900	2 400	7.54
TAC100-3	100	260	55	3	1.1	150.5	186.9	193.4	231.7	254	55	1 500	2 100	14.8
120TAC03D	120	260	55	3	1.1	150.5	186.9	193.4	231.7	254	55	1 500	2 000	13.3
* TAC120-3M	120	300	62	4	1.5	170.8	215.3	224.1	265.7	336	55	1 300	1 800	24.5
* 140TAC03DM	140	300	62	4	1.5	170.8	215.3	224.1	265.7	336	55	1 300	1 700	22.5
* TAC140-3M	140	340	68	4	1.5	197.5	246.2	254.3	298.8	442	55	1 200	1 600	34.5
* 160TAC03DM	160	340	68	4	1.5	197.5	246.2	254.3	298.8	442	55	1 200	1 500	32.0
* TAC160-3M	160	380	75	4	1.5	221.1	275.6	284.9	334.9	624	55	1 000	1 400	46.8
* 180TAC03DM	180	380	75	4	1.5	221.1	275.6	284.9	334.9	624	55	1 000	1 400	43.7

Note: 1. An asterisk (*) indicates bearings that are also available equipped with screw holes for mounting bolts.

2. Limiting speeds are based on the standard preload of each bearing. The values shown are valid for all

types of bearing arrangements.
3. Preload values for bearings with a bore diameter of 100 mm or more as well as for TAC80-3 are based on EL preload.

NSKTAC 03 Series Ball Screw Support Bearings

NSK

Multi-row arrangement calculationsCalculation of preload, axial rigidity and starting torque for bearing arrangements Multiply by factors in Table B.

Number of load-sustaining rows	2 rd	ows		3 rows		4 r	5 rows	
	DFD			DFFD	DFFF	DFTD	DFFT	DFTT
	ØØØ	DDDD	ØØØØ	ØØØØØ	ØØØØØØ	ØØØØØ	ØØØØØØ	ØØØØØØ
	DBD	DBB	DBT	DBBD	DBBB	DBTD	DBBT	DBTT
	ØØØ	$\emptyset\emptyset\emptyset\emptyset$	ØØØØ	ØØØØØ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ØØØØØ	ØØØØØØ	ØØØØØØ
Preload factor	1.36	2.00	1.57	2.42	3.00	1.72	2.72	1.83
Axial rigidity	1.49	2.00	1.89	2.51	3.00	2.24	2.97	2.57
Starting torque	1.35	2.00	1.55	2.41	3.00	1.68	2.71	1.77

Preload ⁽³⁾ (DB and DF	Axial Rigidity ⁽³⁾ (DB and DF	Starting Torque (DB and DF		ic Dynan ımber of		-		by N		g static a: f Rows S		g <i>F</i> a ⁽⁵⁾
Arrangements) (N)	Arrangements) (N/µm)	Arrangements) (N·m)	1 row (kN)	2 rows (kN)	3 rows (kN)	4 rows (kN)	5 rows (kN)	1 row (kN)	2 rows (kN)	3 rows (kN)	4 rows (kN)	5 rows (kN)
400	290	0.017	21.0	34.0	45.0	55.5	64.5	18.6	37.5	56.0	74.5	93.0
830	430	0.026	42.5	69.5	92.0	113	132	38.5	77.0	116	154	193
690	430	0.036	37.0	60.0	79.5	97.5	114	36.0	72.5	109	145	181
2 500	780	0.26	113	184	244	299	350	118	235	355	470	590
2 500	780	0.26	113	184	244	299	350	118	235	355	470	590
3 900	970	0.50	166	270	360	440	515	181	360	540	720	905
2 800	830	0.31	133	216	287	350	410	142	283	425	565	710
3 900	970	0.50	166	270	360	440	515	181	360	540	720	905
3 900	970	0.50	166	270	360	440	515	181	360	540	720	905
5 200	1 120	0.78	218	355	470	575	670	242	485	725	965	1 210
4 280	1 060	0.68	190	310	410	500	585	210	420	630	840	1 050
5 200	1 120	0.78	218	355	470	575	670	242	485	725	965	1 210
8 050	1 400	1.5	305	495	660	805	940	390	775	1 170	1 550	1 940
6 400	1 250	1.1	262	425	565	690	810	305	615	920	1 230	1 530
7 230	1 330	1.3	283	460	610	750	875	345	690	1 040	1 380	1 730
8 050	1 400	1.5	305	495	660	805	940	390	775	1 170	1 550	1 940
1 240	880	0.15	420	685	910	1 110	1 300	510	1 020	1 530	2 040	2 550
1 240	880	0.15	420	685	910	1 110	1 300	510	1 020	1 530	2 040	2 550
1 620	1 050	0.21	520	850	1 130	1 380	1 610	680	1 360	2 040	2 720	3 400
1 620	1 050	0.21	520	850	1 130	1 380	1 610	680	1 360	2 040	2 720	3 400
1 710	1 130	0.24	640	1 040	1 380	1 680	1 970	794	1 590	2 380	3 200	3 950
1 710	1 130	0.24	640	1 040	1 380	1 680	1 970	794	1 590	2 380	3 200	3 950
1 850	1 240	0.27	725	1 180	1 570	1 920	2 240	1 040	2 080	3 100	4 150	5 200
1 850	1 240	0.27	725	1 180	1 570	1 920	2 240	1 040	2 080	3 100	4 150	5 200
1 940	1 310	0.30	815	1 330	1 760	2 150	2 520	1 360	2 720	4 100	5 450	6 800
1 940	1 310	0.30	815	1 330	1 760	2 150	2 520	1 360	2 720	4 100	5 450	6 800

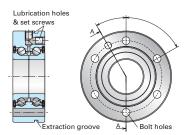
4. The starting torque values in the table apply to grease lubrication.5. To calculate permissible axial load, multiply limiting static axial load by 0.7.

B423 B424

Features

The bearings of this series are double-row angular contact thrust ball bearings with a 60° contact angle and a single outer ring. The specifications are the same as those of NSKTAC bearings, both series being optimized for the support of ball screws in machine tools. All BSBD Series bearings are equipped with a rubber contact seal and prepacked with high performance grease.

BSN Recirculation


BSN recirculation ball screw support bearings are double row angular contact thrust ball bearings in a back-to-back arrangement, with a

single outer ring. The bearings are prepacked with high performance grease. Lubrication holes allow for relubrication during operation if necessary. The contact seal offers minimized friction and temperature rise while providing excellent sealing performance.

BSF Recirculation

The BSF recirculation is equivalent to the BSN range, with bolt holes on the outer ring for easy direct mounting. Two lubrication holes – one in the outer surface and one in the face of the outer ring – allow for relubrication during operation if required. If not used, these holes are closed off with set screws. An extraction groove on the outer surface of the outer ring aids in removal of the bearing.

Note: BSF type bearings are supplied with seal and set screws included. Mounting bolts are not included.

BSN Type Single Units

Bearing	В	ounda	ry Din (mm)	nension	S		t and Fillet ons (mm)	Contact Angle		id Ratings N)	Limiting ⁽¹⁾ Axial Load	Preload	Axial Rigidity	Mass	Limiting Speed (min ⁻¹)	Starting Torque (N·m)	Recommended Clamping
Designation	d	D	В	r (min)	<i>r</i> ₁ (min)	<i>∳d</i> _a (min)	φD _b (max)	(°)	C _a (Dynamic)	C₀₃ (Static)	(kN)	(N)	(N/µm)	(kg)	Grease	Н	Force (N)
BSN1242	12	42	25	0.6	0.3	15	33	60	18.5	24.0	17.6	720	375	0.20	8 000	0.038	4 030
BSN1545	15	45	25	0.6	0.3	19	35	60	19.4	26.9	19.4	675	400	0.22	7 100	0.034	4 050
BSN1747	17	47	25	0.6	0.6	21	37	60	20.3	29.7	21.2	880	450	0.23	6 700	0.05	4 400
BSN2052	20	52	28	0.6	0.6	24	43	60	26.4	41.0	29.3	1 885	650	0.31	5 800	0.13	7 600
BSN2557	25	57	28	0.6	0.6	29	48	60	28.3	48.0	34.0	2 245	750	0.36	5 100	0.16	8 100
BSN3062	30	62	28	0.6	0.6	34	53	60	30.0	55.5	38.5	2 625	850	0.40	4 500	0.19	8 600
BSN3072	30	72	38	0.6	0.6	35	64	60	60.5	94.0	66.5	4 855	950	0.74	3 900	0.59	11 100
BSN3572	35	72	34	0.6	0.6	40	62	60	42.0	77.5	52.0	2 630	900	0.66	3 800	0.21	13 500
BSN4075	40	75	34	0.6	0.6	46	67	60	44.5	88.0	58.5	3 065	1 000	0.65	3 500	0.24	14 100
BSN4090	40	90	46	0.6	0.6	46	80	60	78.5	135	91.0	7 220	1 200	1.38	3 100	1.02	18 700
BSN5090	50	90	34	0.6	0.6	56	82	60	48.0	110	71.5	4 020	1 250	0.93	2 800	0.33	15 400
BSN50110	50	110	54	0.6	0.6	57	98	60	116	219	149	7 435	1 400	2.46	2 500	1.06	19 100
BSN60110	60	110	45	0.6	0.6	68	100	60	86.5	187	126	4 780	1 300	1.82	2 400	0.50	20 900

Notes: 1. Permissible axial load equals 0.7 times the limiting axial load.

2. The values indicate starting torque of preloaded bearings, not including seal torque.

BSBD Series Bearings for Ball Screw Support

NSK

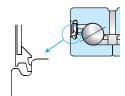
NSKHPS BSBD Series

Bearing Designation Example: BS F 30 80 DDU H P2B DT

Bearing recirculation

F: Flanged
N: No Flange

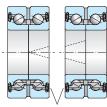
Bore diameter

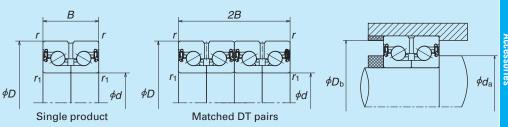

Outer diameter

Arrangement
Arrangement
Accuracy

Accuracy
Accuracy
Accuracy
Indicating the following:
Running accuracy:
ISO Class 2
Others: NSK-specific

Seal

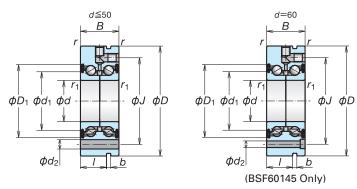

A rubber contact seal on both sides with a triple-lip structure provides high sealing performance and dust resistance.


Matched DT pairs

BSBD bearings are available in matched DT pairs

for applications with large external loads or where high rigidity and long life are required. The matching surfaces of the 2- row bearing set are controlled for offset, so as to have no impact on the preload of each individual bearing.

Mating surfaces controlled for offset


BSN Type Matched DT Pairs

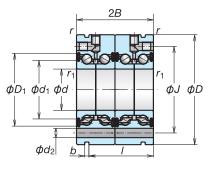
Bearing Designation	d	Bounda D	ry Dim (mm) 2B	ension r (min)	r ₁ (min)		t and Fillet ons (mm) $\phi D_{\rm b}$ (max)	Contact Angle (°)		N) C _{oa} (Static)	Limiting ⁽¹⁾ Axial Load (kN)	Axial Rigidity (N/µm)	Mass (kg)	Limiting Speed (min ⁻¹) Grease	(N·m)	Recommended Clamping Force (N)
BSN1747-DT	17	47	50	0.6	0.6	21	37	60	33.0	59.5	42.5	790	0.46	6 700	0.10	4 400
BSN2052-DT	20	52	56	0.6	0.6	24	43	60	43.0	82.0	58.5	1 180	0.62	5 800	0.26	7 600
BSN2557-DT	25	57	56	0.6	0.6	29	48	60	46.0	96.0	68.0	1 370	0.71	5 100	0.32	8 100
BSN3062-DT	30	62	56	0.6	0.6	34	53	60	49.0	111	77.0	1 580	0.80	4 500	0.37	8 600
BSN3072-DT	30	72	76	0.6	0.6	35	64	60	98.0	188	133	1 800	1.47	3 900	1.17	11 100
BSN3572-DT	35	72	68	0.6	0.6	40	62	60	68.0	155	104	1 630	1.32	3 800	0.41	13 500
BSN4075-DT	40	75	68	0.6	0.6	46	67	60	72.0	176	117	1 850	1.30	3 500	0.49	14 100
BSN4090-DT	40	90	92	0.6	0.6	46	80	60	128	269	182	2 300	2.76	3 100	2.03	18 700
BSN5090-DT	50	90	68	0.6	0.6	56	82	60	78.0	220	143	2 330	1.86	2 800	0.66	15 400
BSN50110-DT	50	110	108	0.6	0.6	57	98	60	188	440	299	2 690	4.92	2 500	2.11	19 100

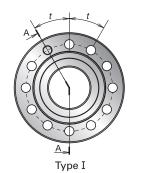
- The inner rings have a structure that makes them easy to remove from the shaft. Clamp the inner ring and pull to remove it from the shaft.
- Abutment and fillet dimensions are recommended values for standard machine tool applications. For heavy applications, please contact NSK.

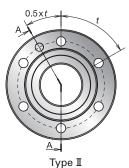
NSK

NSKHPS[™] BSBD Series

BSF Type Single Units


Bearing	Во	undary	Dimen	sions (n	nm)	Basic Load	Ratings (kN)	Limiting ⁽¹⁾	Axial	Mass	Limiting speed (min ⁻¹)
Designation	d	D	В	(min)	<i>r</i> ₁ (min)	C _a (Dynamic)	<i>C</i> ₀₃ (Static)	Axial Load (kN)	Rigidity (N/µm)	(kg)	Grease
BSF1255	12	55	25	0.6	0.3	18.5	24.0	17.6	375	0.37	8 000
BSF1560	15	60	25	0.6	0.3	19.4	26.9	19.4	400	0.44	7 100
BSF1762	17	62	25	0.6	0.6	20.3	29.7	21.2	450	0.46	6 700
BSF2068	20	68	28	0.6	0.6	26.4	41.0	29.3	650	0.61	5 800
BSF2575	25	75	28	0.6	0.6	28.3	48.0	34.0	750	0.73	5 100
BSF3080	30	80	28	0.6	0.6	30.0	55.5	38.5	850	0.79	4 500
BSF30100	30	100	38	0.6	0.6	60.5	94	66.5	950	1.71	3 900
BSF3590	35	90	34	0.6	0.6	42.0	77.5	52.0	900	1.20	3 800
BSF40100	40	100	34	0.6	0.6	44.5	88.0	58.5	1 000	1.49	3 500
BSF40115	40	115	46	0.6	0.6	78.5	135	91.0	1 200	2.56	3 100
BSF50115	50	115	34	0.6	0.6	48.0	110	71.5	1 250	1.89	2 800
BSF50140	50	140	54	0.6	0.6	116	219	149	1 400	4.46	2 500
BSF60145	60	145	45	0.6	0.6	86.5	187	126	1 300	4.06	2 400


BSF Type Matched Pairs


Bearing	Во	undary	Dimen	sions (r	nm)	Basic Load	Ratings (kN)	Limiting ⁽¹⁾	Axial	Mass	Limiting speed (min ⁻¹)
Designation	d	D	2 <i>B</i>	r (min)	<i>r</i> ₁ (min)	C _a (Dynamic)	<i>C</i> _□ (Static)	Axial Load (kN)	Rigidity (N/µm)	(kg)	Grease
BSF1762-DT	17	62	50	0.6	0.6	33.0	59.5	42.5	790	0.890	6 700
BSF2068-DT	20	68	56	0.6	0.6	43.0	82.0	58.5	1 180	1.17	5 800
BSF2575-DT	25	75	56	0.6	0.6	46.0	96.0	68.0	1 370	1.46	5 100
BSF3080-DT	30	80	56	0.6	0.6	49.0	111	77.0	1 580	1.58	4 500
BSF30100-DT	30	100	76	0.6	0.6	98.0	188	133	1 800	3.41	3 900
BSF3590-DT	35	90	68	0.6	0.6	68.0	155	104	1 630	2.30	3 800
BSF40100-DT	40	100	68	0.6	0.6	72.0	176	117	1 850	2.88	3 500
BSF40115-DT	40	115	92	0.6	0.6	128	269	182	2 300	5.12	3 100
BSF50115-DT	50	115	68	0.6	0.6	78.0	220	143	2 330	3.78	2 800
BSF50140-DT	50	140	108	0.6	0.6	188	440	299	2 690	8.92	2 500

Notes: 1. Permissible axial load equals 0.7 times the limiting axial load.

The values refer to the limiting load of the bearing only, without taking the mounting bolts into account.

	R	eferenc	ce Dime	nsions	(mm)		Type	Mountin	g Bolts	Preload	Starting Torque ⁽²⁾ (N·m)	Recommended Clamping Force	
d_1	D_1	J	d_2	l	b	t	Type	Bolt Dia.	Number of Bolts	(N)	Н	(N)	
23.7	32.7	42	6.8	17	3	3 x 120°	П	M6	3	720	0.038	4 030	
26.7	35.7	46	6.8	17	3	3 x 120°	П	M6	3	675	0.034	4 050	
28.1	37.7	48	6.8	17	3	3 x 120°	П	M6	3	890	0.05	4 400	
32.6	43	53	6.8	19	3	4 x 90°	П	M6	4	1 885	0.13	7 600	
37.6	48	58	6.8	19	3	4 x 90°	П	M6	4	2 245	0.16	8 100	
42.6	53	63	6.8	19	3	6 x 60°	П	M6	6	2 625	0.19	8 600	
49.1	64.4	80	8.8	30	3	8 x 45°	П	M8	8	4 855	0.59	11 100	A
53.1	62.2	75	8.8	25	3	4 x 90°	П	M8	4	2 630	0.21	13 500	Accessories
55.1	67.2	80	8.8	25	3	4 x 90°	Π	M8	4	3 065	0.24	14 100	9
63.1	80.1	94	8.8	36	3	12 x 30°	П	M8	12	7 220	1.02	18 700	Se
70.1	82.2	94	8.8	25	3	6 x 60°	П	M8	6	4 020	0.33	15 400	
78.1	97.5	113	11	45	3	12 x 30°	П	M10	12	7 435	1.06	19 100	
83.1	99.3	120	8.8	35	3	8 x 45°	I	M8	8	4 780	0.50	20 900	H

	R	eferenc	e Dime	nsions	(mm)		т	Mountin	g Bolts	Starting Torque ⁽²⁾ (N·m)	Recommended
d_1	D_1	J	$d_{\scriptscriptstyle 2}$	l	b	t	Type	Bolt Dia.	Number of Bolts	Н	Clamping Force (N)
28.1	37.7	48	6.8	42	3	6 x 60°	I	M6	5	0.10	4 400
32.6	43	53	6.8	47	3	8 x 45°	I	M6	7	0.26	7 600
37.6	48	58	6.8	47	3	8 x 45°	I	M6	7	0.32	8 100
42.6	53	63	6.8	47	3	12 x 30°	I	M6	11	0.37	8 600
49.1	64.4	80	8.8	68	3	8 x 45°	Π	M8	8	1.17	11 100
53.1	62.2	75	8.8	59	3	8 x 45°	I	M8	7	0.41	13 500
55.1	67.2	80	8.8	59	3	8 x 45°	I	M8	7	0.49	14 100
63.1	80.1	94	8.8	82	3	12 x 30°	П	M8	12	2.03	18 700
70.1	82.2	94	8.8	59	3	12 x 30°	I	M8	11	0.66	15 400
78.1	97.5	113	11	99	3	12 x 30°	П	M10	12	2.11	19 100

- 2. The values indicate starting torque of preloaded bearings, not including seal torque.

 3. The inner rings have a structure that makes them easy to remove from the shaft. Clamp the inner ring and pull to remove it from the shaft.

- 1. End Deflector Recirculation B431
- 2. SRC Recirculation B437
- 3. Tube Recirculation B441
- 4. Deflector (Bridge) Recirculation B473
- 5. High-speed Low-noise
 - **Deflector Recirculation B487**
- 6. End Cap Recirculation B491

B-3-2 Dimension Tables and Reference Numbers for Ball Screws With Standard Nuts

NSK

B-3-2.1 End Deflector Recirculation Ball Screws

1. Features

Quiet operation

The average noise level is reduced by more than 6 dB(A) compared with our existing products. At low-speed rotation, the ball screws are nearly silent, while their noise is unprecedentedly low at high-speed rotation.

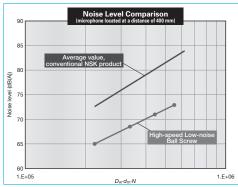


Fig. 1 Comparison of noise level

High-speed operation

Realizes a $d \cdot n$ value of 180 000, outstanding for ball screws and far surpassing the 100 000 $d \cdot n$ performance of existing tube recirculation products. For high-lead ball screws, high-speed operation at over 200 m/min is also possible.

Compact

The external diameter of the ball nut is 30% smaller than our existing models. Compact configurations are possible for low-profile XY tables as well as for other devices and equipment.

Grease fitting provided as standard equipment

Ball screws with shaft diameters equal to or less than $\emptyset 25$ are equipped with a grease fitting (M5 \times 0.8) as a standard. Lubrication ports are provided in 2 places for ease of maintenance. The ball screws can be easily connected to an integrated lubrication system.

2. Specifications

(1) Ball recirculation system

Fig. 2 shows the structure of a end-deflector recirculation system.

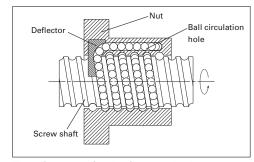


Fig. 2 Structure of end-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grades and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C0, C1, C2, C3, C5, Ct7
Axial play	Z, 0 mm (preloaded); T, 0.005 mm or less;
Axiai piay	S, 0.020 mm or less; N, 0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

The allowable $d \cdot n$ value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value : 180 000 or less Standard of rotational speed: 5 000 min⁻¹ Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Seal

A compact and thin plastic seal is used. Nut outside diameter is compact comprared with tube recirculation systems.

(5) Options

An optional NSK K1 lubrication unit, molded from resin and saturated with lubrication oil, supplies fresh oil onto ball rolling surfaces, ensuring long-term, maintenance-free operation. Please contact NSK when using NSK K1.

3. Design precaution

When designing the shaft end of a ball screw with a diameter is 25 mm or less or 32 mm or over and the lead is the same as its shaft diameter, one end of the screw must meet one of the following conditions. If not, we cannot

install the ball nut on the screw shaft.

- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove d, specified on the dimension table.

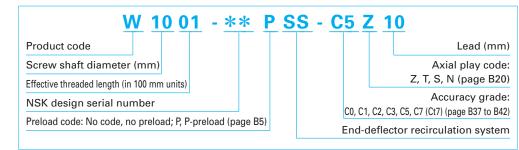
For general precautions regarding ball screws, refer to "Design Precautions"(page B83) and "Handling Precautions"(page B103).

4. Lineup

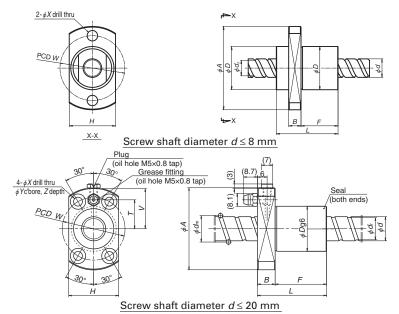
End deflector ball screws are available in the following varieties:

Table 2 End-deflector ball screw lineup

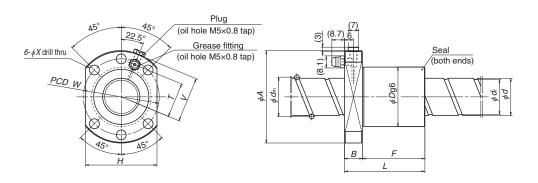
Nut	Shape	Flange shape	Nut shape	Preload
BSS		Circular Ⅱ, Ⅲ	Circular	Nopreload, Slight axial play P-preload (light preload)


5. Structure of model number and reference number

The following explains the codes used in model numbers and ball screw reference numbers.

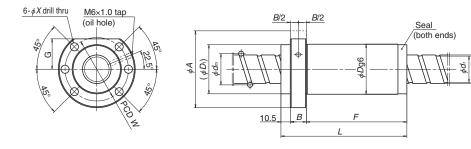


○Reference number for ball screws


B431 B432

	Claste alia	1 1	D-II-II-	Ball circle	Daat dia		Basic load	ratings (N)	Axial rigidity
Model No.	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Effective	Dynamic	Static	K
	d	l	$D_{\rm w}$	d _m	d _r	ball turns	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
BSS0608-2E		8				2	690	805	32
BSS0608-4E	6	8	1.2	6.2	4.9	4	1 480	1 940	75
BSS0612-2E	0	12	1.2	0.2	4.9	2	665	800	29
BSS0612-4E		12				4	1 430	1 970	69
BSS0810-2E		10				2	1 150	1 420	43
BSS0810-4E	8	10	1.588	8.3	6.6	4	2 470	3 430	99
BSS0815-2E	0	15	1.000	0.3	0.0	2	1 130	1 430	40
BSS0815-4E		15				4	2 410	3 520	93
BSS1005-3E	10	5	2.000	10.3	8.2	3	3 420	4 840	133
BSS1010-2E	10	10	2.000	10.3	0.2	2	2 290	2 980	81
BSS1205-3E		5				3	3 750	5 810	154
BSS1210-3E	12	10	2.000	12.3	10.2	3	3 760	5 780	150
BSS1220-2E	12	20	2.000	12.3	10.2	2	2 330	3 600	86
BSS1230-2E		30				2	2 190	3 650	75
BSS1505-3E		5	2.778		12.6	3	6 410	10 100	193
BSS1510-3E	15	10	2.778	15.5	12.6	3	6 530	10 200	192
BSS1520-2E	15	20	3.175	10.0	12.2	2	5 660	8 700	132
BSS1530-2E		30	3.175		12.2	2	5 500	8 580	119
BSS2005-3E		5				3	10 400	18 500	284
BSS2010-3E		10				3	10 200	18 600	281
BSS2020-2E	20	20	3.175	20.5	17.2	2	6 790	11 800	175
BSS2030-2E	20	30	3.175	20.5	17.2	2	6 550	11 800	164
BSS2040-2E		40				2	6 380	11 600	151
BSS2060-2E		60				2	5 680	11 800	126
BSS2505-3E		5				3	11 500	23 500	343
BSS2510-4E		10				4	15 000	32 400	460
BSS2520-2E	25	20	3.175	25.5	22.2	2	7 650	14 800	214
BSS2525-2E	20	25	3.175	25.5	22.2	2	7 490	14 600	206
BSS2530-2E		30				2	7 490	14 600	203
BSS2550-2E		50				2	6 910	14 700	180

Note: 1) The axial rigidity K in the table above is a theoretical value derived from elastic deformation between screw grooves and balls when axial load is applied to a ball nut for which preload is set at 3% of the basic dynamic load rating (C_a). The standard Compact FA PSS model is available for ball screws with shaft diameters less than ø25.


Screw shaft diameter d = 25 mm

											Unit: mm
Nut total	Nut	Flange	Flange	Nut	Flange di	mensions	Bolt hole	Bolt I	nole dimen	sions	Oil hole
length	diameter	diameter	width	length			PCD				distance
L	D	Α	В	F	l _H	l v	W	X	Y	Z	T
16			В	8	- ' '	V	0.0	//	,		,
24				16							
20	14	27	4	12	15 (10)	_	21	3.4	_	_	_
32				24							
18				10							
28				20							
22	18	31	4	14	19 (13)	_	25	3.4	_	_	_
37				29							"
29	23	43	11	18	200	21	33	4 -	8	4 -	1.4
32	23	43	11	21	26	21	33	4.5	8	4.5	14
30				19							
43	24	44	11	32	27	21.5	34	4.5	8	4.5	14.5
50	24	44	11	39	27	21.5	34	4.5		4.5	14.5
70				59							
30	28	51		19	31	25	39				18
43	28	51	11	32	31	25	39	5.5	9.5	5.5	18
51	32	55		40	33	27	43	0.0	0.0	0.0	20
71	32	55		60	33	27	43				20
31				18							
45 54				32							
74	36	62	13	41 61	38	30.5	49	6.6	11	6.5	23.5
92				79							
129				116							
32				20							
56				44							
54	4.0	00	4.0	42				0.0			00.5
63	40	62	12	51	48	30.5	51	6.6	_	_	23.5
74				62							
114				102							

- 2) Axial play for shaft diameters of 6 mm and 8 mm is only for T equal to or less than 0.005 mm.
- 3) Dimensions in parentheses are for flat nut configurations.

B433 B434

8- ¢X drill thru M6×1.0 tap (oil hole) Seal (both ends)

Screw shaft diameter d = 32 mm

	1			1					
	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective		ratings (N)	Axial rigidity
Model No.	Oriare ala.	Loud	Bail ala.	dia.	rioot ala.	ball turns	Dynamic	Static	K
	d	l	$D_{\rm w}$	d _m	d,	Daii tuiris	$C_{\scriptscriptstyle \mathrm{a}}$	$C_{\scriptscriptstyle \mathrm{0a}}$	(N/µm)
BSS3205-4E		5	3.175	32.5	29.2	4	16 800	41 700	566
BSS3210-6E		10	5.556	33	27.2	6	50 900	110 000	907
BSS3212-5E		12	5.556	33	27.2	5	43 000	91 300	755
BSS3216-5E	32	16	5.556	33	27.2	5	44 300	90 800	756
BSS3220-5E		20	5.556	33	27.2	5	43 900	91 200	752
BSS3232-2E		32	5.556	33	27.2	2	17 700	32 900	274
BSS3264-2E		64	5.556	33	27.2	2	16 800	32 900	240
BSS3605-3E		5	3.175	36.5	33.2	3	13 500	34 100	459
BSS3610-6E		10	6.35	37	30.4	6	65 000	141 000	1 018
BSS3612-6E	36	12	6.35	37	30.4	6	64 800	141 000	1 014
BSS3616-6E		16	6.35	37	30.4	6	64 500	142 000	1 012
BSS3620-6E		20	6.35	37	30.4	6	64 000	141 000	1 001
BSS4010-5E		10				5	58 100	130 000	924
BSS4012-5E		12				5	58 000	130 000	922
BSS4016-5E		16				5	57 700	131 000	921
BSS4020-5E	40	20	6.35	41	34.4	5	57 400	130 000	913
BSS4025-4E	40	25	0.00	-	04.4	4	46 300	102 000	720
BSS4030-3E		30				3	36 100	74 800	533
BSS4040-2E		40				2	23 700	47 100	334
BSS4080-2E		80				2	22 200	46 600	289
BSS4510-5E		10				5	62 400	147 000	1 026
BSS4512-5E		12				5	62 300	147 000	1 023
BSS4516-5E	45	16	6.35	46	39.4	5	62 100	147 000	1 018
BSS4520-5E	10	20	0.00	10	00.1	5	61 800	146 000	1 011
BSS4525-5E		25				5	61 400	147 000	1 006
BSS4530-4E		30				4	49 600	115 000	790
BSS5010-4E		10				4	52 600	129 000	883
BSS5012-4E		12				4	52 500	129 000	881
BSS5016-4E		16	6.35			4	52 400	128 000	878
BSS5020-4E	50	20		51	44.4	4	52 200	129 000	879
BSS5025-4E		25	0.00	"		4	51 900	129 000	871
BSS5030-4E		30				4	51 500	128 000	861
BSS5050-2E		50				2	26 100	58 300	394
BSS50100-2E		100				2	24 100	58 900	343

Note: The axial rigidity K in the table above is a theoretical value derived from elastic deformation between screw grooves and balls when axial load is applied to a ball nut for which preload is set at 3% of the basic dynamic load rating (C_s) .

Screw shaft diameter $d \ge 36 \text{ mm}$

- 1	Init:	mm

								Unit: mm
Nut total length	Nut diameter	Seal section diameter	Flange diameter	Flange width	Nut length	Flange notch	Bolt hole PCD	Bolt hole dimension
L	D	D_1	Α	В	F	G	W	X
55				12	32.5			
104				18	75.5			
103				18	74.5			5
122	56	(55)	86	18	93.5	34	71	9
141				18	112.5			<u> </u>
94				18	65.5			
153				18	124.5			2
50				12	27.5			
109		(2.1)		22	76.5			
120	65	(64)	95	22	87.5	36	80	9
143				22 110.5				
166 99				22	133.5			
108					66.5 75.5			
127					94.5			
146		(69)	9) 100	22	113.5	38.5		
145	70				112.5		85	9
134					101.5			
110					77.5			
184					151.5			
99					66.5			
108					75.5			
127	75	(74)	110	22	94.5	43	93	11
146	/5	(74)	110		113.5	43	93	11
170					137.5			
164					131.5			
89					56.5			
96					63.5			
111					78.5			
126	82	(81)	118	22	93.5	46	100	11
145		,,	110		112.5			
164					131.5			
130					97.5			
224					191.5			

B435 B436

B-3-2.2 SRC Recirculation Ball Screws

1. Features

SRC Recirculation is a new generation standard method for ball recirculation in ball screws. Quiet operation is possible in all speed ranges.

2. Specifications

(1) Ball recirculation system

The structure of a SRC Recirculation system is shown below.

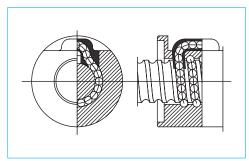


Fig.1 Structure of SRC recirculation system

Table 1 Accuracy grade and axial play

	C0, C1, C2, C3, C5, Ct7
Axial play	Z, 0 mm (preloaded); T, 0.005 mm or less;
	S, 0.020 mm or less

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are shown in **Table 1**. Please consult NSK for other grades.

(3) Allowable d⋅n value and the criterion of maximum rotational speed

The allowable $d \cdot n$ value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable *d·n* value: 160 000 or less Criterion of maximum rotational speed

: 5 000 min⁻¹

Note: Please also review the critical speed.

See "Technical Description: Permissible
Rotational Speed" (page B47) for details.

(4) Options

A type equipped with the NSK K1 lubrication unit is also available.

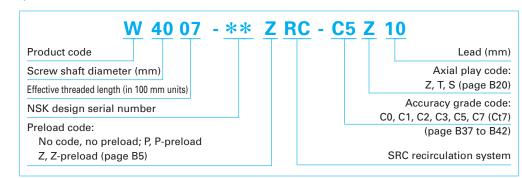
3. Lineup

There are three different preloads available (Table2).

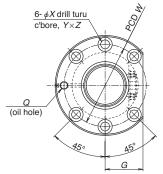
Table 2 SRC recirculation ball screws lineup

Nut	Shape	Flange shape	Nut shape	Preload
SFRC		Flanged Circular II	Circular	No preload Sligit axial play
PFRC		Flanged Circular II	Circular	P-preload (light preload) Spacer ball 1:1
ZFRC	nin ,	Flanged Circular II	Circular	Z-preload (medium preload)

4. Structure of model number and reference number

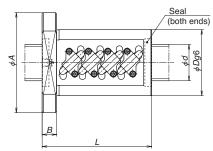

The following explains the codes used in model numbers and ball screw reference numbers.

♦ Model number



Note: In Z-preload, the number here is twice the effective ball turns.

○ Reference number for ball screw



				_	_			
		OL (: 1:		D . I	Effective ball turns	Basic load	ratings (N)	Axial rigidity
Model No.	Preload	Shaft dia.	Lead	Root dia.	Turns	Dynamic	Static] K
		d	l	d _r	× Circuits	C_{a}	C_{0a}	(N/µm)
ZFRC 2812-7	Z				3.5×1	26100	50200	592
PFRC 2812-3.5	Р	28	12	23.5	3.5×1	16400	25100	270
SFRC 2812-3.5	Clearance			3.5×1	26100	50200	381	
ZFRC 2816-5	Z				2.5×1	27400	47400	437
PFRC 2816-2.5	Р	28	16	22.4	2.5×1	17300	23700	199
SFRC 2816-2.5	Clearance				2.5×1	27400	47400	281
ZFRC 3205-10	Z				2.5×2	21800	56000	891
PFRC 3205-5	Р	32	5	29.2	2.5×2	13700	28000	406
SFRC 3205-5	Clearance				2.5×2	21800	56000	573
ZFRC 3210-10	Z				2.5×2	54500	110000	970
PFRC 3210-5	Р	32	10	26.4	2.5×2	34300	55100	434
SFRC 3210-5	Clearance				2.5×2	54500	110000	623
ZFRC 4005-10	Z				2.5×2	23900	70500	1067
PFRC 4005-5	Р	40	5	37.2	2.5×2	15100	35300	486
SFRC 4005-5	Clearance				2.5×2	23900	70500	685
ZFRC 4010-10	Z		10		2.5×2	61200	137000	1154
PFRC 4010-5	Р	40		34.4	2.5×2	38600	68300	526
SFRC 4010-5	Clearance				2.5×2	61200	137000	740
ZFRC 4012-10	Z	4.0	10	34.1	2.5×2	71700	154000	1177
PFRC 4012-5	Р	40	12		2.5×2	45200	77200	528
SFRC 4012-5	Clearance				2.5×2	71700	154000	756
ZFRC 4508-10	Z P	45		40.5	2.5×2	44000	118000	1234
PFRC 4508-5	-	45	8	40.5	2.5×2	27700	58900	557
SFRC 4508-5	Clearance				2.5×2	44000	118000	792
ZFRC 4510-10	Z P	45	10	20.4	2.5×2	65800	157000	1291
PFRC 4510-5 SFRC 4510-5		45	10	39.4	2.5×2 2.5×2	41500 65800	78500 157000	582 830
ZFRC 4510-5	Clearance Z				2.5×2	75600	176000	1304
PFRC 4512-10	P	45	12	39.1	2.5×2	47600	88200	586
SFRC 4512-5	Clearance	45	12	33.1	2.5×2	75600	176000	838
ZFRC 5010-10	Z				2.5×2	68100	174000	1397
PFRC 5010-10	P	50	10	44.4	2.5×2	42900	87200	630
SFRC 5010-5	Clearance	50	10	77.7	2.5×2	68100	174000	898
ZFRC 5012-10	Z				2.5×2	91500	218000	1441
PFRC 5012-5	P	50	12	43.2	2.5×2	57600	109000	647
SFRC 5012-5	Clearance				2.5×2	91500	218000	926
ZFRC 5508-10	Z				2.5×2	47300	144000	1439
PFRC 5508-5	P	55	8	50.5	2.5×2	29800	72000	651
SFRC 5508-5	Clearance				2.5×2	47300	144000	923
ZFRC 6312-14	Z				3.5×2	136000	385000	2388
PFRC 6312-7	Р	63	12	56.2	3.5×2	85400	193000	1078
SFRC 6312-7	Clearance				3.5×2	136000	385000	1539

Notes: 1. Values for axial rigidity K above are theoretical values elastic deformation between the screw groove and ball when axial load is applied to a ball nut for which preload is set at 3% for PFRC (P-preload), and 5% for ZFRC (Z-preload) of the basic dynamic load reting (C_s).

The number of circuits (number of circulating parts) may differ from the diagram

Unit: mm

Unit											
Nut total	Nut	Ba Flange	all nut dimer Flange	nsions Flange	Rolt h	ole dimei	neione	Bolt hole PCD	Oil hole	Max. feed speed	
length	diameter D	diameter A	width B	notch	X	Y	Z	W	Q	(m/min)	
128	D		D	U	Λ	,			_	(,,	
80	60	88	15	33	6.6	11	6.5	73	M6×1	60	
131											
83	73	101	15	38	6.6	11	6.5	86	M6×1	80	
83											i
89											
59	58	85	12	32	6.6	11	6.5	71	M6×1	25	
59											
163											OHO
103	74	108	15	41	9	14	8.5	90	M6×1	50	5
103											5
92											E
62	67	101	15	39	9	14	8.5	83	M6×1	25	FILE
62											2
166											
106	82	124	18	47	11	17.5	11	102	Rc1/8	40	Ē
106				.,					. 10 1/0		
192											
120	86	128	18	48	11	17.5	11	106	Rc1/8	48	
120	. 00	120	10	40		17.5	''	100	1101/0	40	
136											
88	82	104	10	47	11	17 5	11	102	D = 1 /O	28	
88	82	124	18	47	11	17.5	11	102	Rc1/8	28	
166											
106	88	132	18	50	11	17.5	11	110	Rc1/8	35	
106											
192]										
120	90	132	18	50	11	17.5	11	110	Rc1/8	42	
120											
166											
106	93	135	18	51	11	17.5	11	113	Rc1/8	32	
106											
198											
126	100	146	22	55	14	20	13	122	Rc1/8	38	
126											
133											
85	94	136	18	52	11	17.5	11	114	Rc1/8	23	
85	. 54	130	10	52	- ' '	17.5	''	''-	1101/0	20	
244								-			
148	115	161	22	61	14	20	13	137	Rc1/8	30	
148	110	101		01	14	20	13	13/	1101/8	30	
148											
0.0		o inatallad in I	DEDC								

2. Spacer balls are installed in PFRC.

NSK

B-3-2.3 Tube Recirculation Ball Screws

1. Features

Tube recirculation is a standard method for ball recirculation in ball screws. Various combinations of shaft diameter and lead are available.

2. Specifications

(1) Ball recirculation system

The structure of a tube recirculation system is shown below.

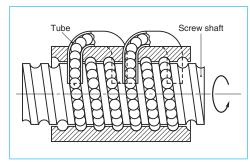


Fig.1 Structure of tube recirculation system

Table 1 Accuracy grade and axial play

Accuracy grade	SFT, PFT, ZFT, DFT:
Axial play	Z, 0 mm (preloaded); T, 0.005 mm or less; S, 0.020 mm or less; N, 0.050 mm or less

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are shown in **Table 1**. Please consult NSK for other grades.

(3) Allowable d·n value and the criterion of maximum rotational speed

The allowabale $d \cdot n$ value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below. Basic measures must be taken for high-speed ball screws.

Allowable $d \cdot n$ value :

Standard specification ; 70 000 or less High-speed specification; 100 000 or less

Standard of rotational speed: 3 000 min⁻¹

Note: Please also review the critical speed. Refer
to "Technical Description: Permissible
Rotational Speed" (page B47) for details.

(4) Options

A type equipped with the NSK K1 lubrication unit is also available.

(5) Other specifications

Please consult NSK for specifications not listed in the dimension tables.

3. Lineup

There are four different preloads available with several models. Since the leads range from 1/2 to the same length of the shaft diameter

Table 2 Tube recirculation ball screws lineup

Nut	Shape	Flange shape	Nut shape	Preload		
SFT		Flanged d=16mm or under	0: 1 1:	Nopreload, Slight axial play		
PFT		Rectangle d=20mm or over Circular I, II	Circle dia.	P-preload (light preload) Spacer ball 1:1		
ZFT		Flanged Circular I, II	Circle dia.	Z-preload (medium preload)		

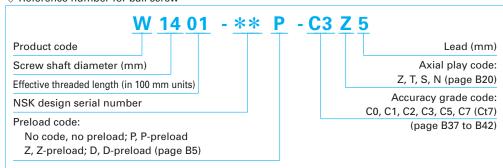
Nut	Shape	Flange shape	Nut shape	Preload
DFT	ing OO OO daa	Flanged Circular I, II	Circular	D-preload (medium preload) (heavy preload)
LSFT		Flanged d=20mm or under	d=20mm or under Circular	No preload, Slight axial play
LPFT		Rectangle d=25mm or over Circular II	d=25mm or over Tube- projecting type	P-preload (light preload) Spacer ball 1:1
LDFT		Flanged Circular II	Circular	D-preload (medium preload) (heavy preload)

(medium-high helix lead), LSFT, LPFT, and LDFT nut ball screws are suitable for high-speed operation.

4. Structure of model number and reference number

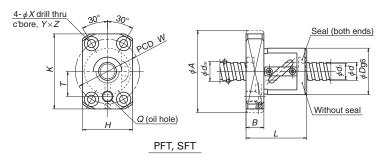
The following explains the codes used in model numbers and ball screw reference numbers.

♦ Model number


Nut:
SFT, PFT, ZFT, DFT
LSFT, LPFT, LDFT
Screw shaft diameter (mm)

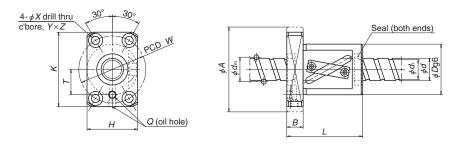
SFT 14 05 - 2.5

Effective ball turns (Note)
Lead (mm)


Note: In Z-preload, the number here is twice the effective ball turns.

♦ Reference number for ball screw

B441 B442



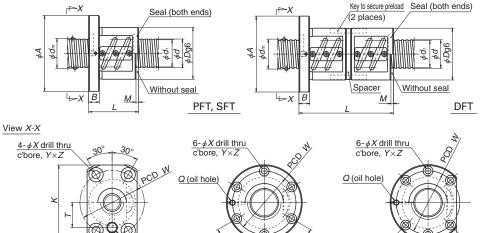
			Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns	Basic load	ratings (N)	Axial rigidity
	Model No.	Preload	oriare dia.	Loud	2011 0101	dia.	rioot dia.	Turns ×	Dynamic	Static	K
			d	l	D_{w}	d _m	d _r	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
*	PFT 1004-2.5	Р	10	4	2.000	10.2	0.0	0 Ev.1	2 020	2 210	79
	SFT 1004-2.5	Clearance	10	4	2.000	10.3	8.2	2.5×1	3 210	4 420	94
	PFT 1204-2.5	Р						2.5×1	2 780	3 140	93
	PFT 1204-3	Р		4	2.381	12.3	9.8	1.5×2	3 250	3 770	111
	SFT 1204-2.5	Clearance		4	2.301	12.5	3.0	2.5×1	4 410	6 280	111
	SFT 1204-3	Clearance]					1.5×2	5 160	7 540	132
*	PFT 1205-2.5	Р	12					2.5×1	2 770	3 130	92
	PFT 1205-3	Р	12	5	2.381	12.3	9.8	1.5×2	3 240	3 760	110
	SFT 1205-2.5	Clearance					0.0	2.5×1	4 390	6 260	110
	SFT 1205-3	Clearance						1.5×2	5 140	7 510	131
*	LPFT 1210-2.5			10	2.381	12.5	10.0	2.5×1	2 790	3 220	92
	LSFT 1210-2.5			10			10.0		4 430	6 430	110
*	PFT 1405-2.5	Р						2.5×1	5 020	5 970	126
	SFT 1405-2.5	Clearance		5	3.175	14.5	11.2	2.5×1	7 970	11 900	150
	PFT 1405-5	Р	14					2.5×2	9 110	11 900	244
	SFT 1405-5	Clearance						2.5×2	14 500	23 900	291
*	LPFT 1408-2.5			8	3.175	14.5	11.2	2.5×1	4 960	5 920	124
	LSFT 1408-2.5			_					7 880	11 800	147
*	LPFT 1510-2.5		15	10	3.175	15.5	12.2	2.5×1	5 130	6 420	129
	LSFT 1510-2.5		-						8 140	12 800	156
	PFT 1604-3	Р						1.5×2	3 740	5 130	141
	SFT 1604-2.5	Clearance						2.5×1	5 070	8 500	140
	DFT 1604-2.5	D P	16	4	2.381	16.3	13.8	2.5×1	5 070	8 500	275
PFT 1604-5							2.5×2	5 800	8 500	226	
	SFT 1604-3	Clearance						1.5×2	5 930	10 300	168
	DFT 1604-3	D						1.5×2	5 930	10 300	329

Notes: 1. Rectangular flanges are used for shaft diameters of 16 mm or less.

- 2. Seals are equipped as standard for LSFT and LPFT nuts when shaft diameter is 20 mm or less. The outside dimensions are the same as those without seals.
- 3. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws.

LPFT, LSFT

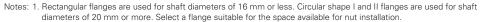
L	Jnı	t:	mm	


	Ball nut dimensions										
N	l NI i						1 1		D 1.1 1	0:11 1	
Nut total		Flange	Flange	Rectangle flan	ge dimensions	Bolt ho	ole dime	nsions	Bolt hole PCD	Oil hole distance	Oil hole
length	D	diameter		Н	K	V	Y	Ζ	W PCD	distance	
L	D	Α	В	П	Λ	X	Υ		VV	I	Q
34	26	46	10	28	42	4.5	8	4.5	36	14	M6×1
38											
44	30	50	10	32	45	4.5	8	4.5	40	15	M6×1
38	30	50	10	32	45	4.5	O	4.5	40	15	101071
44											
40											
48	30	50	10	32	45	4.5	8	4.5	40	15	M6×1
40	00	00	10	02	10	1.0	Ü	1.0	10		1410/11
48											
50	30	50	10	32	45	4.5	8	4.5	40	15	M6×1
40											
40	34	57	11	34	50	5.5	9.5	5.5	45	17	M6×1
55		34	57	11	34	50	5.5	9.5	5.5	40	17
55											
46	34	57	11	34	50	5.5	9.5	5.5	45	17	M6×1
51	34	57	11	34	50	5.5	9.5	5.5	45	17	M6×1
45	34			34							
38	34			34							
70	36	57		36			0.5		4.5	4-	
50	34 57 11 36			50	5.5	9.5	5.5	45	17	M6×1	
45	34			34							
85	36			36							

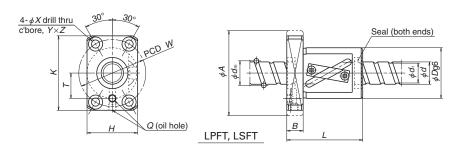
- 4. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C_s for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- 5. The basic load ratings with PFT and LPFT nuts are different due to the installed spacer balls.
- 6. Finished shaft end FA models are available for those models marked with an asterisk (*).
- 7. P-preload refers to oversize ball preload and D-preload to double-nut preload. For details, see page B5.

B443 B444

Rectangular shape



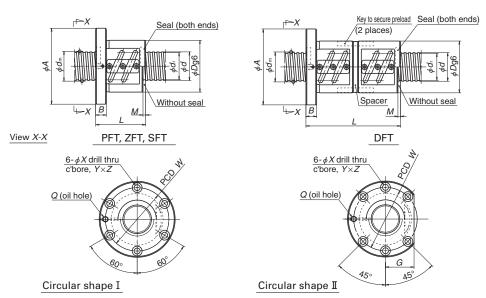
Circular shape II


Q (oil hole)

Circular shape I

				Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns Turns			Axial rigidity
	Model	l No.	Preload				dia.			Dynamic	Static	K
				d	l	D_{w}	d _m	d_{r}	~ ×	C _a	C_{0a}	(N/µm)
				u	ι	$\nu_{\rm w}$	u _m	$u_{\rm r}$	Circuits	_		
	PFT 160		Р						1.5×2	6 350	8 070	166
	SFT 160		Clearance						2.5×1	8 620	13 800	168
	DFT 160		D						2.5×1	8 620	13 800	330
	PFT 160		Р		5	3.175	16.5	13.2	2.5×2	9 850	13 800	270
	SFT 1605-3	Clearance		3	3.173	10.5	13.2	1.5×2	10 100	16 100	197	
	DFT 160)5-3	D						1.5×2	10 100	16 100	387
	SFT 160		Clearance						2.5×2	15 600	27 600	326
	DFT 160		D	16					2.5×2	15 600	27 600	639
	PFT 1606-2.5 SFT 1606-2.5 DFT 1606-2.5 SFT 1606-3	06-2.5	Р		6	3.175		13.2	2.5×1	5 410	6 880	139
		06-2.5	Clearance				16.5		2.5×1	8 590	13 800	168
		06-2.5	D						2.5×1	8 590	13 800	329
		06-3	Clearance					13.2	1.5×2	10 100	16 100	197
	DFT 160	06-3	D						1.5×2	10 100	16 100	386
*	LPFT 16	616-1.5	Р		16	3.175	16.75	13.4	1 5.71	4 180	5 390	107
	LSFT 16	616-1.5	Clearance		10	3.175	10.75	13.4	1.5×1	5 480	8 080	98
	SFT 200)4-2.5	Clearance				20.3		2.5×1	5 730	10 900	171
	DFT 200		D						2.5×1	5 730	10 900	336
*	PFT 200)4-5	Р		4	2.381		17.8	2.5×2	6 550	10 900	276
	SFT 200)4-5	Clearance						2.5×2	10 400	21 800	332
	DFT 200)4-5	D						2.5×2	10 400	21 800	651
	PFT 200)5-3	Р						1.5×2	7 140	10 300	201
	SFT 200)5-2.5	Clearance	20					2.5×1	9 690	17 100	201
	DFT 200)5-2.5	D						2.5×1	9 690	17 100	393
*	PFT 200)5-5	Р			0 175	20.5	17.2	2.5×2	11 100	17 100	327
	SFT 200	05-3	Clearance		5	3.175	20.5	17.2	1.5×2	11 300	20 500	238
	DFT 200)5-3	D						1.5×2	11 300	20 500	467
	SFT 200)5-5	Clearance						2.5×2	17 600	34 200	388
	DFT 200)5-5	D						2.5×2	17 600	34 200	762

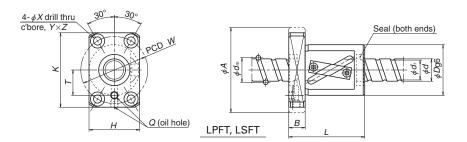
- 2. If no seal is used with nuts PFT, SFT, or DFT, the nut length will be shortened by the amount of dimension M.
- 3. Seals are equipped as standard for LSFT and LPFT nuts when shaft diameter is 20 mm or less. The outside dimensions are the same as those without seals.
- 4. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws.


	m	

	Ball nut dimensions											1		
Nut total length L	Nut diameter D	Flange diameter A	Flange width B	Flange notch G	Rectangle flan	ge dimensions K	Seal dimension M	Bolt ho	ole dime	ensions Z	Bolt hole PCD W	Oil hole distance T	Oil hole	Tube r
52 42 77 57 52 97 57 107	40	63	11	_	40	55	_	5.5	9.5	5.5	51	20	M6×1	Tube recirculation
44 44 86 56 110	40	63	11	_	40	55	_	5.5	9.5	5.5	51	20	M6×1	
56	40	63	12	_	40	55	_	5.5	9.5	5.5	51	17	M6×1	
37 69 49 49 93	40	63	11	24	_	_	3	5.5	9.5	5.5	51	_	M6×1	
52 41 76 56 52 97 56 106	44	67	11	26	_	_	3	5.5	9.5	5.5	55	_	M6×1	

- 5. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C, for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- 6. The basic load ratings with PFT and LPFT nuts are different due to the installed spacer balls.
- 7. Finished shaft end FA models are available for those models marked with an asterisk (*).
- 8. P-preload refers to oversize ball preload and D-preload to double-nut preload. For details, see page B5.

B445 B446


						Ball circle		Effective ball turns	Basic load	Axial	
	Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
	Model No.	Freitau	,	,	_	',	,	×	· '		K
			d	l	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
	PFT 2006-2.5	Р						2.5×1	8 120	10 500	172
	PFT 2006-3	Р						1.5×2	9 500	12 600	204
	SFT 2006-2.5	Clearance		6	3.969	20.5	16.4	2.5×1	12 900	21 000	204
	DFT 2006-2.5	D		O	3.303	20.5	10.4	2.5×1	12 900	21 000	401
	SFT 2006-3	Clearance						1.5×2	15 100	25 200	243
	DFT 2006-3	D						1.5×2	15 100	25 200	477
	PFT 2008-2.5	Р						2.5×1	8 080	10 500	170
	SFT 2008-2.5 DFT 2008-2.5 SFT 2008-3	Clearance	20		3.969	20.5		2.5×1	12 800	20 900	203
		D		8			16.4	2.5×1	12 800	20 900	397
		Clearance						1.5×2	15 000	25 100	241
	DFT 2008-3	D						1.5×2	15 000	25 100	473
*	LPFT 2010-2.5	Р		10	3.969	21.0	16.9	2.5×1	8 350	11 000	177
	LSFT 2010-2.5	Clearance			0.000	20		2.0/11	13 300	21 900	211
	LPFT 2016-2.5	Р		16	3.969	21.0	16.9	2.5×1	8 170	10 800	171
	LSFT 2016-2.5	Clearance							13 000	21 600	203
*	LPFT 2020-1.5	Р		20	3.969	21.0	16.9	1.5×1	6 250	8 760	132
	LSFT 2020-1.5	Clearance							8 190	13 100	123
	SFT 2504-2.5	Clearance			2.381	25.3		2.5×1	6 220	13 600	203
.1.	ZFT 2504-5 PFT 2504-5	Z					22.8	2.5×1	6 220 7 110	13 600 13 600	399 328
*	SFT 2504-5	Clearance		4	2.381	25.3	22.8	2.5×2 2.5×2	11 300	27 200	328
	ZFT 2504-10							2.5×2 2.5×2	11 300	27 200	
	PFT 2505-3	Z	-					1.5×2	7 940	12 800	773 235
	SFT 2505-3	Clearance						2.5×1	10 800	21 800	243
	ZFT 2505-2.5	Z	25					2.5×1	10 800	21 800	477
4	PFT 2505-5	P	25					2.5×2	12 300	21 800	391
4	SFT 2505-3	Clearance						1.5×2	12 600	25 600	285
	DFT 2505-3	D		5	3.175	25.5	22.2	1.5×2	12 600	25 600	558
	PFT 2505-7.5	P						2.5×3	17 500	32 700	576
	SFT 2505-5	Clearance						2.5×2	19 600	43 600	470
	ZFT 2505-10	7						2.5×2	19 600	43 600	923
	SFT 2505-7.5	Clearance						2.5×3	27 700	65 400	692
	O E000-7.0	Olourulloo						2.0/0	2,700	00 T00	002

Notes: 1. Rectangular flanges are used for shaft diameters of 16 mm or less. Circular shape I and II flanges are used for shaft diameters of 20 mm or more. Select a flange suitable for the space available for nut installation.

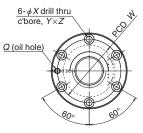
2. If no seal is used with nuts PFT, SFT, or DFT, the nut length will be shortened by the amount of dimension *M*.

3. Seals are equipped as standard for LSFT and LPFT nuts when shaft diameter is 20 mm or less. The outside dimensions are the same as those without seals.

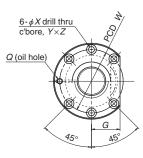
Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws.

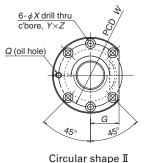
	m	

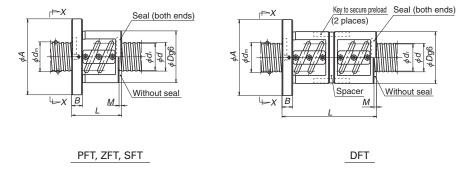
	Ball nut dimensions													
Nut total length		Flange diameter <i>A</i>	Flange width B	Flange notch G	Rectangle flan			Bolt ho	le dime	nsions Z	Bolt hole PCD W	Oil hole distance T	Oil hole	Tube
44 56 44 86 56	48	71	11	27	_	_	3	5.5	9.5	5.5	59	_	M6×1	Tube recirculation
54 54 102 64 120	48	75	13	28	_	_	5	6.6	11	6.5	61	_	M6×1	
54	46	74	13	_	46	66	_	6.6	11	6.5	59	24	M6×1	
72	46	74	13	_	46	66	_	6.6	11	6.5	59	24	M6×1	
63	46	74	13	_	46	66	_	6.6	11	6.5	59	24	M6×1	
36 48 48 48 72	46	69	11	26	_	_	3	5.5	9.5	5.5	57	_	M6×1	
52 40 55 55 52 102 70 55 85 70	50	73	11	28	_	_	3	5.5	9.5	5.5	61	_	M6×1]


5. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.

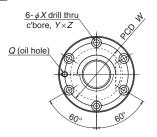
6. The basic load ratings with PFT and LPFT nuts are different due to the installed spacer balls.
7. Finished shaft end FA models are available for those models marked with an asterisk (*).

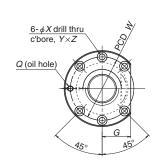

8. P-preload refers to oversize ball preload and D-preload to double-nut preload. For details, see page B5.


Unit: mm


View X-X

								em e i i ii	D	(8.0)	Α
			Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.		Basic load		
	Model No.	Preload				dia.		Turns ×	Dynamic	Static	rigidity K
			d	l	D _w	d _m	d _r	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
	PFT 2506-3	Р						1.5×2	10 700	16 000	247
	SFT 2506-2.5	Clearance						2.5×1	14 500	26 700	247
	ZFT 2506-5	Z						2.5×1	14 500	26 700	485
*	PFT 2506-5	Р			2.000	م ا	01.4	2.5×2	16 600	26 700	402
	SFT 2506-3	Clearance		6	3.969	25.5	21.4	1.5×2	17 000	32 000	294
	DFT 2506-3	D						1.5×2	17 000	32 000	577
	SFT 2506-5	Clearance						2.5×2	26 300	53 400	478
	ZFT 2506-10	Z						2.5×2	26 300	53 400	938
	PFT 2508-2.5	Р						2.5×1	11 700	15 900	213
	PFT 2508-3	Р			4.762	25.5		1.5×2	13 700	18 900	245
	SFT 2508-2.5	Clearance		0			20.5	2.5×1	18 500	31 800	253
	ZFT 2508-5	Z	25	8			20.5	2.5×1	18 500	31 800	495
	SFT 2508-3	Clearance						1.5×2	21 700	37 900	299
	DFT 2508-3	D						1.5×2	21 700	37 900	587
	PFT 2510-2.5	Р						2.5×1	11 600	15 900	211
	ZFT 2510-3	Z						1.5×1	11 900	18 900	301
	PFT 2510-3	P						1.5×2	13 600	18 900	243
	SFT 2510-2.5	Clearance						2.5×1	18 500	31 700	251
	DFT 2510-2.5	D		10	4.762	25.5	20.5	2.5×1	18 500	31 700	493
	SFT 2510-3	Clearance						1.5×2	21 600	37 800	297
	DFT 2510-3	D						1.5×2	21 600	37 800	583
	SFT 2510-3.5	Clearance						3.5×1	24 700	44 600	347
	DFT 2510-3.5	D						3.5×1	24 700	44 600	681

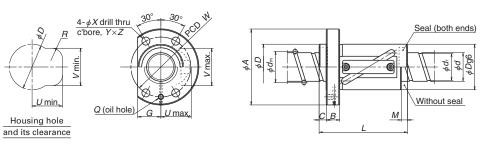

- Notes: 1. Circular shape I and Circular shape II flanges are used for shaft diameters of 20 mm or more. Select a flange suitable for the space available for nut installation.
 - 2. If no seal is used with nuts PFT, SFT, ZFT, or DFT, the nut length will be shortened by the amount of dimension M.
 - 3. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws.


				Rall	nut dimens	ione				011111		
Nut total	Nut	Flanged	Flanged	Flange	Seal		nole dimen	sions	Bolt hole			
length	diameter	diameter	width	notch	dimension	DOIL	lole diffieri	310113	PCD	Oil hole		
Ľ	D	Α	В	G	М	X	Y	Ζ	W	Q		
56												
44												
62												
62	53	76	11	29	3	5.5	9.5	5.5	64	M6×1		
56	33	70	' '	25	3	5.5	5.5	0.0	04	1010/1		
110												
62												
98												
56												
69												
56	58	85	85	85	13	32	5	6.6	11	6.5	71	M6×1
80						02	Ů	0.0		0.0	, ,	
69												
133												
67												
81												
81												
67	F0	0.5	1.5	20		0.0	11	0.5	71	N 4 C 1		
127	58	85	15	32	8	6.6	11	6.5	71	M6×1		
81												
151 77												
147												
147												

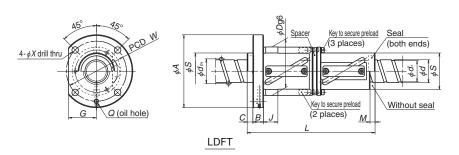
- 4. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C_a for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- 5. The basic load ratings with PFT nuts are different due to the installed spacer balls.
- 6. Finished shaft end FA models are available for those models marked with an asterisk (*).
- 7. P-preload refers to oversize ball preload and D-preload to double-nut preload. For details, see page B5.

B449 B450

View X-X


Circular shape I

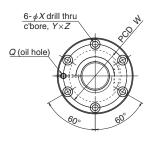
Circular shape I


			Shaft	Lead	Ball dia.	Ball	Root dia.	Effective ball turns			Axial	N I
	Model No.	Preload	dia.			Circle		Tullis	Dynamic	Static	rigidity	Nut total
			d	1		dia.	al	×		_	K	length
			d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)	L
	LPFT 2516-2.5	P						2.5×1	11 400	16 500	213	84
	LPFT 2516-3	P						1.5×2	13 400	19 500	251	100
	LSFT 2516-2.5	Clearance		4.0	4 700	00.05	04.0	2.5×1	18 100	33 000	253	84
	LDFT 2516-2.5	D		16	4.762	26.25	21.3	2.5×1	18 100	33 000	496	152
	LSFT 2516-3	Clearance						1.5×2	21 200	39 000	298	100
	LDFT 2516-3	D						1.5×2	21 200	39 000	584	181
*	LPFT 2520-2.5	Р						2.5×1	11 700	16 300	211	96
	LPFT 2520-3	Р	25					1.5×2	13 700	19 300	248	116
	LSFT 2520-2.5	Clearance		0.0	4 700	00.05	04.0	2.5×1	18 600	32 600	251	96
	LDFT 2520-2.5	D		20	4.762	26.25	21.3	2.5×1	18 600	32 600	492	177
		Clearance						1.5×2	21 800	38 600	296	116
	LDFT 2520-3	D						1.5×2	21 800	38 600	580	217
*	LPFT 2525-1.5	P						110/12	8 970	13 100	165	90
	LDFT 2525-1.5	D.		25	4.762	26.25	21.3	1.5×1	11 700	19 700	297	166
		Clearance		20	1.702	20.20	21.0	1.0/(1	11 700	19 700	151	90
	SFT 2805-2.5	Clearance						2.5×1	11 300	24 400	265	41
	ZFT 2805-5	Z						2.5×1	11 300	24 400	519	56
	PFT 2805-5	P	28	5	3.175	28.5	25.2	2.5×2	13 000	24 400	432	56
		Clearance	20	5	3.175	20.0	20.2	2.5×2	20 600	48 700	514	56
-1-		Z						-				86
*	ZFT 2805-10	4						2.5×2	20 600	48 700	1 007	86

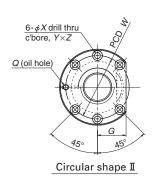
Notes: 1. Circular shape I and Circular shape II flanges are used for shaft diameters of 20 mm or more. Select a flange suitable for the space available for nut installation.

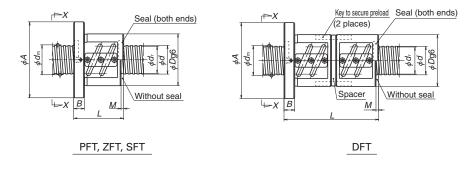
- 2. If no seal is used with nuts PFT, ZFT, or SFT, the nut length will be shortened by the amount of dimension M.
- 3. If no seal is used with nuts LSFT or LDFT, the nut length will be shortened by the amount of dimension M and C.
- 4. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws.

LPFT, LSFT


															OTHE. ITHII
						Ball	nut dir	mensic	ns						
Nut dia	ameter	Flange	Flange	Flange	Projectin	g tube dir	mensions	Seal dim	ensions	Diameter	Bolt ho	ole dime	ensions	Bolt hole	Oil hole
		diameter		notch						g6				PCD	
D	S	Α	В	G	U	V	R	M	С	J	X	Y	Z	W	Q
44	_	71		23	31	35	12			_				57	
44	_	71		23	31	35	12			_				57	
44	_	71	12	23	31	35	12	6	8	_	6.6			57	M6×1
62	44	89	12	34	_	_	_	0	0	18	0.0	_	_	75	IVIOAI
44	_	71		23	31	35	12			_				57	
62	44	89		34						18				75	
44	_	71		23	31	35	12			_				57	
44	_	71		23	31	35	12			_				57	
44	_	71	12	23	31	35	12	7	8	_	6.6	l		57	M6×1
62	44	89	12	34	_	_	_	,	0	18	0.0			75	IVIOAI
44	_	71		23	31	35	12			_				57	
62	44	89		34	_	_	_			18				75	
44	_	71		23	32	34	12			_				57	
62	44	89	12	34	_	_	_	10	10	18	6.6	—	—	75	M6×1
44	_	71		23	32	34	12			_				57	
55	_	85	12	31	_	_	_	3	_	_	6.6	11	6.5	69	M6×1

- 5. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C, for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- 6. The basic load ratings with PFT and LPFT nuts are different due to the installed spacer balls.
- 7. Finished shaft end FA models and standard SA models are available for those models marked with an asterisk (*).
- 8. P-preload refers to oversize ball preload and D-preload to double-nut preload. For details, see page B5.


B451


NSK

View X-X

Circular shape I

Ball nut dimensions

Seal

dimension

Μ

Bolt hole dimensions

-						.		Effective hell turns	D: - II		Axial
			Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Turns	Basic load		
	Model No.	Preload				dia.		X	Dynamic	Static	rigidity <i>K</i>
			d	l	D_{w}	d _m	d,	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
F	PFT 2806-3	Р						1.5×2	8 350	14 600	265
5	SFT 2806-2.5	Clearance						2.5×1	11 300	24 300	265
Z	ZFT 2806-5	Z						2.5×1	11 300	24 300	519
* F	PFT 2806-5	Р		6	3.175	28.5	25.2	2.5×2	12 900	24 300	430
5	SFT 2806-3	Clearance		О	3.175	28.5	25.2	1.5×2	13 200	29 200	315
	DFT 2806-3	D						1.5×2	13 200	29 200	617
5	SFT 2806-5	Clearance						2.5×2	20 600	48 700	513
* 2	ZFT 2806-10	Z	28					2.5×2	20 600	48 700	1 006
F	PFT 2810-2.5	Р						2.5×1	12 300	17 900	229
	ZFT 2810-3	Z						1.5×1	12 600	21 400	332
F	PFT 2810-3	P						1.5×2	14 400	21 400	275
5	SFT 2810-2.5	Clearance		10	4.762	28.5	23.5	2.5×1	19 600	35 800	277
	OFT 2810-2.5	D						2.5×1	19 600	35 800	543
	SFT 2810-3	Clearance						1.5×2	22 900	42 700	328
	OFT 2810-3	D						1.5×2	22 900	42 700	643
	SFT 3204-2.5	Clearance						2.5×1	6 850	17 500	247
	ZFT 3204-5	Z						2.5×1	6 850	17 500	485
	PFT 3204-5	Р		4	2.381	32.3	29.8	2.5×2	7 840	17 500	403
	SFT 3204-5	Clearance						2.5×2	12 400	35 000	479
	ZFT 3204-10	Z]					2.5×2	12 400	35 000	939
	PFT 3205-3	Р						1.5×2	8 850	16 800	296
	SFT 3205-2.5	Clearance						2.5×1	12 000	28 000	296
	ZFT 3205-5	Z	32					2.5×1	12 000	28 000	580
	PFT 3205-5	Р	52					2.5×2	13 700	28 000	481
	SFT 3205-3	Clearance						1.5×2	14 000	33 600	351
	OFT 3205-3	D		5	3.175	32.5	29.2	1.5×2	14 000	33 600	689
	PFT 3205-7.5	Р						2.5×3	19 500	42 000	709
	SFT 3205-5	Clearance						2.5×2	21 800	56 000	572
* 7	ZFT 3205-10	Z						2.5×2	21 800	56 000	1 123
5	SFT 3205-7.5 Clearance DFT 3205-7.5 D						2.5×3	30 900	84 000	843	
							2.5×3	30 900	84 000	1 652	

Notes: 1. Circular shape I and Circular shape II flanges are used for shaft diameters of 20 mm or more. Select a flange suitable for the space available for nut installation.

- 2. If no seal is used with nuts PFT, SFT, ZFT, or DFT, the nut length will be shortened by the amount of dimension M.
- 3. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws.

57											è
45											ē
63											2
63	55	85	12	31	3	6.6	11	6.5	69	M6×1	٤
57	55	85	12	31	3	0.0	11	0.5	69	IVIOXI	Ē
111											E
63											E
99 68											
68											
82 82 68											
82											Ŧ
68	60	94	15	36	7	9	14	8.5	76	M6×1	
128											
82											
152											
37											
49 49											
49	54	81	12	31	3	6.6	11	6.5	67	M6×1	
49											
73 53											
53											
41											
56 56											
56											

4. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C, for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.

3

6.6

11

6.5

71

M6×1

- 5. The basic load ratings with PFT nuts are different due to the installed spacer balls.
- 6. Finished shaft end FA models are available for those models marked with an asterisk (*).

32

7. P-preload refers to oversize ball preload and D-preload to double-nut preload. For details, see page B5.

Unit: mm

Oil hole

Q

Bolt hole PCD

W

B453

Nut total

length

53 103 71

58

85

12

Nut

diameter

D

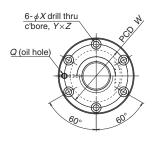
Flanged

diameter

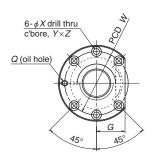
Flanged

width

В

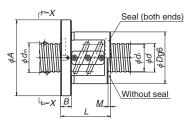

Flange

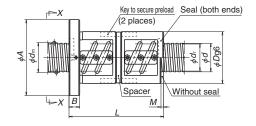
notch


G

NSK

View X-X



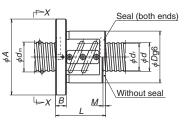

Circular shape I

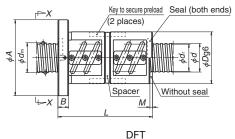
			Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective ball turns Turns	Basic load		Axial rigidity
	Model No.	Preload				ula.		×	Dynamic	Static	K
			d	l	D_w	$d_{\scriptscriptstyle m m}$	d _r	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
	PFT 3206-3	Р						1.5×2	11 800	20 600	300
	SFT 3206-2.5	Clearance						2.5×1	16 000	34 700	302
	ZFT 3206-5	Z						2.5×1	16 000	34 700	592
	PFT 3206-5	Р		6	3.969	32.5	28.4	2.5×2	18 300	34 700	491
	SFT 3206-3	Clearance		U	0.000	02.0	20.1	1.5×2	18 800	41 200	357
	DFT 3206-3	D						1.5×2	18 800	41 200	700
-1-	SFT 3206-5	Clearance						2.5×2	29 100	69 300	585
*	ZFT 3206-10 PFT 3208-3	Z P						2.5×2 1.5×2	29 100 15 100	69 300 24 700	1 146 308
	SFT 3208-2.5	Clearance						2.5×1	20 600	40 900	308
	ZFT 3208-5	Z						2.5×1	20 600	40 900	602
	PFT 3208-5	P						2.5×2	23 500	40 900	493
	SFT 3208-3	Clearance		8	4.762	32.5	27.5	1.5×2	24 000	49 400	366
	ZFT 3208-6	Z		O	1.702	02.0	27.0	1.5×2	24 000	49 400	718
	SFT 3208-5	Clearance						2.5×2	37 300	81 800	594
	DFT 3208-5	D						2.5×2	37 300	81 800	1 164
	ZFT 3208-10	Z						2.5×2	37 300	81 800	1 164
	PFT 3210-2.5	Р	1					2.5×1	18 900	27 600	266
	ZFT 3210-3	Z	32					1.5×1	19 300	32 300	381
	PFT 3210-3	Р						1.5×2	22 100	32 300	316
	SFT 3210-2.5	Clearance						2.5×1	30 000	55 100	322
*		Z						2.5×1	30 000	55 100	631
	PFT 3210-5	Р		4.0	0.05	00.0	00.4	2.5×2	34 300	55 100	515
	SFT 3210-3	Clearance		10	6.35	33.0	26.4	1.5×2	35 100	64 500	376
	DFT 3210-3 SFT 3210-3.5	Clearance						1.5×2 3.5×1	35 100 40 100	64 500 76 600	738 441
	DFT 3210-3.5	D						3.5×1	40 100	76 600	865
	SFT 3210-3.5	Clearance						2.5×2	54 500	110 000	623
*	DFT 3210-5	D						2.5×2	54 500	110 000	1 222
	ZFT 3210-10	Z						2.5×2	54 500	110 000	1 222
	PFT 3212-2.5	P	1 1					2.5×1	18 800	27 500	265
	ZFT 3212-3	Ž						1.5×1	19 300	32 200	380
	PFT 3212-3	Р						1.5×2	22 000	32 200	315
	SFT 3212-2.5	Clearance		12	6.35	33.0	26.4	2.5×1	29 900	55 000	320
	DFT 3212-2.5	D						2.5×1	29 900	55 000	628
	SFT 3212-3	Clearance						1.5×2	35 000	64 400	375
	DFT 3212-3	D						1.5×2	35 000	64 400	735

Notes: 1. Circular shape I and Circular shape II flanges are used for shaft diameters of 20 mm or more. Select a flange suitable for the space available for nut installation.

- 2. If no seal is used with nuts PFT, SFT, ZFT, or DFT, the nut length will be shortened by the amount of dimension M.
- 3. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws.

PFT, ZFT, SFT

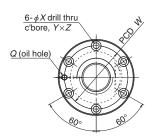

DFT

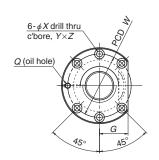

Unit: mm

Tube recirculation

Column C	Oil hole Q M6×1
Nut total length Nut diameter Flanged diameter Flanged width Flanged of motch Seal dimension Bolt hole dimensions Bolt hole PCD C 57 45 63 6	Q
Langth diameter diameter width notch dimension	Q
57 45 63 63 63 57 111 63	
45 63 63 57 111 63	M6×1
63 63 57 111 63	M6×1
63 57 111 63	M6×1
57 111 63	M6×1
111 63	
63	
99	
71	
58	
82	
82	
	M6×1
111	
82 154	
130	
70	
87	
87	
70	
100	
100	
	M6×1
167 80	
150	
100	
190	
160	
81	
97	
97 74 108 18 41 9 9 14 8.5 90 1	M6×1
81 1 1 1 1 1 1 1 1 1	1410/(1
153 97	
181	
101	

- 4. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C, for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- 5. The basic load ratings with PFT nuts are different due to the installed spacer balls.
- 6. Finished shaft end FA models are available for those models marked with an asterisk (*).
- 7. P-preload refers to oversize ball preload and D-preload to double-nut preload. For details, see page B5.

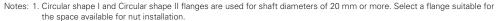


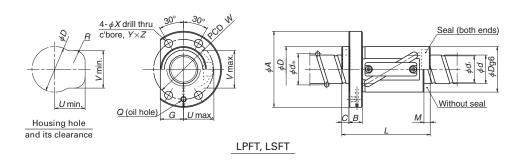


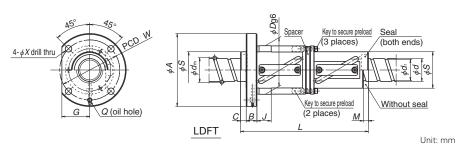
PFT, ZFT, SFT

View X-X

B457

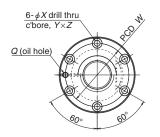


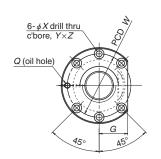

Circular shape I


Circular shape II

			Shaft			Ball		Effective ball turns	Basic load	ratings (N)	Axial	
	Model No.	Preload	dia.	Lead	Ball dia.	circle	Root dia.	Turns	Dynamic		rigidity	Nut total
	WIOGCI IVO.	1 TOTOGG	d	l		dia.		A. X.	Ca	C_{0a}	K	length
			и	ι	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d _r	Circuits			(N/µm)	L
	LPFT 3220-2.5	Р						2.5×1	13 000	20 900	255	99
	LPFT 3220-3	Р						1.5×2	15 300	25 100	301	119
	LSFT 3220-2.5	Clearance		20	4.762	33.25	28.3	2.5×1	20 700	41 900	307	99
	LDFT 3220-2.5	D						2.5×1	20 700	41 900	603	179
	LSFT 3220-3	Clearance						1.5×2	24 200	50 200	366	119
	LDFT 3220-3	D						1.5×2	24 200	50 200	717	219
*	LPFT 3225-2.5	Р						2.5×1	12 900	21 100	256	117
	LPFT 3225-3	P	32					1.5×2	15 100	24 900	295	142
	LSFT 3225-2.5	Clearance		25	4.762	33.25	28.3	2.5×1	20 400	42 200	304	117
	LDFT 3225-2.5	D						2.5×1	20 400	42 200	597	218
	LSFT 3225-3	Clearance						1.5×2	23 900	49 700	358	142
	LDFT 3225-3	D						1.5×2	23 900	49 700	702	268
*	LPFT 3232-1.5	Р							10 100	16 800	195	109
	LSFT 3232-1.5	Clearance		32	4.762	33.25	28.3	1.5×1	13 300	25 200	184	109
	LDFT 3232-1.5	D							13 300	25 200	361	205
	ZFT 3605-5	Z						2.5×1	12 600	31 600	637	59
	PFT 3605-5	P						2.5×2	14 400	31 600	529	59
	PFT 3605-7.5	P						2.5×3	20 400	47 500	779	74
	SFT 3605-5	Clearance	36	5	3.175	36.5	33.2	2.5×2	22 900	63 300	630	59
	ZFT 3605-10	Z						2.5×2	22 900	63 300	1 235	89
	SFT 3605-7.5	Clearance						2.5×3	32 400	94 900	926	74
	DFT 3605-7.5	D						2.5×3	32 400	94 900	1 817	139

- 2. If no seal is used with nuts PFT, ZFT, or SFT, the nut length will be shortened by the amount of dimension M.
- 3. If no seal is used with nuts LSFT or LDFT, the nut length will be shortened by the amount of dimension M and C.
- 4. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws.

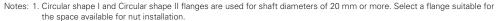

							LDF	-T			<u>'</u>					e
															Unit: mm	₫.
						Ball	nut dir	mensic	ns							쿌
Nut dia	ameter	Flanged	Flanged	Flange	Projectin	g tube dir	nensions	Seal dim	ensions	Diameter	Bolt ho	le dime	ensions	Bolt hole	Oil hole	recirculation
		diameter		notch		ĺ				g6				PCD		ē
D	S	A	В	G	U	V	R	M	С	J	X	Y	Z	W	Q	=
51	_	85		26	34	42	12			_				67		
51	_	85		26	34	42	12			_				67		
51	_	85	15	26	34	42	12	7	8	_	9			67	M6×1	
68	51	102	15	39	_	_	_	_ ′	0	20	9	_	_	84	IVIOXI	
51	—	85		26	34	42	12			_				67		
68	51	102		39	_	_	_			20				84		
51	_	85		26	34	42	12			_				67		
51	_	85		26	34	42	12			_				67		
51	—	85	15	26	34	42	12	10	10	_	9	_	_	67	M6×1	
68	51	102	10	39	_	_	_	10	10	20				84	IVIOXI	
51	—	85		26	34	42	12			_				67		
68	51	102		39						20				84		
51	—	85		26	34	42	12			_				67		
51	_	85	15	26	34	42	12	13	12	_	9	—	—	67	M6×1	
68	51	102		39	_	_	_			20				84		
65	_	100	15	38	_	_	_	3	_	_	9	14	8.5	82	M6×1	

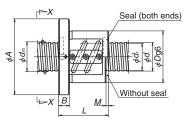

- 5. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C_a for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- 6. The basic load ratings with PFT and LPFT nuts are different due to the installed spacer balls.
- 7. Finished shaft end FA models and standard SA models are available for those models marked with an asterisk (*).
- 8. P-preload refers to oversize ball preload and D-preload to double-nut preload. For details, see page B5.

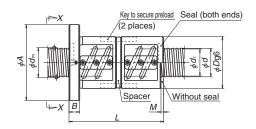
B458

NSK

View X-X




Circular shape I


Circular shape I

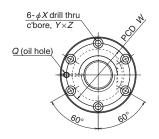
										-	
			Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns	Basic load	ratings (N)	Axial
	Model No.	Preload	Silait ula.	Leau	Dall Ula.	dia.	1100t ula.	Turns ×	Dynamic	Static	rigidity <i>K</i>
			d	l	$D_{\rm w}$	d _m	$d_{\rm r}$	Circuits	C _a	C_{0a}	(N/µm)
	ZFT 3606-5	Z						2.5×1	17 200	39 200	656
	PFT 3606-5	Р						2.5×2	19 700	39 200	545
	PFT 3606-7.5	Р						2.5×3	27 900	58 800	802
	SFT 3606-5	Clearance		6	3.969	36.5	32.4	2.5×2	31 300	78 400	648
	ZFT 3606-10	Z						2.5×2	31 300	78 400	1 271
	SFT 3606-7.5	Clearance						2.5×3	44 400	118 000	954
	DFT 3606-7.5	D	J [2.5×3	44 400	118 000	1 872
	PFT 3610-2.5	Р						2.5×1	20 100	30 500	290
	ZFT 3610-3	Z						1.5×1	20 600	36 600	422
	PFT 3610-3	Р	36					1.5×2	23 600	36 600	342
	SFT 3610-2.5	Clearance	50					2.5×1	32 000	61 100	350
*	ZFT 3610-5	Z						2.5×1	32 000	61 100	687
	PFT 3610-5	Р		10	6.35	37.0	30.4	2.5×2	36 600	61 100	562
	SFT 3610-3	Clearance		10	0.55	37.0	30.4	1.5×2	37 400	73 300	417
	DFT 3610-3	D						1.5×2	37 400	73 300	817
	PFT 3610-7.5	Р						2.5×3	51 800	91 600	826
	SFT 3610-5	Clearance						2.5×2	58 000	122 000	678
	DFT 3610-5	D						2.5×2	58 000	122 000	1 329
	ZFT 3610-10	Z						2.5×2	58 000	122 000	1 329
	SFT 3610-7.5	Clearance						2.5×3	82 200	183 000	998
	PFT 4005-3	Р						1.5×2	9 700	21 200	354
	SFT 4005-2.5	Clearance						2.5×1	13 200	35 300	354
	ZFT 4005-5	Z P						2.5×1	13 200	35 300	695
	PFT 4005-5							2.5×2	15 100	35 300	577 421
	SFT 4005-3 DFT 4005-3	Clearance		5	3.175	40.5	37.2	1.5×2 1.5×2	15 400 15 400	42 300 42 300	826
	PFT 4005-7.5	P		5	3.175	40.5	37.2	2.5×3	21 300	52 900	848
	SFT 4005-7.5								23 900	70 500	685
*	ZFT 4005-10	Clearance						2.5×2 2.5×2	23 900	70 500	1 344
4	SFT 4005-7.5	Clearance	40					2.5×3	33 900	106 000	1 009
	DFT 4005-7.5	D	40					2.5×3	33 900	106 000	1 979
	ZFT 4006-5	Z	1					2.5×1	18 000	43 800	715
	PFT 4006-5	P						2.5×2	20 500	43 800	592
	SFT 4006-3	Clearance						1.5×2	21 000	52 500	433
	DFT 4006-3	D						1.5×2	21 000	52 500	850
	PFT 4006-7.5	P		6	3.969	40.5	36.4	2.5×3	29 100	65 600	872
	SFT 4006-5	Clearance		U	0.000	70.5	50.4	2.5×2	32 600	87 500	705
	ZFT 4006-10	Z	1					2.5×2	32 600	87 500	1 383
	SFT 4006-7.5	Clearance	1					2.5×3	46 200	131 000	1 038
	DFT 4006-7.5	D	1					2.5×3	46 200	131 000	2 036
	D. 1 TUUU 7.U							2.0/\0	10200	101 000	2 000

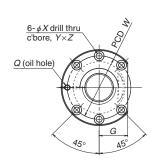
- 2. If no seal is used with nuts PFT, SFT, ZFT, or DFT, the nut length will be shortened by the amount of dimension M.
- 3. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws.
- 4. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove

PFT, ZFT, SFT

DFT

Unit: mm


Tube recirculation

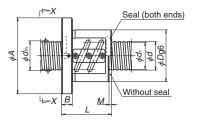

			Ball	nut dimens	sions				
Nut total Nu	t Flanged eter diamete	Flanged	Flange	Seal	Bolt I	nole dimen	sions	Bolt hole	Oil hole
length diame		r width	notch	dimension				PCD	
L D	Α	В	G	M	X	Y	Z	W	Q
66									
66									
84									
66 65	100	15	38	3	9	14	8.5	82	M6×1
102									
84 162									
73									
90									
90									
73									
103									
103	120	18	45	7	11	17.5	11	98	M6×1
90	120	10	45	/	11	17.5	''	90	IVIOXI
170									
133									
103 193									
163									
133									
56									
44									
59									
59									
56									
106 67	101	15	39	3	9	14	8.5	83	Rc1/8
74									
59									
89 74									
139									
66									
66									
60									
114									
84 70	104	15	40	3	9	14	8.5	86	Rc1/8
66									
102									
84									
162									

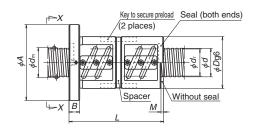
and ball when axial load is 30% of the basic dynamic load rating $C_{\rm s}$ for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.

- 5. The basic load ratings with PFT nuts are different due to the installed spacer balls.
- 6. Finished shaft end FA models are available for those models marked with an asterisk (*).
- 7. P-preload refers to oversize ball preload and D-preload to double-nut preload. For details, see page B5.

View X-X



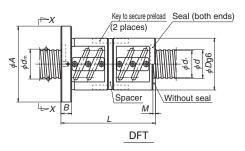

Circular shape I


Circular shape I

			Cl f+ -1:-	1 1	Ball dia.	Ball circle	Root dia.		Basic load	ratings (N)	Axial
	Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
			d	l	D_{w}	d _m	d,	× Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	<i>Κ</i> (N/μm)
	PFT 4008-3	Р						1.5×2	16 700	31 200	370
	SFT 4008-2.5	Clearance						2.5×1	22 700	51 500	368
	ZFT 4008-5	Z						2.5×1	22 700	51 500	721
	PFT 4008-5	Р					05.5	2.5×2	25 900	51 500	598
	SFT 4008-3	Clearance		8	4.762	40.5	35.5	1.5×2	26 500	62 500	440
	DFT 4008-3	D						1.5×2	26 500	62 500	863
	SFT 4008-5	Clearance						2.5×2	41 100	103 000	711
	ZFT 4008-10	Z						2.5×2	41 100	103 000	1 394
	PFT 4010-2.5	Р						2.5×1	21 300	34 200	322
	PFT 4010-3	Р						1.5×2	24 900	41 000	383
	SFT 4010-2.5	Clearance						2.5×1	33 700	68 300	383
	ZFT 4010-5	Z						2.5×1	33 700	68 300	751
	PFT 4010-5	Р						2.5×2	38 600	68 300	623
	SFT 4010-3 ZFT 4010-6 ZFT 4010-7	Clearance						1.5×2	39 500	82 000	456
		Z		10	6.35	41	34.4	1.5×2	39 500	82 000	894
		Z		10	0.00	''	01.1	3.5×1	45 100	97 100	1 045
	SFT 4010-3.5	Clearance						3.5×1	45 100	97 100	533
	PFT 4010-7	Р	40					3.5×2	51 500	97 100	859
	SFT 4010-5	Clearance						2.5×2	61 200	137 000	741
*		D						2.5×2	61 200	137 000	1 454
	ZFT 4010-10	Z						2.5×2	61 200	137 000	1 454
	SFT 4010-7	Clearance						3.5×2	81 800	194 000	1 032
	PFT 4012-2.5	Р						2.5×1	24 900	38 600	323
	SFT 4012-2.5	Clearance						2.5×1	39 500	77 200	390
	ZFT 4012-5	Z						2.5×1	39 500	77 200	766
	PFT 4012-5 PFT 4012-7.5	P		12	7.144	41.5	34.1	2.5×2 2.5×3	45 200 64 000	77 200 116 000	626 921
	SFT 4012-7.5	Clearance		12	7.144	41.5	34.1	2.5×3 2.5×2	71 700	154 000	756
*		D						2.5×2 2.5×2	71 700	154 000	1 482
4	ZFT 4012-10	Z						2.5×2	71 700	154 000	1 482
	SFT 4012-7.5	Clearance						2.5×3	102 000	232 000	1 114
	ZFT 4016-3	7	-					1.5×1	25 400	46 200	468
		Clearance						2.5×1	39 300	77 000	388
	DFT 4016-2.5	D		16	7.144	41.5	34.1	2.5×1	39 300	77 000	760
		Clearance			/	11.5	5 7. 1	1.5×2	46 000	92 400	461
	DFT 4016-3	D						1.5×2	46 000	92 400	905
		1 –	1	l	1	1	1			00	, 000

If no seal is used with nuts PFT, SFT, ZFT, or DFT, the nut length will be shortened by the amount of dimension M.
 Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws.

PFT, ZFT, SFT

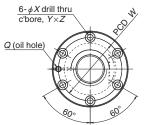

DFT

										Unit: mm
				Ball	nut dimens	sions				
Nut total	Nut	Flanged	Flanged	Flange	Seal		hole dimen	sions	Bolt hole	Oil hole
length	diameter	diameter	width	notch	dimension				PCD	
L	D	Α	В	G	М	Χ	Y	Ζ	W	Q
71										
58										
82										
82	74	108	15	41	5	9	14	8.5	90	Rc1/8
71	, , ,	100	10			0	''	0.0		110170
135										
82										
130 73										
90										
73										
103										
103										
90										
140	00	404	4.0	47	_	4.4	47.5		400	D 4/0
123	82	124	18	47	7	11	17.5	11	102	Rc1/8
83	02									
123										
103										
193										
163										
123										
81										
81										
117										
117 153	86	128	18	48	9	11	17.5	11	106	Rc1/8
117	00	120	10	40	9	11	17.5	''	100	1101/0
225										
189										
153										
118										
102										
182	86	128	22	48	14	11	17.5	11	106	Rc1/8
118										
214										

^{4.} Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C_a for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.

- 6. Finished shaft end FA models are available for those models marked with an asterisk (*).
- 7. P-preload refers to oversize ball preload and D-preload to double-nut preload. For details, see page B5.

^{5.} The basic load ratings with PFT nuts are different due to the installed spacer balls.

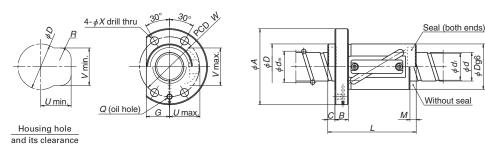


6-φX drill thru

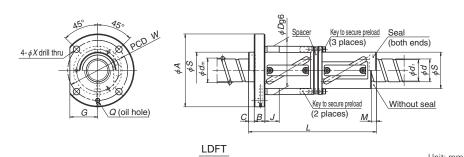
c'bore, $Y \times Z$

Q (oil hole)

View X-X



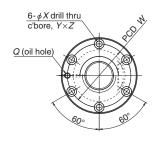
Circular shape I

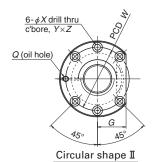

						1	P# 2 1 1.				
		Shaft	Lead	Ball dia.	Ball	Root dia.	Effective ball turns	Basic load	ratings (N)	Axial	
Model No.	Preload	dia.	Leau	Dali ula.	circle	1100t ula.	Turns	Dynamic	Static	rigidity	Nut total
WIOGOTTVO.	1 101000	,	,		dia.	,	×	'		K	length
		d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)	L
LPFT 4025-2.5	Р						2.5×1	21 500	35 100	324	123
LPFT 4025-3	Р						1.5×2	25 100	41 800	375	148
LSFT 4025-2.5	Clearance		25	6.35	41.75	35.1	2.5×1	34 100	70 100	385	123
LDFT 4025-2.5	D		25	0.35	41.75	35.1	2.5×1	34 100	70 100	755	223
LSFT 4025-3	Clearance						1.5×2	39 900	83 600	456	148
LDFT 4025-3	D	40					1.5×2	39 900	83 600	894	273
LPFT 4032-2.5	Р	40						21 200	35 300	316	146
LSFT 4032-2.5	Clearance		32	6.35	41.75	35.1	2.5×1	33 600	70 700	381	146
LDFT 4032-2.5	D							33 600	70 700	747	274
LPFT 4040-1.5	Р							13 400	21 000	191	133
LSFT 4040-1.5	Clearance		40	6.35	41.75	35.1	1.5×1	21 200	42 000	227	133
LDFT 4040-1.5	D							21 200	42 000	446	253
ZFT 4510-5	Z						2.5×1	36 300	78 500	841	103
PFT 4510-7	Р						3.5×2		109 000	947	123
PFT 4510-7.5	Р						2.5×3		118 000	1 015	133
SFT 4510-5	Clearance		10	6.35	46.0	39.4	2.5×2		157 000	830	103
DFT 4510-5	D		10	0.55	40.0	33.4	2.5×2		157 000	1 627	193
SFT 4510-7	Clearance	45					3.5×2		218 000	1 136	123
SFT 4510-7.5	Clearance						2.5×3		235 000	1 221	133
DFT 4510-7.5	D						2.5×3	93 300	235 000	2 395	253
SFT 4512-2.5	Clearance						2.5×1	41 600	88 200	432	83
ZFT 4512-5	Z		12	7.144	46.5	39.1	2.5×1	41 600	88 200	848	119
SFT 4512-5	Clearance		12	/.144	+0.5	33.1	2.5×2	75 600	176 000	838	119
DFT 4512-5	D						2.5×2	75 600	176 000	1 643	227

Notes: 1. Circular shape I and Circular shape II flanges are used for shaft diameters of 20 mm or more. Select a flange suitable for the space available for nut installation.

- 2. If no seal is used with nuts PFT, ZFT, or SFT, the nut length will be shortened by dimension M.
- 3. If no seal is used with nuts LSFT or LDFT, the nut length will be shortened by the amount of dimension M and C.
- 4. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws.

LPFT, LSFT

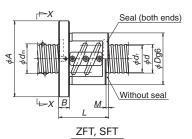


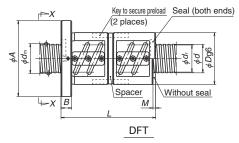

							LDF	T							Unit: mm	e reci
						Ball	nut dir	nensic	ns							2
Nut dia	ameter	Flanged diameter	Flanged width	Flange notch	Projectin	g tube dir	nensions	Seal dim	nensions	Diameter g6	Bolt ho	ole dime	nsions	Bolt hole PCD	Oil hole	recirculation
D	S	Α	В	G	U	V	R	М	С	J	Χ	Y	Ζ	W	Q	=
64 64	_	106 106		33 33	42 42	52 52	15 15			_				84 84		
64 84	— 64	106 126	18	33 48	42 —	52 —	15 —	10	10	— 22	11	_	_	84 104	Rc1/8	
64 84	— 64	106 126		33 48	42 —	52 —	15 —			— 22				84 104		
64 64 84	— — 64	106 106 126	18	33 33 48	42 42 —	52 52	15 15 —	13	12	— — 22	11	_	_	84 84 104	Rc1/8	
64 64 84	— — 64	106 106 126	18	33 33 48	42 42	52 52	15 15	16	14	— — 22	11	_	_	84 84 104	Rc1/8	
88	_	132	18	50	_	_	_	7		_	11	17.5	11	110	Rc1/8	
90	_	132	18	50	_	_	_	8	_	_	11	17.5	11	110	Rc1/8	

- 5. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C, for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- 6. The basic load ratings with PFT and LPFT nuts are different due to the installed spacer balls.
- 7. P-preload refers to oversize ball preload and D-preload to double-nut preload. For details, see page B5.

NSK

View X-X

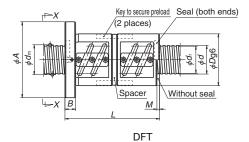



Circular shape I

		1					1				
			Shaft dia.	Lood	Ball dia.	Ball circle	Doot die	Effective ball turns	Basic load	ratings (N)	Axial
Ι.	∕lodel No.	Preload	Shart dia.	Lead	ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
11	viouei ivo.	rieloau						×	· ·		K
			d	l	D_{w}	d _m	d_{r}	Circuits	$C_{\scriptscriptstyle \rm a}$	C_{oa}	(N/µm)
SET	5005-3	Clearance						1.5×2	16 800	52 500	499
	5005-6	Z						1.5×2	16 800	52 500	978
	5005-4.5	Clearance		5	3.175	50.5	47.2	1.5×3	23 900	78 800	735
	5005-9	Z						1.5×3	23 900	78 800	1 442
	5006-3	Clearance	1 1					1.5×2	23 000	66 100	519
	5006-3	D						1.5×2	23 000	66 100	1 017
	5006-3	P						2.5×3	31 900	82 700	1 045
	5006-7.5	Clearance		6	3.969	50.5	46.4	2.5×2	35 700	110 000	844
	5006-10	Z		U	3.909	30.5	40.4	2.5×2	35 700	110 000	1 656
	5006-7.5	Clearance						2.5×3	50 700	165 000	1 243
	5006-7.5	D	-					2.5×3	50 700	165 000	2 438
	5008-3	Clearance						1.5×2	29 500	78 900	530
	5008-3	D						1.5×2	29 500	78 900	1 039
	5008-5	Clearance		8	4.762	50.5	45.5	2.5×2	45 700	131 000	859
	5008-10	Z						2.5×2	45 700	131 000	1 685
	5008-7.5	Clearance						2.5×3	64 800	196 000	1 265
	5008-7.5	D						2.5×3	64 800	196 000	2 481
	5010-2.5	Clearance						2.5×1	37 500	87 200	464
	5010-5	Z						2.5×1	37 500	87 200	909
	5010-3	Clearance						1.5×2	43 900	102 000	544
	5010-3	D						1.5×2	43 900	102 000	1 067
	5010-7	Z	50	10	6.35	51.0	44.4	3.5×1	50 100	122 000	1 251
	5010-7.5	Р		. 0	0.00	0		2.5×3	60 800	131 000	1 099
	5010-5	Clearance						2.5×2	68 100	174 000	898
	5010-10	Z						2.5×2	68 100	174 000	1 761
	5010-7.5	Clearance						2.5×3	96 500	262 000	1 321
	5010-7.5	D						2.5×3	96 500	262 000	2 592
	5012-2.5	Clearance						2.5×1	50 400	109 000	478
	5012-5	Z						2.5×1	50 400	109 000	937
	5012-5	Clearance		12	7.938	51.5	43.2	2.5×2	91 500	218 000	926
	5012-5	D						2.5×2	91 500	218 000	1 815
	5012-10	Z						2.5×2	91 500	218 000	1 815
	5016-2.5	Clearance						2.5×1	50 300	109 000	476
	5016-5	Z						2.5×1	50 300	109 000	933
	5016-7.5	Р		16	7.938	51.5	43.2	2.5×3	81 400	163 000	1 125
	5016-5	Clearance D		10	7.550	51.5	75.2	2.5×2	91 200	218 000	921
	5016-5							2.5×2	91 200	218 000	1 807
	5016-7.5	Clearance						2.5×3	129 000	326 000	1 355
	5020-3	Z						1.5×1	32 300	63 800	563
	5020-2.5	Clearance						2.5×1	50 100	108 000	473
	5020-2.5	D		20	7.938	51.5	43.2	2.5×1	50 100	108 000	928
	5020-3	Clearance]					1.5×2	58 600	128 000	556
DFT	5020-3	D						1.5×2	58 600	128 000	1 090

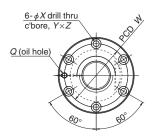
Notes: 1. Circular shape I and Circular shape II flanges are used for shaft diameters of 20 mm or more. Select a flange suitable for the space available for nut installation.

- 2. If no seal is used with nuts ZFT, SFT, or DFT, the nut length will be shortened by dimension M.
- 3. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws.

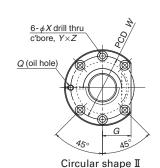


Unit: mm

Tube recirculation

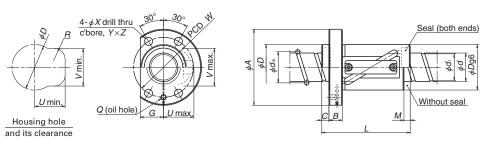

				Ball	nut dimens	ions				Onit. min
Nut total	Nut	Flanged	Flanged	Flange	Seal		nole dimen	sions	Bolt hole	Oil hole
length	diameter	diameter	width	notch	dimension			_	PCD	
L	D	Α	В	G	М	Χ	Y	Ζ	W	Q
58 83										
68	80	114	15	43	3	9	14	8.5	96	Rc1/8
103 62										
62										
116 86										
68	84	118	15	45	3	9	14	8.5	100	Rc1/8
104										
86										
164 74										
138										
85	87	129	18	49	5	11	17.5	11	107	Rc1/8
133	87	129	18	49	5	11	17.5	''	107	NC1/8
109 205										
73										
103										
90										
170 123										
133	93	135	18	51	7	11	17.5	11	113	Rc1/8
103										
163										
133										
253 87										
123										
123	100	146	22	55	8	14	20	13	122	Rc1/8
231 195										
104										
152										
200	100	146	22	55	14	14	20	13	122	Rc1/8
152 280	'00	1.10			''			'	'	.101/0
200										
147										
127										
227	100	146	28	55	17	14	20	13	122	Rc1/8
147 267										
207	() (

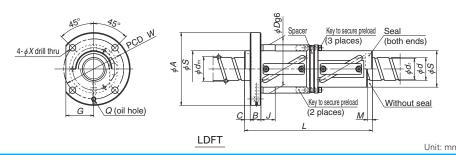
- 4. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C, for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- 5. Standard finished shaft end SA models are available for those models marked with an asterisk (*).
- 6. P-preload refers to oversize ball preload and D-preload to double-nut preload. For details, see page B5.



ZFT, SFT

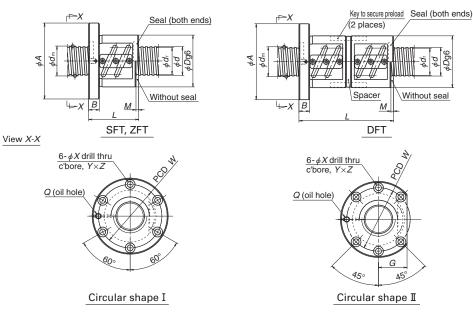
View X-X




											_
		Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns Turns	Basic load		Axial rigidity	Nut total
Model No.	Preload	uia.			dia.		×	Dynamic	Static	K	length
		d	l	$D_{\rm w}$	$d_{\rm m}$	d _r	Circuits	C _a	C_{0a}	(N/µm)	L
LPFT 5025-2.5	Р						2.5×1	32 300	55 100	403	129
LPFT 5025-3	P						1.5×2	37 800	65 700	468	154
LSFT 5025-2.5	Clearance		٥٦	7 000		4.4	2.5×1	51 300	110 000	480	129
LDFT 5025-2.5	D		25	7.938	52.25	44	2.5×1	51 300	110 000	941	229
LSFT 5025-3	Clearance						1.5×2	60 100	131 000	569	154
LDFT 5025-3	D						1.5×2	60 100	131 000	1 116	279
LPFT 5032-2.5	Р						2.5×1	32 000	54 700	397	151
LPFT 5032-3	Р						1.5×2	37 500	65 300	461	183
LSFT 5032-2.5	Clearance	50	32	7.938	52.25	44	2.5×1	50 900	109 000	473	151
LDFT 5032-2.5	D	50	32	7.930	32.23	44	2.5×1		109 000	928	279
LSFT 5032-3	Clearance						1.5×2		131 000	560	183
LDFT 5032-3	D						1.5×2		131 000	1 099	343
LPFT 5040-2.5	Р							31 600	55 200	389	178
LSFT 5040-2.5	Clearance		40	7.938	52.25	44	2.5×1		110 000	469	178
LDFT 5040-2.5	D								110 000	920	338
LPFT 5050-1.5	Р							20 000	32 800	236	161
LSFT 5050-1.5	Clearance		50	7.938	52.25	44	1.5×1	31 700	65 700	280	161
LDFT 5050-1.5	D 7							31 700	65 700	549	312
ZFT 5510-5	Z						2.5×1	38 700	96 000	977	103
SFT 5510-5	Clearance						2.5×2	70 200	192 000	964	103
ZFT 5510-10	Z	55	10	6.35	56.0	49.4	2.5×2		192 000	1 891	163
DFT 5510-5	D	55	10	0.55	30.0	43.4	2.5×2		192 000	1 891	193
SFT 5510-7.5	Clearance						2.5×3		288 000	1 419	133
DFT 5510-7.5	D						2.5×3	99 500	288 000	2 783	253

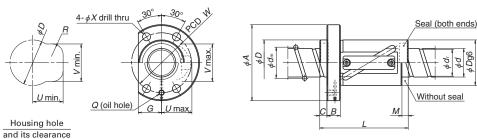
Notes: 1. Circular shape I and Circular shape II flanges are used for shaft diameters of 20 mm or more. Select a flange suitable for the space available for nut installation.

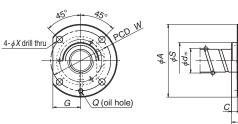
- 2. If no seal is used with nuts PFT, ZFT, or SFT, the nut length will be shortened by dimension M.
- 3. If no seal is used with nuts LSFT or LDFT, the nut length will be shortened by the amount of dimension M and C.
- 4. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws.

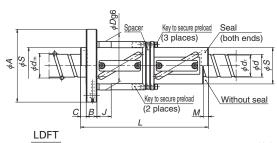

LPFT, LSFT

								LDI	<u>-T</u>							Unit: mm	e recirculation
							Ball	nut dir	mensic	ns							를
Ν	ut dia	meter		Flanged	Flange	Tube p	rojectir	g type	Seal din	ensions		Bolt ho	le dime	nsions	Bolt hole	Oil hole	lat
	D	S	diameter <i>A</i>	width <i>B</i>	notch G	U	v	R	M	С	g6 <i>J</i>	X	Y	z	PCD W	Q	ē
	80		126		41	52	64	19			_				102		
	80	_	126		41	52	64	19			_				102		
	80	_	126	22	41	52	64	19	11	11	_	14			102	Rc1/8	
1	106	80	152		56	_	_	_		' '	25	14	_	_	128	1101/0	
	80 — 126 106 80 152				41	52	64	19			_				102		
_1					56		_	_			25				128		
	80	_	126		41	52	64	19			_				102		
	80	_	126		41	52	64	19			_				102		
	80	_	126	22	41	52	64	19	14	12	<u> </u>	14	l —	l —	102	Rc1/8	
	106	80	152		56		-	10			25				128	. , .	
	80 106	80	126 152		41 56	52	64	19			<u> </u>				102 128		
	80	80	126		41	52	64	19							102		
	80		126	22	41	52	64	19	17	14		14			102	Rc1/8	
1	106	80	152	22	56	52		13	17	14	25	14			128	1101/0	
	80		126		41	52	64	19							102		1
	80	_	126	22	41	52	64	19	21	16	_	14	_	_	102	Rc1/8	
1	106	80	152		56	_	_	_			25				128		
	102	_	144	18	54	_	_	_	7	_	_	11	17.5	11	122	Rc1/8	

- 5. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% for D-preload, and 5% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% for D-preload, and 5% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% for D-preload, and 5% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% for D-preload, and 5% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% for D-preload, and 5% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% for D-preload, and 5% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% for D-preload, and 5% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% for D-preload, and 5% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% for D-preload, 10% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% for D-preload, 10% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% for D-preload, 10% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% of the basic dynamic load rating $C_{\rm a}$ for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- 6. The basic load ratings with LPFT nuts are different due to the installed spacer balls.
- 7. P-preload refers to oversize ball preload and D-preload to double-nut preload. For details, see page B5.




	1 1						I	I			
		Shaft	Lead	Ball dia.	Ball	Root dia.	Effective ball turns	Basic load	ratings (N)	Axial	
Model No.	Preload	dia.	Leau	Dall Ula.	circle	noot dia.	Turns	Dynamic	Static	rigidity	Nut total
Model No.	TCIOGG		_	_	dia.		×	'		K	length
		d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)	Ĺ
SFT 6310-2.5	Clearance						2.5×1	41 100	111 000	557	77
ZFT 6310-5	Z						2.5×1	41 100	111 000	1 091	107
PFT 6310-7.5	P						2.5×3	66 600	166 000	1 322	137
SFT 6310-5	Clearance		10	6.35	64.0	57.4	2.5×2	74 600	221 000	1 078	107
ZFT 6310-10	Z						2.5×2	74 600	221 000	2 113	167
SFT 6310-7.5	Clearance						2.5×3	106 000	332 000	1 588	137
DFT 6310-7.5	D Z						2.5×3		332 000	3 113	257
ZFT 6312-5							2.5×1		136 000	1 119	123
SFT 6312-2.5	Clearance		12	7.938	64.5	56.2	2.5×1		136 000	571	87
SFT 6312-5	Clearance		12	7.330	04.5	30.2	2.5×2	102 000	273 000	1 107	123
DFT 6312-5	D						2.5×2	102 000	273 000	2 171	231
SFT 6316-2.5	Clearance						2.5×1		227 000	746	110
DFT 6316-2.5	D						2.5×1		227 000	1 464	206
PFT 6316-5	Р		16	9.525	65.0	55.2	2.5×2		227 000	1 200	158
SFT 6316-5	Clearance						2.5×2	170 000		1 446	158
DFT 6316-5	D						2.5×2		454 000	2 835	302
SFT 6320-2.5	Clearance	63					2.5×1		227 000	744	127
DFT 6320-2.5	D						2.5×1		227 000	1 459	227
PFT 6320-5	P		20	9.525	65.0	55.2	2.5×2		227 000	1 196	187
SFT 6320-5	Clearance						2.5×2		453 000	1 442	187
DFT 6320-5	D						2.5×2		453 000	2 827	347
LPFT 6340-2.5	Р						2.5×1	35 300	69 200	472	178
LPFT 6340-3	P						1.5×2	41 300	83 100	557	218
LSFT 6340-2.5	Clearance		40	7.938	65.25	57	2.5×1		138 000	567	178
LDFT 6340-2.5	D				50.20	"	2.5×1		138 000	1 112	339
LSFT 6340-3	Clearance						1.5×2		166 000	674	218
LDFT 6340-3	D						1.5×2		166 000	1 323	419
LPFT 6350-1.5	Р	7ance 50 7.938 65.25 5				1.5×1	22 400	41 100	282	161	
LPFT 6350-2.5				2.5×1	34 800	69 600	471	211			
LSFT 6350-1.5	Clearance		65.25	57	1.5×1	35 600	82 200	341	161		
LDFT 6350-1.5	Classonas		-	1.5×1	35 600	82 200	669	311			
LSFT 6350-2.5	Clearance				2.5×1		139 000	561	211		
LDFT 6350-2.5	D		l				2.5×1	55 300	139 000	1 099	411

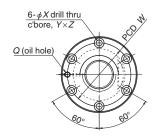

Notes: 1. Circular shape I and Circular shape II flanges are used for shaft diameters of 20 mm or more. Select a flange suitable for the space available for nut installation.

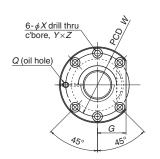
- 2. If no seal is used with nuts PFT, ZFT, or SFT, the nut length will be shortened by dimension M.
- 3. If no seal is used with nuts LSFT or LDFT, the nut length will be shortened by the amount of dimension M and C.
- 4. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws.

LPFT, LSFT

Unit: mm

						Ball	nut dir	nensic	ns						
Nut dia	meter	Flanged	Flanged	Flange	Projectin	g tube dir	nensions	Seal din	nensions	Diameter	Bolt ho	le dime	ensions	Bolt hole	Oil hole
D	S	diameter <i>A</i>	width <i>B</i>	notch G	U	V	R	М	С	g6 <i>J</i>	X	Y	Z	PCD W	Q
υ	ی	_ A	D	G	U	V	П	IVI	C	J	_ ^	I		V V	U
108	_	154	22	58	_	_	_	7		_	14	20	13	130	Rc1/8
115	_	161	22	61	_	_	_	8	_		14	20	13	137	Rc1/8
122	_	180	28	69	_	_	_	_	_	_	18	26	17.5	150	Rc1/8
122	_	180	28	69	_	_	_	17	_	_	18	26	17.5	150	Rc1/8
97	_	144		49	58	77	19			_				120	
97	—	144		49	58	77	19			_				120	
97 122	97	144 168	22	49 62	58 —	77 —	19	15	14	 29	14	_	_	120 144	Rc1/8
97	97	144		49	58	77	19			29				120	
122	97	168		62	_	_	_			29				144	
97	_	144		49	58	77	19			_				120	
97 97	_	144		49 49	58 58	77	19			_				120 120	
122	97	144 168	22	62	- 58	77 —	19	19	16	29	14	—	—	144	Rc1/8
97	-	144		49	58	77	19			_				120	
122	97	168		62	_		_			29				144	

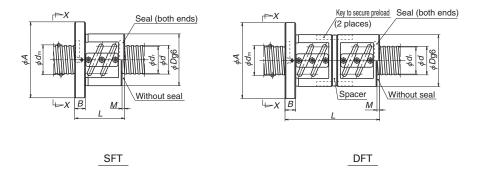

- 5. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C, for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- 6. The basic load ratings with LPFT nuts are different due to the installed spacer balls.
- 7. P-preload refers to oversize ball preload and D-preload to double-nut preload. For details, see page B5.


Unit: mm

Oil hole

Bolt hole

View X-X


Circular shape I

Circular shape I

		Cl f+ -l:-	11	Ball dia.	Ball circle	D 4 -1'-	Effective ball turns	Basic load	ratings (N)	Axial
Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
Model No.	Treload	,			١,	,	×	,		K
		d	l	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	C_{oa}	(N/µm)
SFT 8010-5	Clearance						2.5×2	83 200	282 000	1 309
DFT 8010-5	D		10	6.35	81.0	74.4	2.5×2	83 200	282 000	2 567
SFT 8010-7.5	Clearance		10	0.55	01.0	74.4	2.5×3	118 000	423 000	1 927
DFT 8010-7.5	D]					2.5×3	118 000	423 000	3 779
SFT 8012-5	Clearance						2.5×2	113 000	350 000	1 345
DFT 8012-5	D		12	7.938	81.5	73.2	2.5×2	113 000	350 000	2 637
SFT 8012-7.5	Clearance			7.000	01.0	70.2	2.5×3	161 000	525 000	1 983
DFT 8012-7.5	D	80					2.5×3	161 000	525 000	3 889
SFT 8016-5	Clearance						2.5×2	192 000	581 000	1 764
DFT 8016-5	D		16	9.525	82.0	72.2	2.5×2	192 000	581 000	3 459
SFT 8016-7.5	Clearance						2.5×3	271 000	872 000	2 593
DFT 8016-7.5	D	- I					2.5×3	271 000	872 000	5 085
SFT 8020-5 DFT 8020-5	Clearance						2.5×2	191 000 191 000	581 000	1 758 3 447
SFT 8020-5	_		20	9.525	82.0	72.2	2.5×2		581 000 871 000	2 588
DFT 8020-7.5	Clearance						2.5×3 2.5×3	271 000 271 000	871 000	
SFT 10012-5	Clearance						2.5×3 2.5×2	124 000	441 000	5 075 1 611
DFT 10012-5	D						2.5×2	124 000	441 000	3 159
SFT 10012-3	Clearance		12	7.938	101.5	93.2	2.5×3	176 000	661 000	2 372
DFT 10012-7.5	D						2.5×3	176 000	661 000	4 652
SFT 10016-5	Clearance	1 1					2.5×2	208 000	736 000	2 109
DFT 10016-5	D						2.5×2	208 000	736 000	4 136
SFT 10016-7.5	Clearance	100	16	9.525	102	92.2	2.5×3	295 000	1 100 000	3 105
DFT 10016-7.5	D						2.5×3	295 000	1 100 000	6 089
SFT 10020-5	Clearance	1					2.5×2	208 000	735 000	2 106
DFT 10020-5	D		20	0.505	100	00.0	2.5×2	208 000	735 000	4 131
SFT 10020-7.5	Clearance		20	9.525	102	92.2	2.5×3	294 000	1 100 000	3 098
DFT 10020-7.5	D						2.5×3	294 000	1 100 000	6 075
SFT 12516-5	Clearance						2.5×2	231 000	918 000	2 520
DFT 12516-5	D		16	9.525	127	117.2	2.5×2	231 000	918 000	4 942
SFT 12516-7.5	Clearance		10	9.020	12/	117.2	2.5×3	327 000	1 380 000	3 708
DFT 12516-7.5 SFT 12520-5	D	125					2.5×3	327 000	1 380 000	7 272
	Clearance	125					2.5×2	230 000	917 000	2 515
DFT 12520-5	D]	20	9.525	127	117.2	2.5×2	230 000	917 000	4 931
	Clearance		20	0.020	12/	117.2	2.5×3	327 000	1 380 000	3 705
	D						2.5×3	327 000	1 380 000	7 266

Notes: 1. Circular shape I and Circular shape II flanges are used for shaft diameters of 20 mm or more. Select a flange suitable for the space available for nut installation.

- 2. If no seal is used with nuts ZFT, SFT, or DFT, the nut length will be shortened by dimension M.
- 3. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws.

Ball nut dimensions

Seal

Bolt hole dimensions

length	diameter	diameter	width	notch	dimension	DOIL I	noie aimen	SIONS	PCD	Oil hole	
L	D	A	B	G	M	X	Y	Z	W	Q	
107											
197	130	176	22	66	7	14	20	13	152	Rc1/8	
137	130	170		00	/	14	20	13	152	1101/0	
257											
123											١.
231	136	182	22	68	8	14	20	13	158	Rc1/8	1
159	130	102		00		14	20	13	130	1101/0	9
303											2
158											l
302	143	204	28	77	10	18	26	17.5	172	Rc1/8	Ė
206	140	204	20	''	10	10	20	17.5	172	1101/0	1
398											1
187											
347	143	204	28	77	17	18	26	17.5	172	Rc1/8	
247	143	201		· · ·	.,	10	20	17.0	172	110170	
467											H
129											Г
237	160	220	28	82	8	18	26	17.5	188	Rc1/8	
165	160	220	20	52		.0	20	17.0	.50	1101/0	

10

17

10

12

22

22

26

26

32

32

39

39

21.5

21.5

25.5

25.5

205

205

243

243

Rc1/8

Rc1/8

Rc1/8

Rc1/8

B471 B472

Nut total

length

309 162 306

259

499

Flanged

Flanged

Flange

Nut

170

170

200

200

243

243

290

290

32

32

36

36

91

91

109

109

^{4.} Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C, for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.

^{5.} P-preload refers to oversize ball preload and D-preload to double-nut preload. For details, see page B5.

Deflector(bridge) recirculation

B-3-2.4 Deflector (Bridge) Recirculation Ball Screws

1. Features

Ball screws with deflector (bridge) recirculation systems have the smallest ball nut, making them suitable for fine lead operation.

2. Specifications

(1) Ball recirculation system

It has a small ball nut outside diameter and suits small lead ball screws. Fig. 1 shows the structure of the deflector (bridge) recirculation system.

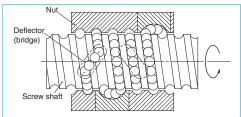


Fig. 1 Structure of deflector (bridge) recirculation system

Table 1 Accuracy grade and axial play

Acquiracy, grado	C0, C1, C2, C3, C5, Ct7 (Ct7 is not included in DFD)
Accuracy grade	(Ct7 is not included in DFD)
Axial play	Z, 0 mm (preloaded); T, 0.005 mm or less S, 0.020 mm or less; N, 0.050 mm or less
Axiai piay	S, 0.020 mm or less; N, 0.050 mm or less

(2) Accuracy grade and axial play

The available standard accuracy grades and axial play are shown in **Table 1**. Please consult NSK for other grades.

(3) Allowable d·n value and the criterion of maximum rotational speed

The allowable *d·n* value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below. Basic measures must be taken for the high speed ball screws.

Allowable d·n value:

Standard specification ; 84 000 or less
High-speed specification; 100 000 or less
Standard of rotational speed : 3 000 min⁻¹
Note: Please also review the critical speed. Refer
to "Technical Description: Permissible
Rotational Speed" (page B47) for details.

(4) Other specifications

Please consult NSK for specifications not listed in the dimension tables.

Table 2 Deflector (bridge) ball screw lineup

Nut	Shape	Flange shape	Preload
MSFD		Flanged	Nopreload, Slight axial play
MPFD		Circular III	P-preload (light preload) no spacer ball
SFD	00000000000000000000000000000000000000	Screw shaft diameter of 16 mm or smaller: Flanged Screw shaft diameter of 20 mm or smaller: Rectangle CircularI, II	Nopreload, Slight axial play
ZFD		Flanged Circular I, II	Z-preload (medium preload)
DFD		Flanged Circular I, II	D-preload (medium preload) (heavy preload)

3. Lineup

There are four different preloads available (Table 2). Synthetic resin that shows superb characteristics against wear is used in the recirculation deflector (bridge) for MSFD and MPFD, and has enhanced the smooth recirculation of balls.

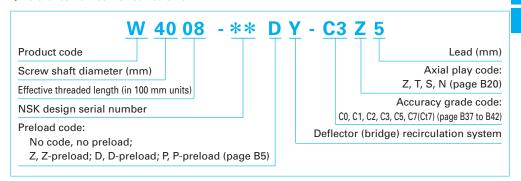
4. Design Precautions

When designing the screw shaft end, one end of the screw must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

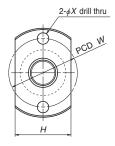
• Cut the ball groove through to the shaft end.

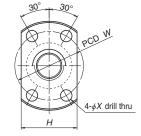
 The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove d_r specified in the dimension tables.

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).


5. Structure of model number and reference number

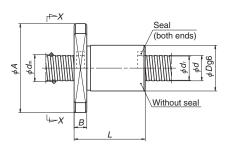
The following explains the codes used in model numbers and ball screw reference numbers.




Note: In ZFD, the number here is twice the effective ball turns.

♦ Reference number for ball screws

B473 B474

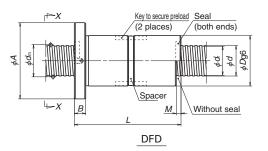

Lead l = 0.5 mm

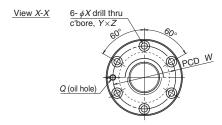
Lead l > 1 mm

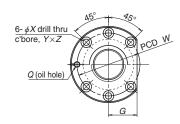
			CI (: 1:		D ::	Ball circle	D . I	Effective ball turns	Basic load	ratings (N)
	Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static
	Model No.	1101000	d	l	D_{w}	d _m	d,	× Circuits	C _a	C_{0a}
	MSFD 0400.5-3	Clearance	u	v	D _W	u _m	u _r	Circuits	O _B	Ola
	MPFD 0400.5-3	P		0.5	0.400	4.1	3.6	1×3	205	280
	MSFD 0401-2	Clearance	4	1	0.000	4.0	2.0	10	070	270
*	MPFD 0401-2	Р		1	0.800	4.2	3.2	1×2	370	370
	MSFD 0600.5-3	Clearance		0.5	0.400	6.1	5.6	1×3	240	430
	MPFD 0600.5-3	Р		0.0	0.100	0	0.0	17.0	2.0	
4	MSFD 0601-3 MPFD 0601-3	Clearance P	6	1	0.800	6.2	5.2	1×3	680	920
*	MSFD 0602-3	Clearance								
	MPFD 0602-3	P		2	0.800	6.2	5.2	1×3	675	920
	MSFD 0800.5-3	Clearance		0.5	0.400	8.1	7.6	1×3	275	595
	MPFD 0800.5-3	Р		0.5	0.400	8.1	7.6	1×3	2/5	595
	MSFD 0801-3	Clearance		1	0.800	8.2	7.2	1×3	790	1 290
*	MPFD 0801-3	Р	8	'	0.000	0.2	7.2	170	750	1 200
	MSFD 0801.5-3	Clearance		1.5	1.000	8.3	7.0	1×3	1 270	1 970
*	MPFD 0801.5-3 MSFD 0802-3	Clearance								
*	MPFD 0802-3	P		2	1.200	8.3	6.9	1×3	1 560	2 200
İ	MSFD 1001-3	Clearance		1	0.800	10.2	9.2	1×3	880	1 660
	MPFD 1001-3	Р		ı	0.800	10.2	9.2	1×3	880	1 000
	MSFD 1002-3	Clearance	10	2	1.200	10.3	8.9	1×3	1 800	2 970
*	MPFD 1002-3	Р			11200		0.0	17.0	. 555	
*	MSFD 1002.5-3 MPFD 1002.5-3	Clearance		2.5	1.588	10.4	8.6	1×3	2 500	3 630
	MSFD 1201-3	Clearance				40.0	44.0	1.0	0.40	1.000
	MPFD 1201-3	Р		1	0.800	12.2	11.2	1×3	940	1 980
	MSFD 1202-3	Clearance		2	1.200	12.3	10.9	1×3	1 960	3 620
*	MPFD 1202-3	Р	12		1.200	12.0	10.5	1/10	1 300	3 020
*	MSFD 1202.5-3 MPFD 1202.5-3	Clearance		2.5	1.588	12.4	10.6	1×3	2 790	4 530
•	MSFD 1202.3-3	Clearance				40.5	400		0.000	
	MPFD 1203-3	Р		3	2.000	12.5	10.2	1×3	3 680	5 400
	MSFD 1402-3	Clearance		2	1.200	14.3	12.9	1×3	2 100	4 260
	MPFD 1402-3 MSFD 1403-3	P Clearance	14							
	MPFD 1403-3	P		3	2.000	14.5	12.2	1×3	4 010	6 480
	1-100 0							l	1	

Notes: 1. If the lead is 1 mm or less and the shaft OD is 6 mm or less, seals can not be equipped (See page B68 for details on dust protection.)

- 2. Models with shaft OD under 14 mm do not have oil holes.
- 3. Right-turn screws are standard. Contact NSK for left turn screws.

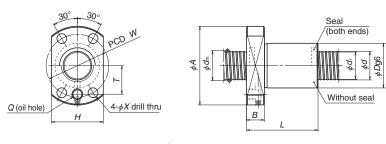

	n			


							Unit: mm	1
Axial rigidity			Ва	all nut dimensio	ns			•
K (N/μm)	Nut total length	Nut diameter D	Flange diameter A	Flange width B	Flange dimension H	Bolt hole dimensions	Bolt hole PCD W	-
32 50	13	10	22	3	11	3.4	16	1_
23 36	12	10	20	3	14	2.9	15	Defi
44 69	13	12	24	3	13	3.4	18	ector
51 80	15	12	24	3.5	16	3.4	18	(brid
51 79	17	13	25	4	17	3.4	19	Deflector(bridge) recirculation
57 89	13	14	27	3	15	3.4	21	ecirc
67 104	16	14	27	4	18	3.4	21	ulati
79 123	22	15	28	4	19	3.4	22	
76 119	26	16	29	4	20	3.4	23	
81 127	16	16	29	4	20	3.4	23	
97 151	28	18	35	5	22	4.5	27	1
94 147	32	19	36	5	23	4.5	28	1
93 145	16	18	31	4	22	3.4	25	1
114 177	28	20	37	5	24	4.5	29	1
113 176	32	21	38	5	25	4.5	30	1
111 174	36	22	39	5	26	4.5	31	1
129 201	29	22	41	6	26	5.5	32	1
129 201	37	24	43	6	28	5.5	34]


- 4. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C_a for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- 5. Standard finished shaft end MA models are available for those models marked with an asterisk (*).
- 6. P-preload refers to oversize ball preload. For details, see page B5.

Seal

-X

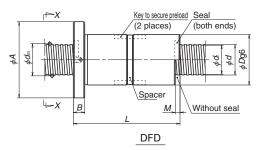

Circular shape I

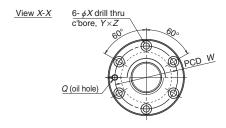
Circular shape II

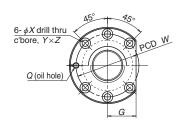
			0. (Ball circle		Effective ball turns	Basic load	ratings (N)	Axial
	Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
	Model No.	Preioau						×	′		K
			d	l	D_{w}	$d_{\scriptscriptstyle m}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
	MSFD 1602-4	Clearance		0	1 500	10.4	14.0	14	4.150	0.450	194
*	MPFD 1602-4	Р	1.0	2	1.588	16.4	14.6	1×4	4 150	8 450	302
	MSFD 1602.5-4	Clearance	16	2.5	1.588	16.4	14.6	1×4	4 150	8 440	194
*	MPFD 1602.5-4	Р		2.0	1.500	10.4	14.0	1.84	4 150	0 440	302
	MSFD 2002-4	Clearance		2	1.588	20.4	18.6	1×4	4 620	10 900	237
	MPFD 2002-4	Р]	2	1.500	20.4	10.0				369
	SFD 2005-3	Clearance						1×3	10 100	17 400	206
	ZFD 2005-6	Z		5	3.175	20.75	17.4	1×3	10 100	17 400	404
	SFD 2005-4	Clearance	20	5	3.173	20.75	17.4	1×4	13 000	23 300	271
	DFD 2005-4	D] 20					1×4	13 000	23 300	532
	SFD 2006-3	Clearance						1×3	13 100	20 500	202
	ZFD 2006-6	Z		6	3.969	21	16.9	1×3	13 100	20 500	396
	SFD 2006-4	Clearance		O	3.505	~ '	10.5	1×4	16 800	27 400	266
	DFD 2006-4	D						1×4	16 800	27 400	521
	MSFD 2502-4	Clearance		2	1.588	25.4	23.6	1×4	5 100	13 900	287
	MPFD 2502-4	Р]		1.500	25.4	25.0				447
	SFD 2505-3	Clearance						1×3	11 600	22 900	257
*	ZFD 2505-6	Z		5	3.175	25.75	22.4	1×3	11 600	22 900	503
	SFD 2505-4	Clearance		0	0.170	20.70	22.7	1×4	14 800	30 500	337
	DFD 2505-4	D]					1×4	14 800	30 500	661
	SFD 2506-3	Clearance	25					1×3	15 200	27 300	254
	ZFD 2506-6	Z		6	3.969	26	21.9	1×3	15 200	27 300	499
	SFD 2506-4	Clearance		U	3.303	20	21.9	1×4	19 400	36 400	334
	DFD 2506-4	D]					1×4	19 400	36 400	656
	ZFD 2510-4	Z						1×2	13 300	21 200	337
	SFD 2510-3	Clearance		10	4.762	26.25	21.3	1×3	18 900	31 800	253
	DFD 2510-3	D						1×3	18 900	31 800	497

Notes: 1. Circular shape I and Circular shape II flanges are used for shaft diameters of 20 mm or more. Select a flange suitable for the space available for nut installation.

- 2. If no seal is used with nuts SFD, ZFD, or DFD, the nut length will be shortened by dimension M. The nut lengths of MSFD and MPFD are the same with or without seals.
- 3. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws. Please consult NSK for MSFD and MPFD nuts.

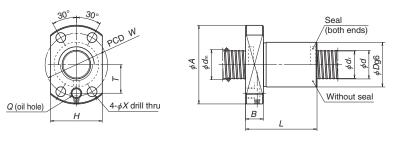



MSFD, MPFD


Unit: mm	Defl
	ec
Oil hole	tor(bri
Q	믕
M6×1	e
M6×1	recirc
M6×1	ulati

												Unit: mm
					Ball nut dir	<u>mensio</u> ns	;					
Nut total		Flange	Flange	Flan	ge notch	Seal		ole dime	ensions	Bolt hole		Oil hole
length		diameter	width <i>B</i>	G	Н	dimension			-	PCD W	position	
L	D	Α	В	G	Н	М	X	Y	Ζ	VV	I	Q
40	25	44	10	_	29	_	5.5	_	_	35	16	M6×1
44	25	44	10	_	29	_	5.5	_	_	35	16	M6×1
40	30	49	10	_	34	_	5.5	_	_	40	18.5	M6×1
46	35	58		22.5						46		
66	35	58	11	22.5	_	5	5.5	9.5	5.5	46	_	M6×1
51	35	58		22.5			0.0	0.0	0.0	46		IVIOXI
91 52	41 35	64 58		25 22.5						52 46		
76	35	58		22.5						46		
60	35	58	11	22.5	_	6	5.5	9.5	5.5	46	_	M6×1
108	42	65		25						53		
40	36	55	10	_	40	_	5.5	_	_	46	21.5	M6×1
46	40	63		24						51		
66	40	63	11	24		5	5.5	9.5	5.5	51		M6×1
51	40	63	11	24	_	J	0.0	0.5	5.5	51		IVIOAI
91	46	69		26						57		
52 76	40 40	63		24 24						51		
60	40	63 63	11	24	_	6	5.5	9.5	5.5	51 51	_	M6×1
108	47	70		27						58		
88	42	69		26						55		
80	42	69	15	26	_	10	6.6	11	6.5	55		M6×1
140	47	74		28						60		

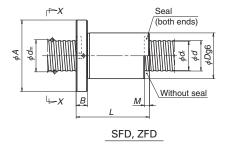
- 4. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating $C_{\rm a}$ for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- 5. We recommend using seals if shaft diameter is 16 mm or more and an oil hole is provided.
- 6. Standard finished shaft end MA models are available for those models marked with an asterisk (*).
- 7. Z-preload refers to offset preload, P-preload to oversize ball preload, and D-preload to double-nut preload. For details, see page B5.

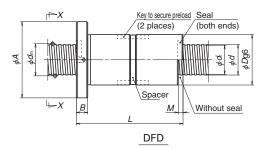

Circular shape I

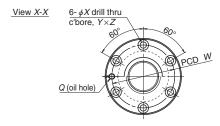
Circular shape II

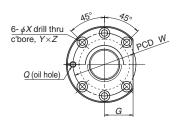
			Shaft dia.	Lood	Ball dia.	Ball circle	Root dia.	Effective ball turns	Basic load	ratings (N)	Axial
	Model No.	Preload	Shart dia.	Lead	Dali dia.	dia.	noot dia.	Turns ×	Dynamic	Static	rigidity <i>K</i>
			d	l	D _w	d _m	d _r	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
	MSFD 3202-6	Clearance		2	1.588	32.4	30.6	1×6	8 030	27 100	521
	MPFD 3202-6	Р			1.500	32.4	30.0	170	0 030	27 100	811
	SFD 3205-3	Clearance						1×3	13 100	30 500	322
	ZFD 3205-6	Z						1×3	13 100	30 500	631
	SFD 3205-4	Clearance		5	3.175	32.75	29.4	1×4	16 800	40 600	424
*	ZFD 3205-8	Z		5	3.175	32.75	23.4	1×4	16 800	40 600	831
	SFD 3205-6	Clearance						1×6	23 800	60 900	623
	DFD 3205-6	D						1×6	23 800	60 900	1 222
	SFD 3206-3	Clearance						1×3	17 700	37 400	328
	ZFD 3206-6	Z						1×3	17 700	37 400	643
	SFD 3206-4	Clearance	32	6	3.969	33	28.9	1×4	22 600	49 900	431
	ZFD 3206-8	Z	32	O	3.909	33	20.9	1×4	22 600	49 900	846
	SFD 3206-6	Clearance						1×6	32 100	74 800	635
	DFD 3206-6	D						1×6	32 100	74 800	1 245
	SFD 3208-3	Clearance						1×3	21 600	41 700	316
	ZFD 3208-6	Z		8	4.762	33.25	28.3	1×3	21 600	41 700	619
	SFD 3208-4	Clearance		O	4.702	33.23	20.3	1×4	27 700	55 600	415
	ZFD 3208-8	Z						1×4	27 700	55 600	815
	SFD 3210-3	Clearance						1×3	30 500	52 500	313
*	ZFD 3210-6	Z		10	6.35	33.75	27.1	1×3	30 500	52 500	614
	SFD 3210-4	Clearance		10	0.30	33.75	27.1	1×4	39 000	70 000	411
	DFD 3210-4	D						1×4	39 000	70 000	807

Notes: 1. Circular shape I and Circular shape II flanges are used for shaft diameters of 20 mm or more. Select a flange suitable for the space available for nut installation.

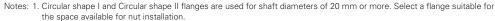

- 2. If no seal is used with nuts SFD, ZFD, or DFD, the nut length will be shortened by dimension M. The nut lengths of MSFD and MPFD are the same with or without seals.
- 3. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws. Please consult NSK for MSFD and MPFD nuts.

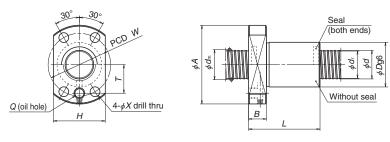



MSFD, MPFD


												Unit: mm	Deflector(bridge) recirculation
					Ball nut dir	mensions							본
Nut total	Nut	Flanged	Flanged	Flan	ge notch	Seal	Bolt ho	le dime	ensions	Bolt hole	Oil hole	Oil hole	3.
length <i>L</i>	diameter <i>D</i>	diameter <i>A</i>	width <i>B</i>	G	Н	dimension <i>M</i>	X	Y	Z	PCD W	position T	Q	dge)
50	42	65	10	_	46	_	6.6	_	_	54	26.5	M6×1	recir
47	48	75		29						61			呈
67	48	75		29						61			2
52	48	75	12	29		_	6.6	11	6.5	61		N 4 C 1	
77	48	75	12	29	_	5	6.6	''	6.5	61	_	M6×1	
62	48	75		29						61			
112	53	80		30						66			
53	48	75		29						61			
77	48	75		29						61			
61	48	75	12	29		6	6.6	11	6.5	61		M6×1	
90	48	75	12	29	_	0	0.0	''	0.5	61		IVIOXI	
73	48	75		29						61			
133	54	81		31						67			_
67													
99	50	84	15	32	_	8	9	14	8.5	66	_	M6×1	
76		01	10	02				''	0.0			1010/11	
116													-
80													
120	54	88	15	34	_	10	9	14	8.5	70	_	M6×1	
90													

- 4. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C_a for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- 5. We recommend using seals if shaft diameter is 16 mm or more and an oil hole is provided.
- 6. Standard finished shaft end SS models are available for those models marked with an asterisk (*).
- 7. Z-preload refers to offset preload, P-preload to oversize ball preload, and D-preload to double-nut preload. For details, see page B5.

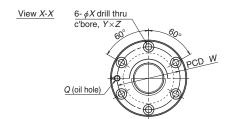


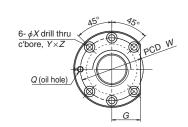

Circular shape I

Circular shape II

Model No.	Preload	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective ball turns Turns	Basic load Dynamic	ratings (N) Static	Axial rigidity
Model No.	Treload	d	l	D _w	d _m	d _r	× Circuits	C _a	C_{0a}	<i>Κ</i> (N/μm)
MSFD 4002-6 MPFD 4002-6	Clearance		2	1.588	40.4	38.6	1×6	8 720	33 900	620 966
SFD 4005-4	Clearance	1 1					1×4	18 700	52 200	517
ZFD 4005-8	Z		_	0.475	40.75		1×4	18 700	52 200	1 013
SFD 4005-6	Clearance		5	3.175	40.75	37.4	1×6	26 500	78 300	761
ZFD 4005-12	Z						1×6	26 500	78 300	1 492
SFD 4006-4	Clearance						1×4	25 100	63 500	522
ZFD 4006-8	Z		6	3.969	41.0	36.9	1×4	25 100	63 500	1 023
SFD 4006-6	Clearance	40	О	3.909	41.0	30.9	1×6	35 600	95 200	768
ZFD 4006-12	Z	40					1×6	35 600	95 200	1 506
SFD 4008-4	Clearance						1×4	32 000	75 000	529
ZFD 4008-8	Z		8	4.762	41.25	36.3	1×4	32 000	75 000	1 038
SFD 4008-6	Clearance		0	4.702	41.20	30.3	1×6	45 400	113 000	779
DFD 4008-6	D						1×6	45 400	113 000	1 528
SFD 4010-3	Clearance						1×3	35 300	69 800	394
ZFD 4010-6	Z		10	6.35	41.75	35.1	1×3	35 300	69 800	773
SFD 4010-4	Clearance		10	0.55	41.75	35.1	1×4	45 200	93 100	518
ZFD 4010-8	Z						1×4	45 200	93 100	1 016
SFD 5005-4	Clearance						1×4	20 700	66 700	627
ZFD 5005-8	Z		5	3.175	50.75	47.4	1×4	20 700	66 700	1 230
SFD 5005-6	Clearance		5	3.173	30.73	47.4	1×6	29 300	100 000	923
ZFD 5005-12	Z	50					1×6	29 300	100 000	1 810
SFD 5006-4	Clearance	30					1×4	27 900	81 600	636
ZFD 5006-8	Z		6	3.969	51.0	46.9	1×4	27 900	81 600	1 248
SFD 5006-6	Clearance			3.303	31.0	40.9	1×6	39 600	122 000	937
ZFD 5006-12	Z						1×6	39 600	122 000	1 837

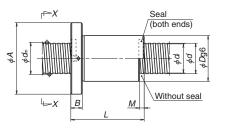
- 2. If no seal is used with nuts SFD, ZFD, or DFD, the nut length will be shortened by dimension M. The nut lengths of MSFD and MPFD are the same with or without seals.
- 3. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws. Please consult NSK for MSFD and MPFD nuts.

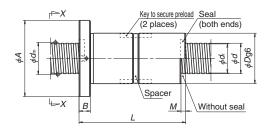

MSFD, MPFD


												Unit: mm
					Ball nut dir	mensions						
Nut total	Nut	Flanged	Flanged	Flan	ge notch	Seal	Bolt ho	le dime	ensions	Bolt hole	Oil hole	Oil hole
length <i>L</i>	diameter <i>D</i>	diameter <i>A</i>	width <i>B</i>	G	Н	dimension <i>M</i>	Χ	Υ	Z	PCD W	position T	Q
50	51	74	10	_	55	_	6.6	_	_	63	31	M6×1
55 80 65 101	56	90	15	34	_	5	9	14	8.5	72	_	Rc1/8
64 93 76 118	56	90	15	34	_	6	9	14	8.5	72	_	Rc1/8
76	60	94		36						76		
116	60	94	15	36		8	9	14	8.5	76		Rc1/8
93	60	94	13	36	_	0		' 4	0.5	76		1101/0
168	62	96		37						78		
83 123 93 143	62	104	18	40	_	10	11	17.5	11	82	_	Rc1/8
55 80 65 101	66	100	15	38	_	5	9	14	8.5	82	_	Rc1/8
64 93 76 118	66	100	15	38	_	6	9	14	8.5	82	_	Rc1/8

- 4. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C_a for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- 5. We recommend using seals if shaft diameter is 16 mm or more and an oil hole is provided.
- 6. Z-preload refers to offset preload, P-preload to oversize ball preload, and D-preload to double-nut preload. For details, see page B5.

B481 B482


Circular shape I

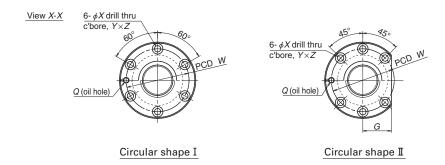

Circular shape II

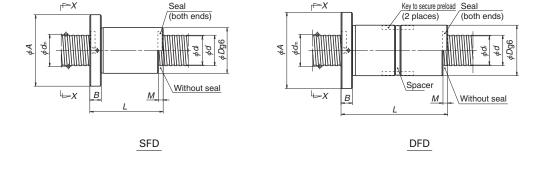
		Cl f+ -1:-	11	Dall alla	Ball circle	D + -1'-	Effective ball turns	Basic load	ratings (N)	Axial
Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
Wiodol IVO.	1101000	d	l	D _w	$d_{\rm m}$	d,	X X	, Ca	C_{0a}	(N1/
		u	ι	$\nu_{\rm w}$	u _m	u _r	Circuits	-		(N/µm)
SFD 5008-4	Clearance						1×4	35 300	94 700	635
ZFD 5008-8	Z		8	4.762	51.25	46.3	1×4	35 300	94 700	1 246
SFD 5008-6	Clearance		-				1×6	50 000	142 000	935
DFD 5008-6	D						1×6	50 000	142 000	1 833
SFD 5010-3	Clearance						1×3	40 200	91 500	489
ZFD 5010-6	Z						1×3	40 200	91 500	960
SFD 5010-4	Clearance		10	6.35	51.75	45.1	1×4	51 500	122 000	644
ZFD 5010-8	Z	50		0.00	01170		1×4	51 500	122 000	1 263
SFD 5010-6	Clearance						1×6	72 900	183 000	947
DFD 5010-6	D						1×6	72 900	183 000	1 858
SFD 5012-3	Clearance				52.25		1×3	52 800	109 000	485
ZFD 5012-6	Z		12	7.938		44	1×3	52 800	109 000	952
SFD 5012-4	Clearance		12	7.556			1×4	67 600	145 000	639
DFD 5012-4	D						1×4	67 600	145 000	1 252
SFD 5020-3	Clearance		20	7.938	52.25	44	1×3	52 400	109 000	480
DFD 5020-3	D		20	7.000	32.23	44	1/0	52 400	109 000	942
SFD 6306-4	Clearance			3.969	64.0	59.9	1×4	30 800	104 000	772
ZFD 6306-8	Z		6				1×4	30 800	104 000	1 513
SFD 6306-6	Clearance		U				1×6	43 600	156 000	1 135
ZFD 6306-12	Z						1×6	43 600	156 000	2 226
SFD 6308-4	Clearance						1×4	39 600	124 000	787
ZFD 6308-8	Z		8	4.762	64.25	59.3	1×4	39 600	124 000	1 543
SFD 6308-6	Clearance		U	4.702	04.23	33.3	1×6	56 200	186 000	1 159
DFD 6308-6	D]					1×6	56 200	186 000	2 272
SFD 6310-4	Clearance						1×4	58 700	162 000	810
ZFD 6310-8	Z	63	10	6.35	64.75	58.1	1×4	58 700	162 000	1 588
SFD 6310-6	Clearance		10	0.33	04.75	30.1	1×6	83 200	244 000	1 192
DFD 6310-6	D						1×6	83 200	244 000	2 337
ZFD 6312-6	Z						1×3	59 900	143 000	1 181
SFD 6312-4	Clearance						1×4	76 800	191 000	793
DFD 6312-4	D		12	7.938	65.25	57	1×4	76 800	191 000	1 555
SFD 6312-6	Clearance	1					1×6	109 000	286 000	1 167
DFD 6312-6	D						1×6	109 000	286 000	2 289
SFD 6320-3	Clearance]	20	0.505	05.75		10	00.400	221 000	766
DFD 6320-3	D		20	9.525	65.75	56	1×3	98 400	231 000	1 503

Notes: 1. Circular shape I and Circular shape II flanges are used for shaft diameters of 20 mm or more. Select a flange suitable for the space available for nut installation.

- 2. If no seal is used with nuts SFD, ZFD, or DFD, the nut length will be shortened by dimension M. The nut lengths of MSFD and MPFD are the same with or without seals.
- 3. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws. Please consult NSK for MSFD and MPFD nuts.

SFD, ZFD


DFD


Deflector(bridge) recirculation

										Unit: mm
				Ball	nut dimens	ions				
Nut total	Nut	Flanged	Flanged	Flange	Seal	Bolt I	hole dimen	sions	Bolt hole	Oil hole
length	diameter	diameter	width	notch	dimension		.,	_	PCD	
L	D	Α	В	G	М	Χ	Y	Ζ	W	Q
79	70	112		43					90	
119	70	112	18	43	8	11	17.5	11	90	Rc1/8
96	70	112		43	Ü	• •			90	
171	72	114		44					92	
83										
123										
93	72	114	18	44	10	11	17.5	11	92	Rc1/8
143	. –									
114										
205										
99										
147	75	121	22	47	12	14	20	13	97	Rc1/8
111										
195										
146	75	121	28	47	20	14	20	13	97	Rc1/8
253										
67										
96 79	80	122	18	47	6	11	17.5	11	100	Rc1/8
121										
79	82	124		47					102	
119	82	124		47					102	
96	82	124	18	47	8	11	17.5	11	102	Rc1/8
175	85	127		48					102	
97	00	127		40					103	
147										
118	85	131	22	50	10	14	20	13	107	Rc1/8
214										
147										
111										
195	90	136	22	52	12	14	20	13	112	Rc1/8
136		100		02	'-		~~	'	''-	.101/0
248										
146										
253	95	153	28	59	20	18	26	17.5	123	Rc1/8
	/aluge for av	ial rigidity K	ahaya ara th	oorotical val	uon obtaino	d from the o	laatia dafara	nation hote	oon the core	w groovo

- 4. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C_s for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- 5. We recommend using seals if shaft diameter is 16 mm or more and an oil hole is provided.
- 6. Z-preload refers to offset preload and D-preload to double-nut preload. For details, see page B5.

		Shaft dia.	Lood	Ball dia.	Ball circle	Root dia.		Basic load	Axial	
Model No.	Preload	Shart dia.	Lead	Dali dia.	dia.	noot dia.	Turns	Dynamic	Static	rigidity
		d	l	D _w	d _m	d _r	X Circuits	C_{a}	C_{0a}	<i>Κ</i> (N/μm)
SFD 8010-4	Clearance						1×4	65 100	209 000	987
DFD 8010-4	D		10	6.35	81.75	75.4	1×4	65 100	209 000	1 935
SFD 8010-6	Clearance		10	0.33	01.75	75.1	1×6	92 200	313 000	1 452
DFD 8010-6	D						1×6	92 200	313 000	2 848
SFD 8012-4	Clearance						1×4	87 400	254 000	996
DFD 8012-4	D	80	12	7.938	82.25	74	1×4	87 400	254 000	1 954
SFD 8012-6	Clearance	00	12				1×6	124 000	381 000	1 467
DFD 8012-6	D						1×6	124 000	381 000	2 877
SFD 8020-3	Clearance			9.525	82.75	73	1×3	114 000	312 000	978
DFD 8020-3	D		20				1×3	114 000	312 000	1 918
SFD 8020-4	Clearance		20				1×4	146 000	416 000	1 287
DFD 8020-4	D						1×4	146 000	416 000	2 524
SFD 10010-6	Clearance		10	6.35	101.75	95.1	1×6	102 000	400 000	1 762
DFD 10010-6	D		10	0.55	101.73	55.1	1/0	102 000	400 000	3 456
SFD 10012-6	Clearance	100	12	7.938	102.25	94	1×6	138 000	490 000	1 789
DFD 10012-6	D	100	12	7.330	102.25	54	1.70	130 000	450 000	3 509
SFD 10020-4	Clearance		20	9.525	102.75	93	1×4	161 000	525 000	1 546
DFD 10020-4	D		20	0.020	102.75	55	1.74	101 000	323 000	3 031

Notes 1. Circular shape I and Circular shape II flanges are used for shaft diameters of 20 mm or more. Select a flange suitable for the space available for nut installation.

- 2. If no seal is used, the nut length will be shortened by dimension M.
- 3. Right-turn screws are standard. "L" is added to the end of the Model No. for left turn screws.

										Unit: mm
				Ball	nut dimens	ions				
Nut total	Nut	Flanged	Flanged	Flange	Seal	Bolt I	nole dimen	sions	Bolt hole	Oil hole
length <i>L</i>	diameter <i>D</i>	diameter <i>A</i>	width <i>B</i>	notch <i>G</i>	dimension <i>M</i>	X	Y	Z	PCD W	Oil hole Q Rc1/8
97										e e
172	105	151	22	57	10	14	20	13	127	Rc1/8
118	105	101	22	57	10	14	20	13	127	NC1/6
214										
111										
195	110	156	22	59	12	14	20	13	132	Rc1/8
136	110	100		00	12		20	10	102	110170
248										
146										
253	115	173	28	66	20	18	26	17.5	143	Rc1/8
168	-									,
297										
118	125	171	22	64	10	14	20	13	147	Rc1/8
214					_					
142	130	188	28	71	12	18	26	17.5	158	Rc1/8
254	.50	. 50		• '					. 50	
172 301	135	205	32	79	20	22	32	21.5	169	Rc1/8

- 4. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C_a for clearance (no preload), 10% for D-preload, and 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- 5. We recommend using seals if shaft diameter is 16 mm or more and an oil hole is provided.
- 6. D-preload refers to double-nut preload. For details, see page B5.

B485 B486

B-3-2.5 High-speed Low-noise Deflector Recirculation Ball Screws

1. Features

Deflector (bridge) recirculation allows for the outer diameter of the nut to be extremely small. With optimizations to keep ball recirculation smooth, technology to reduce impact forces between balls, and specialized ball groove specifications to lower noise from ball travel by approximately 4dB(A) compared to conventional bridge deflectors, these highspeed, low-noise ball screws offer smooth and stable operating characteristics. In addition, revised internal designs provide higher load capacity for select sizes.

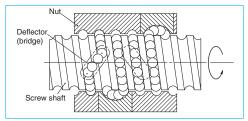


Fig. 1 Structure of deflector(bridge) recirculation system

Table 1 Accuracy grade and axial play

Accuracy grade	C0, C1, C2, C3, C5, Ct7
	Z, 0 mm (preloaded); T, 0.005 mm or less
Ахіаі ріаў	S, 0.020 mm or less; N, 0.050 mm or less

2. Specifications

(1) Ball recirculation system

Deflector (bridge) recirculation provides a compact nut outer diameter with relatively small leads. The structure of the recirculation system is shown in **Fig. 1**.

(2) Accuracy grade and axial play

The available standard accuracy grades and axial play are shown in **Table 1**. Please consult NSK for other grades.

(3) Allowable d·n value and the criterion of maximum rotational speed

The allowable $d \cdot n$ value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable $d \cdot n$ value: $\leq 160\,000$ (For models SFYD6320, ZFYD6320, SFYD6330, and ZFYD6330: $\leq 150\,000$)

Standard of rotational speed :5 000 min⁻¹

Note: Please also review the critical speed. Refer
to "Technical Description: Permissible
Rotational Speed" (page B47) for details.

Table 2

Nut	Shape	Flange shape	Preload
SFYD		Compliant with DIN standards.	Nopreload, Slight axial play
ZFYD		(Other shapes are also available.)	Z-preload (medium preload)

3. Lineup

High-speed, low-noise deflector (bridge) recirculation ball screws are available with the preload/clearance configurations shown in **Table 2**.

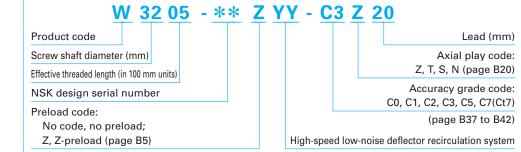
4. Design Precautions

When designing the screw shaft end, one end of the screw must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

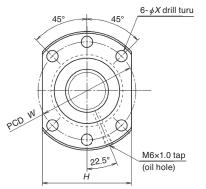
• Cut the ball groove through to the shaft end.

 The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove d, specified in the dimension tables.

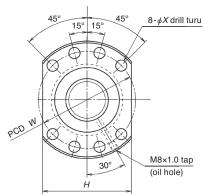
For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).


5. Structure of model number and reference number

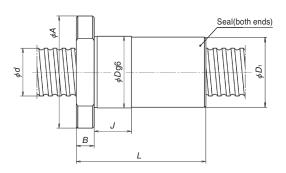
The following explains the codes used in model numbers and ball screw reference numbers.



Note: In ZFYD, the number here is twice the effective ball turns.


♦ Reference number for ball screws

B487 B488


SFYD32, ZFYD32 (Screw shaft diameter d=32mm)

SFYD40, ZFYD40 (Screw shaft diameter d=40mm) SFYD50, ZFYD50 (Screw shaft diameter d=50mm) SFYD63, ZFYD63 (Screw shaft diameter d=63mm)

		Shaft dia.	Lead	Ball dia.	Root dia.	Effective ball turns	Basic load	ratings (N)
Model No.	Preload	Shart dia.	Lead	Dali dia.	noot dia.	Turns	Dynamic	Static
1410001110.	1.10.000	d	l	D_{w}	d,	X	, Ca	C_{0a}
		u	ι	$D_{\rm w}$	$u_{\rm r}$	Circuits	C _a	
SFYD 3210-5	Clearance	32	10	5.556	27.7	1×5	41 900	83 200
ZFYD 3210-10	Z	32	10	5.556	27.7	1×5	41 900	83 200
SFYD 3215-3	Clearance	32	15	5.556	27.7	1×3	26 800	49 700
ZFYD 3215-6	Z	32	15	5.556	27.7	1×3	26 800	49 700
SFYD 3220-2	Clearance	32	20	5.556	27.7	1×2	18 700	32 900
ZFYD 3220-4	Z	32	20	5.556	27.7	1×2	18 700	32 900
SFYD 4010-4	Clearance	40	10	7.144	34.6	1×4	52 400	103 000
ZFYD 4010-8	Z	40	10	7.144	34.0	1×4	52 400	103 000
SFYD 4015-3	Clearance	40	15	7.144	34.6	1×3	40 700	77 100
ZFYD 4015-6	Z	40	15	7.144	34.0	1×3	40 700	77 100
SFYD 5010-4	Clearance	50	10	7.144	44.6	1×4	59 100	133 000
ZFYD 5010-8	Z	50	10	7.144	44.0	1×4	59 100	133 000
SFYD 5020-4	Clearance	50	20	7.938	44	1×4	67 200	145 000
ZFYD 5020-8	Z	50	20	7.330	44	1×4	67 200	145 000
SFYD 6310-5	Clearance	63	10	7.144	57.6	1×5	81 900	220 000
ZFYD 6310-10	Z	03	10	7.144	37.0	1×5	81 900	220 000
SFYD 6320-5	Clearance	63	20	9.525	56	1×5	153 000	385 000
ZFYD 6320-10	Z	03	20	9.025	56	1×5	153 000	385 000
SFYD 6330-3	Clearance	63	30	9.525	56	1×3	97 700	230 000
ZFYD 6330-6	Z	03	30	9.025	96	1×3	97 700	230 000

Notes: 1. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C, for clearance (no preload), 5% for P-preload. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.

Unit: mm

									Unit: mm
Axial rigidity				Ball	nut dimens	ions			
K	Nut total length	Nut diameter	Flange diameter	Nut diameter	Diameter g6	Flange width	Flange	Bolt hole dimension	Bolt hole PCD
(N/µm)	L	D	A	D_1	J	B	Н	X	W
537	94	50	80	(49)	40	12	62	9	65
836	156	30	00	(43)	40	12	02	3	
326	88	50	80	(49)	40	12	62	9	65
508	148	- 00		(,			V-		
218	81	50	80	(49)	40	12	62	9	65
339	132	00		(,					
520	87	63	93	(62)	40	14	70	9	78
811	137	00		(02)					
393	95	63	93	(62)	40	14	70	9	78
612	155	- 00		(02)					
636	90	75	110	(74)	40	16	85	11	93
990	140	, 0	110	(, ,	10	10	00		
633	140	75	110	(74)	40	16	85	11	93
984	240	, 0	110	(, ,	10	- 10			
989	104	90	125	(89)	40	18	95	11	108
1 540	164	50	120	(00)	70	10		' '	100
1 248	166	95	135	(94)	40	20	100	13.5	115
1 943	286	35	130	(54)	+0	20	100	13.5	110
757	157	95	135	(94)	40	20	100	13.5	115
1 179	269	00	100	(54)	70	20	100	10.0	115

B489 B490

Mountings listed are based on dimensions specified by the German Institute for Standardization (DIN). Mounting dimensions can be adjusted to match other ball screws, etc. Please contact NSK for details.

End cap recirculation

B-3-2.6 End Cap Recirculation Ball Screws

1. Features

The end cap recirculation system is suitable for high-helix lead and multiple start threads.

Since leads are 1 to 3 times larger than their screw shaft diameter, end cap types are suitable for high-speed operation.

2. Specifications

(1) Ball recirculation system

The structure of end cap recirculation system is shown in Fig. 1.

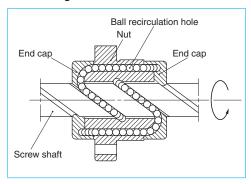


Fig. 1 Structure of end cap recirculation system

(2) Accuracy grades and axial play

The available standard accuracy grades and axial play are shown in **Table 1**. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	LSFC, LPFC: C1, C2, C3, C5, Ct7 USFC, UPFC: C3, C5, Ct7 (Three times lead or over are C5, Ct7)
Axial play	Z, 0 mm (preloaded); T, 0.005 mm or less; S, 0.020 mm or less; N, 0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed.

The allowable *d·n* value and criterion of maximum rotational speed are shown below. Please consult NSK for high-speed specifications. Basic measures must be taken for high speed ball screws.

Allowable $d \cdot n$ value:

Standard specification ; 80 000 or less High-speed specification; 100 000 or less Standard of rotational speed : 3 000 min⁻¹ **Please also review the critical speed. Refer to "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Other specifications

Please consult NSK for specifications not listed in the dimension tables.

3. Lineup

There are two different preloads with several models (Table 2).

Table 2 End cap ball screws lineup

Nut	Shape	Flange shape	Nut shape	Preload
LSFC	annoning and annoning	Flanged	Circular	Non-preload, Slight axial play
LPFC	yann B 'mannan	Circular Ⅲ	Circular	P-preload (light preload) no spacer ball
USFC		Flanged	Circular	Non-preload, Slight axial play
UPFC		Rectangular	Circular	P-preload (light preload) no spacer ball

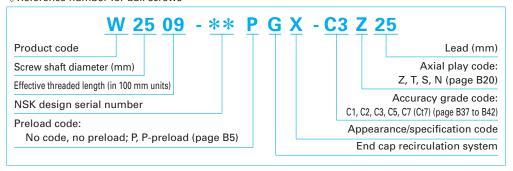
4. Design Precautions

When designing the screw shaft end, one end of the screw must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

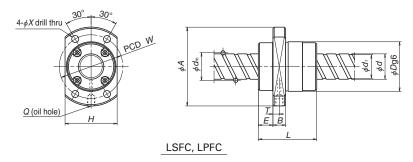
- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove d_r specified in the dimension tables.

Special bearings which have higher-load carrying capacity are available.

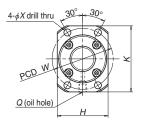
For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

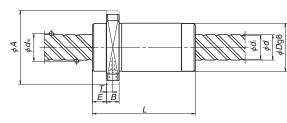

5. Example of model number in dimension tables

The following explains the codes used in model numbers and ball screw reference numbers.



Reference number for ball screws

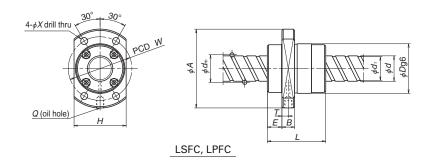

B491 B492



				Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns	Basic load	ratings (N)	Axial rigidity
	Mod	del No.	Preload	Silait ula.	Leau	Dall Ula.	dia.	noot dia.	Turns	Dynamic	Static	K
				d	l	$D_{\rm w}$	d _m	d _r	× Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
		1220-1.5	Clearance	12	20	2.381	12.5	9.9	1.7×1	2 960	4 370	68
٠,		1220-1.5	P	12	20	2.501	12.5	5.5	1.7.	2 300	4 370	106
		1520-1.5	Clearance		20	3.175	15.5	12.2	1.7×1	5 660	8 700	101
		1520-1.5	Р			00	10.0					156
		1540-1	Clearance	15					0.7×2	4 430	7 320	65
		1540-1	Р		40	3.175	15.75	12.2	0.7×2	4 430	7 320	102
		1540-2 1540-2	Clearance						0.7×4	8 040 8 040	14 600 14 600	134 209
ı		1616-3	Clearance						0.7×4 1.7×2	7 910	13 700	185
		1616-3	P					13.7	1.7×2	7 910	13 700	288
		1616-6	Clearance		16	2.778	16.65		1.7×4	14 400	27 400	359
		1616-6	P						1.7×4	14 400	27 400	559
		1632-1	Clearance	1 1		2.175	10.75		0.7×2	4 800	7 510	79
* UPFC		1632-1	Р	16	22				0.7×2	4 800	7 510	124
		1632-3	Clearance					10.4	1.7×2	10 300	18 500	187
		1632-3	Р		32	3.175	16.75	13.4	1.7×2	10 300	18 500	230
	USFC	1632-6	Clearance		50				1.7×4	18 700	37 000	361
	UPFC	1632-6	Р						1.7×4	18 700	37 000	562
	USFC	1650-1	Clearance			3.175	16.75	13.4	0.7×2	4 410	7 840	65
		1650-1	Р						0.7×2	4 410	7 840	105
		1650-2	Clearance		30				0.7×4	8 000	15 700	130
		1650-2	Р						0.7×4	8 000	15 700	203
		2020-3	Clearance						1.7×2	12 300	23 600	258
		2020-3	Р		20	3.175	20.75	17.4	1.7×2	12 300	23 600	402
		2020-6	Clearance						1.7×4	22 400	47 200	500
ı		2020-6	Р						1.7×4	22 400	47 200	779
*		2040-1 2040-1	Clearance						0.7×2 0.7×2	5 410 5 410	9 360 9 360	94 147
		2040-1		20					1.7×2	11 600	23 400	224
		2040-3	Clearance		40	3.175	20.75	17.4	1.7×2	11 600	23 400	349
		2040-6	Clearance						1.7×4	21 100	46 800	435
		2040-6	P						1.7×4	21 100	46 800	677
ı		2060-1	Clearance	1					0.7×2	4 950	9 590	81
		2060-1	Р		00	0.475	20.75	17.4	0.7×2	4 950	9 590	125
	UPFC 2		Clearance		60	3.175			0.7×4	8 990	19 200	156
		2060-2	Р						0.7×4	8 990	19 200	243

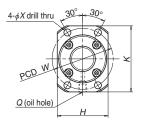
Notes: 1. Values for axial rigidity *K* above for ball screws with LSFC and USFC nuts are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating *C_s*. Values for axial rigidity *K* for LPFC and UPFC types are theoretical values when preload is 5% of the basic dynamic load rating and an axial load is applied. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.

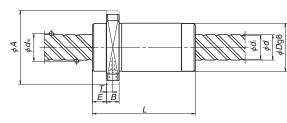
USFC, UPFC


Unit: mm

										OTHE. ITHII	
				Ball	nut dimens	sions					
Nut total length	Nut diameter D	Flange diameter A	Flange width B		mensions K	End cap	Bolt hole dimension X	Bolt hole PCD W	Oil hole	Oil hole position T	
44	26	44	10	28	40	9	4.5	35	M6×1	5	
45	34	55	10	36	50	11	5.5	45	M6×1	5	
40	32	53	10	33	48	12	5.5	43	M6×1	5	End ca
38	32	53	10	34	_	10	4.5	42	M6×1	5	End cap recirculation
34 34 66 66 66	34	55	10	36	50	10.5	5.5	45	M6×1	5	ation
66											
50	34	55	10	36	50	12	5.5	45	M6×1	5	
46	39	62	10	41	_	11.5	5.5	50	M6×1	5	
41 41 81 81 81	38	58	10	40	52	11	5.5	48	M6×1	5.5	
58	38	58	10	40	52	12.3	5.5	48	M6×1	5	
0.1	Dialet to		DI	N	CV 41-4+						

- 2. Right-turn screws are standard. Please contact NSK for left-turn screws.
- 3. Standard finished shaft end FA models are available for those models marked with an asterisk (*).
- 4. P-preload refers to oversize ball preload. For details, see page B5.


B493 B494



			Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns Turns			Axial rigidity
	Model No.	Preload				dia.		X	Dynamic	Static	K
			d	l	D_{w}	$d_{\scriptscriptstyle m}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
	LSFC 2525-3	Clearance						1.7×2	18 400	36 900	318
	LPFC 2525-3	Р		25	2 000	26.0	01.0	1.7×2	18 400	36 900	495
	LSFC 2525-6	Clearance		25	3.969	20.0	21.9	1.7×4	33 400	73 800	616
	LPFC 2525-6	Р						1.7×4	33 400	73 800	959
	USFC 2550-1	Clearance						0.7×2	8 090	14 600	112
*	UPFC 2550-1	Р				26.0		0.7×2	8 090	14 600	181
	USFC 2550-3	Clearance	25	50	3.969		21.9	1.7×2	17 300	37 500	281
	UPFC 2550-3	Р	25	50	3.909			1.7×2	17 300	37 500	437
	USFC 2550-6	Clearance						1.7×4	31 500	75 000	545
	UPFC 2550-6	Р						1.7×4	31 500	75 000	848
	USFC 2580-1	Clearance		80 3.969		26.0		0.7×2	7 290	15 300	97
	UPFC 2580-1	Р			3.969		21.9	0.7×2	7 290	15 300	151
	USFC 2580-2	Clearance						0.7×4	13 200	30 600	188
	UPFC 2580-2	Р						0.7×4	13 200	30 600	293
	LSFC 3232-3	Clearance						1.7×2	26 800	56 300	383
	LPFC 3232-3	Р		32	4.762	33.25	28.3	1.7×2	26 800	56 300	618
	LSFC 3232-6	Clearance		32	4.702	33.20	20.5	1.7×4	48 700	113 000	770
	LPFC 3232-6	Р						1.7×4	48 700	113 000	1 198
	USFC 3264-1	Clearance	32					0.7×2	11 400	23 800	150
	UPFC 3264-1	Р	32					0.7×2	11 400	23 800	234
	USFC 3264-3	Clearance		64	4.762	33.25	28.3	1.7×2	24 400	56 800	346
	UPFC 3264-3	Р		04	4.702	33.23	20.5	1.7×2	24 400	56 800	571
	USFC 3264-6	Clearance						1.7×4	44 400	114 000	670
	UPFC 3264-6	Р						1.7×4	44 400	114 000	1 043
	LSFC 4040-3	Clearance						1.7×2	42 900	94 500	494
	LPFC 4040-3	Р	40	40	6.350	41.75	35.2	1.7×2	42 900	94 500	769
	LSFC 4040-6	Clearance	40	40	0.000	41.75	00.2	1.7×4	77 800	189 000	956
	LPFC 4040-6	Р						1.7×4	77 800	189 000	1 488
	LSFC 5050-3	Clearance						1.7×2	64 100	148 000	608
	LPFC 5050-3	Р	50	50	7.938	52.25	44.1	1.7×2	64 100	148 000	1 004
	LSFC 5050-6	Clearance		50	7.936	32.23			116 000	295 000	1 176
	LPFC 5050-6	Р						1.7×4	116 000	295 000	1 831

Notes: 1. Values for axial rigidity K above for ball screws with LSFC and USFC nuts are theoretical values obtained from the elastic deformation between the screw groove and ball when axial load is 30% of the basic dynamic load rating C_s. Values for axial rigidity K for LPFC and UPFC types are theoretical values when preload is 5% of the basic dynamic load rating and an axial load is applied. Refer to the "Technical Description" on page B56 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.

USFC, UPFC

Unit: mm

	Onit. min										
				Ball	nut dimens	sions					
Nut total	Nut	Flange	Flange	Flange di	mensions	End cap	Bolt hole	Bolt hole	Oil hole	Oil hole	
length	diameter	diameter	width				dimension			position	
L	D	Α	В	Н	K	Ε	X	W	Q	· T	
55	47	74	12	49	_	13	6.6	60	M6×1	6	
50											
50											
100	46										2
100		70	12	48	63	13	6.6	58	M6×1	7	Tire ould i done
100											3
100											į
											l
75	46	70	12	48	63	14.5	6.6	58	M6×1	6	I
/5	46	/0	12	48	63	14.5	6.6	58	IVIOXI	ь	ľ
											Ī
70	58	92	12	60	_	16	9	74	M6×1	5.5	
, 0		02								0.0	Ī
62											
62											
126											
126	58	92	12	60	82	15.5	9	74	M6×1	7.5	
126											
126											
120											
85	73	114	15	75	_	19.5	11	93	M6×1	6.5	
107	00	105	20	00		21 5	1.4	110	Meva	, '	
107	90	135	20	92	_	21.5	14	112	M6×1	7	

2. Right-turn screws are standard. Please contact NSK for left-turn screws.

3. Standard finished shaft end FA models are available for those models marked with an asterisk (*).

4. P-preload refers to oversize ball preload. For details, see page B5.

B495

1. HMD Model for High-Speed Machine Tools	B501
2. HMS Model for High-Speed Machine Tools	B505
3. HMC Model for High-Speed Machine Tools	B509
4. BSL [™] Model for Miniature Lathes	B515
5. For High-Load Drives	
5.1 HTF-SRC Model	B519
5.2 HTF-SRD Model	B523
5.3 HTF Model	B527
6. For Contaminated Environments	
6.1 VSS Model	B543
6.2 Ball Screw with X1 Seals for Contaminated	B547
Environments and Grease Retention	
7. Twin-Drive Ball Screws	B553
8. For High Precision Machine Tools	
8.1 Hollow Shaft Ball Screws	B554
8.2 Nut-Cooled Ball Screws	B559
9. Rotary Nut Ball Screws	B563
10. Σ Model for Robots	B571
I1. Equipped with "NSK K1™" Lubrication Unit	B583
12. Special Ball Screws	B589
•	

B-3-3 Dimension Tables and Reference Numbers for Application-Oriented Ball Screws

B497 B498

NSK

♦ Features and examples of application-oriented ball screws

Appli	ications	Shape	Features	Equipment	Page
	HMD Model		High-speed operation: 64 to 120 m/min Rigidity: 5% greater than the HMC model. High-load carrying capacity: 7% greater than the HMC model. New recirculation system reduces the noise level by 5 dB(A) or more compared with the HMC model	High-speed machining centers High-speed combined machine tools Die mold processing machine	B501
High-Speed Machine Tools	HMS Model		Fine lead: 5 to 12 mm High-speed operation: 25 to 50 m/min Easy replacement: Dimensional interchangeability with tube recirculation ball screws. New recirculation system reduces the noise level by 5 dB(A) or more compared with tube recircualtion.	Machining centers Die mold processing machine NC lathes Combined machine tools	B505
	HMC Model		High-speed: 40 to 120 m/min Rigidity: 30% greater than existing tube recirculation ball screws High-Load carrying capacity: 14% greater than existing tube recirculation ball screws. Noise reduced by small-diameter balls	High-speed machining centers High-speed combined machine tools Die mold processing machines	B509
Small Lathes	BSL Model		Compact nut: 50% less ball nut volume than NSK existing products. High dust resistance from thin plastic seal Special high-load capacity ball screw support bearings are available.	Small lathes Multi-axis lathes Small machining centers	B515
	HTF-SRC Model		High-load capacity High-speed operation by high-speed rotation: 930 mm/sec Even load distribution to balls in the ball nut for high-load drive. Improved durability by NSK S1	Injection axis of injection molding machines Servo press machines Press brake Bending machines	B519
High-Load Drives	HTF-SRD Model		High-load capacity High-speed operation by large screw lead: 1 600 mm/sec Improved durability by NSK S1	Clamping axis of injection molding machines Die cast machines Punch presses Lifting and lowering devices	B523
	HTF Model	E Hadadadada	High-load capacity Even load distribution to the balls in a ball nut for high-load drive Improved durability by NSK S1 Provides a wide range of screw diameter and lead combinations.	Injection molding machines Press machines Press fitting machines Lifting and lowering machines	B527
Contaminated Environments	VSS Model		High dust-resistant performance: Reduces particle penetration rate to less than 1/15 (compared with standard seal). More than four times longer service life than standard seals under contaminated environments.	Woodworking machines Laser cutting machines Graphite milling machines Tire molding machines Transfer equipment	B543

Appl	ications	Shape	Features	Equipment	Page
Contaminated Environments and Grease Retention	Ball Screws with X1 Seals		Highly dust-resistant: Particle penetration ratio reduced to less than 1/30 of existing standard seals. Superior grease retention: Can reduce lubricant consumption, also effective at suppressing grease splattering.	Machining centers Combined machine tools NC lathes Woodworking machines Laser cutting machines Graphite milling machines Tire molding machines	B547
Twin-Drive Systems	Twin-Drive Ball Screws		Controlled screw lead accuracy and variation of preload torque for twin drive. Improved axial rigidity, expected life and controllability by the paired up two ball-screw driving systems	Machining centers Combined machine tools Large-size machine tools	B553
High- Precision Machine Tools	Hollow Shaft Ball Screws		Suppresses thermal deformation by cooling the shaft center. Prevent the machine base from deforming due to thermal expansion. NSK special support units and seal units are available.	High-precision die processing machines High-precision combined machine tools High-precision machining centers High-precision lathes	B554
	Nut-Cooled Ball Screws	No Vo	Due to the simple nut cooling setup, cooling is achieved simply by attaching piping to the thermal displacement control nut. Cooling just as effective as core cooling. Insulation to prevent heat from affecting the table.	High-precision die processing machines High-precision combined machine tools High-precision machining centers High-precision lathes Large machine tools	B559
Rotary Nut Ball Screws	NDT and NDD Models		Angular contact support bearings are integrated into the ball nut. Two or more ball nuts can be installed in a single ball screw shaft. NDD model ball screws can surpass the critical speed. A special vibration damper enables longstroke-high-speed operation.	Woodworking machines Laser cutting machines Electronic component mounting devices Flat panel display manufacturing equipment Transfer equipment	B563
Robots	Σ Model		A ball screw and a ball spline are made in one shaft, combining a drive and guide system. A ball screw nut, a ball spline nut and support bearings are combined to the unit. Hollow shaft has weight saving. The shaft can be used for wiring and piping.	SCARA type robots Electronic- component mounting systems	B571
Ball Screws K1" Lubrica		NSK K1	Long-term, maintenance-free operation Maintains lubrication efficiency for a prolonged time in contaminated environments Does not pollute the environment Made of compatible material with the FDA regulations is also available.	Automotive manufacturing machines Woodworking machines Laser cutting machines Semiconductor/Flat panel display manufacturing equipment Food processing/Medical equipment	B583

B499 B500

B-3-3.1 HMD Model for High-Speed Machine Tools

Newly developed ball recirculation components. end deflectors, and middle deflectors contribute significantly to substantial improvements in maximum rotational speed and the level of noise as compared to the HMC model.

1. Features

High speed

The permissible rotational speed ($d \cdot n$ value) has greatly increased to 160 000 compared with 135 000 of the HMC model.

I ow noise

Noise reduced by 5 dB(A) or more compared with HMC model ball screws for high-speed machine tools.

Nut mounting dimensions

The ball nut diameters are the same as those of the HMC model.

2. Specifications

(1) Recirculation system

Fig.1 shows the structure of the middle-deflector recirculation system of the HMD model.

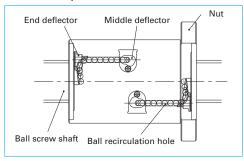


Fig. 1 Structure of middle-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grades and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C3, C5
Axial play	0 mm (preloaded)

(3) Allowable $d \cdot n$ value and the criterion of maximum rotational speed

The allowable $d \cdot n$ value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

> Allowable d·n value: 160 000 or less Criterion of maximum rotational speed : 4 000 min

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Options

For twin-drive systems (See page B553.)

Upon request, variations in lead accuracy and preload torque between paired twin-drive ball screws can be controlled for the further improvement of reliability.

- Hollow shaft ball screw (See page B554.)
- Nut-Cooled Ball Screws (See page B559.)

Temperature rise and measures to prevent thermal expansion of the ball screw drive mechanism are especially challenging for highspeed machine tools. We recommend using core forced cooling or nut cooling for the HMD model.

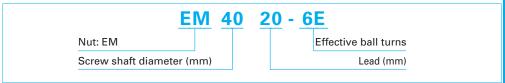
(5) Seal

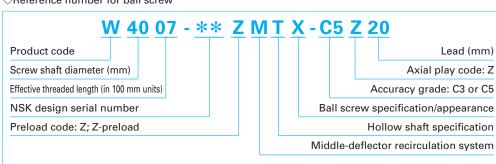
Compact, thin plastic seals are available. Nut outside diameter is compact compared with the tube recirculation system.

3. Design precautions

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

4. Lineup

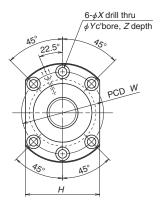

The HMD model is available in the following varieties:

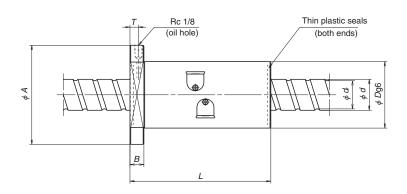

Table 2 HMD model lineup

Nut	Shape	Flange shape	Nut shape	Preload
EM		Flanged Circular II	Circular	Z-Preload (medium preload)

5. Structure of model number and reference number

The following explains the codes used in model numbers and ball screw reference numbers.


6. Handling Precautions


Maximum operating temperature: 80°C

If using NSK K1, operating temperature should not exceed 50°C. Refer to "Design Precautions" (page B83).

B501 B502

		Lead		Basic load	Axial rigidity	
Model No.	Shaft dia.		Root dia.	Dynamic	Static	K
	d	l	d _r	C _a	C_{0a}	(N/µm)
EM4016-4E		16	34.1	66 900	131 000	1 023
EM4020-6E	40	20	34.4	77 900	166 000	1 415
EM4025-6E	40	25	34.1	91 300	191 000	1 442
EM4030-6E		30	34.1	90 400	190 000	1 419
EM4516-4E		16	39.1	69 900	146 000	1 121
EM4520-6E	45	20	39.4	83 200	187 000	1 573
EM4525-6E		25	39.1	95 700	214 000	1 589
EM5016-4E		16	44.1	72 700	161 000	1 216
EM5020-6E	50	20	44.4	85 700	205 000	1 695
EM5025-6E	30	25	44.1	103 000	232 000	1 731
EM5030-6E		30	44.1	102 000	235 000	1 730
EM6316-4E	63	16	55.2	131 000	338 000	1 696

Notes: 1. Right-turn screws are standard. Please contact NSK for left-turn screws.

2. Values for axial rigidity K are obtained when 5% of the basic dynamic load ratings is applied as the preload.

										Unit: mm	
		Ва	all nut dimer	nsions				Bolt hole	Oil hole	Max. feed	
Nut length	Nut dia.	Flange dia.	Flange width	Flange dimension	Bolt h	ole dime	nsions	PCD	position	speed	
L	D	Α	В	Н	X	Y	Z	W	T	(m/min)	
160										64	E
150	- 86	128	18	00	11	17.5	'.5 11	100	11	80	E
182		128	18	96	11	17.5	11	106	11	100	
213										120	
160										56	
150	92	134	18	102	11	17.5	11	112	11	70	
182										88	
160										51	
150	98	140	18	107	11	17.5	11	118	11	64	
182	90	140	10	107	11	17.5	''	110	''	80	
213										96	
170	122	180	28	138	18	26	17.5	150	14	40	

B503 B504

B-3-3.2 HMS Model for High-Speed Machine Tools

1. Features

High speed

The permissible rotational speed ($d \cdot n$ value) has greatly increased to 160 000 compared with 100 000 for tube recirculation screws.

Low noise

By adopting a SRC recirculation system, noise reduced by 5 dB(A) or more compared with tube recirculation screws.

Nut mounting dimensions

The ball nut diameters are the same as those of tube recirculation screws.

2. Specifications

(1) Recirculation system

Fig.1 shows the structure of the SRC recirculation system of the HMS model.

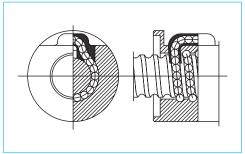


Fig. 1 Structure of SRC recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grades and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C3, C5
Axial play	0 mm (preloaded)

(3) Allowable $d \cdot n$ value and the criterion of maximum rotational speed

The allowable $d \cdot n$ value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

> Allowable d⋅n value: 160 000 or less Criterion of maximum rotational speed : 5 000 min⁻¹

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Options

For twin-drive systems (See page B553.)

Upon request, variations in lead accuracy and preload torque between paired twin-drive ball screws can be controlled for the further improvement of reliability.

- Hollow shaft ball screw (See page B554.)
- Nut-Cooled Ball Screws (See page B559.)

Temperature rise and measures to prevent thermal expansion of the ball screw drive mechanism are especially challenging for highspeed machine tools. We recommend using core forced cooling or nut cooling for the HMS model.

3. Design precautions

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

4. Lineup

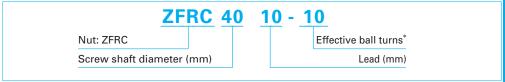
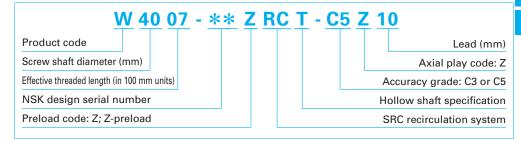

The HMS model is available in the following varieties:

Table 2 HMS model lineup

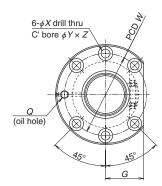
Nut	Shape	Flange shape	Nut shape	Preload
ZFRC		Flanged Circular II	Circular	Z-Preload (medium preload)

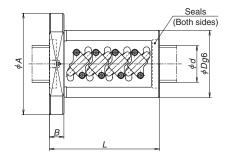

5. Structure of model number and reference number

The following explains the codes used in model numbers and ball screw reference numbers.

* In the case of Z-preload, the amount shown is twice the effective ball turns.

○Reference number for ball screws




6. Handling Precautions

Maximum operating temperature: 60°C If using NSK K1, operating temperature should not exceed 50°C. Refer to "Design Precautions" (page B83).

B505 B506

	Shaft dia.	Lead	Root dia.	Effective turns		ratings (N)	Axial rigidity
Model No.	Onare dia.	Lodd	rioot did.	Turns ×	Dynamic	Static	K
	d	l	d_{r}	rows	$C_{\scriptscriptstyle \mathrm{a}}$	C_{0a}	(N/µm)
ZFRC2812-7	28	12	23.5	3.5×1	26 100	50 200	592
ZFRC2816-5	28	16	22.4	2.5×1	27 400	47 400	437
ZFRC3205-10	32	5	29.2	2.5×2	21 800	56 000	891
ZFRC3210-10	32	10	26.4	2.5×2	54 500	110 000	970
ZFRC4005-10	40	5	37.2	2.5×2	23 900	70 500	1 067
ZFRC4010-10	40	10	34.4	2.5×2	61 200	137 000	1 154
ZFRC4012-10	40	12	34.1	2.5×2	71 700	154 000	1 177
ZFRC4508-10	45	8	40.5	2.5×2	44 000	118 000	1 234
ZFRC4510-10	45	10	39.4	2.5×2	65 800	157 000	1 291
ZFRC4512-10	45	12	39.1	2.5×2	75 600	176 000	1 304
ZFRC5010-10	50	10	44.4	2.5×2	68 100	174 000	1 397
ZFRC5012-10	50	12	43.2	2.5×2	91 500	218 000	1 441
ZFRC5508-10	55	12	50.5	2.5×2	47 300	144 000	1 439
ZFRC6312-14	63	12	56.2	3.5×2	136 000	385 000	2 388

Notes: 1. Right-turn screws are standard. Please contact NSK for left-turn screws.

		1	all nut dimer					Bolt hole	Oil hole	Max. feed	
Nut length	Nut	Flange	Flange width	Notch dimension	Bolt h	ole dime	nsions	PCD	position	speed	
L	dia. <i>D</i>	dia. <i>A</i>	B Width	G	X	Y	Z	W	Q	(m/min)	
128	60	88	15	33	6.6	11	6.5	73	M6×1	60	HIN
131	73	101	15	38	6.6	11	6.5	86	M6×1	80	0
89	58	85	12	32	6.6	11	6.5	71	M6×1	25	
163	74	108	15	41	9	14	8.5	90	M6×1	50	
92	67	101	15	39	9	14	8.5	83	M6×1	25	
166	82	124	18	47	11	17.5	11	102	Rc1/8	40	
192	86	128	18	48	11	17.5	11	106	Rc1/8	48	
136	82	124	18	47	11	17.5	11	102	Rc1/8	28	
166	88	132	18	50	11	17.5	11	110	Rc1/8	35	
192	90	132	18	50	11	17.5	11	110	Rc1/8	42	
166	93	135	18	51	11	17.5	11	113	Rc1/8	32	
198	100	146	22	55	14	20	13	122	Rc1/8	38	
133	94	136	18	52	11	17.5	11	114	Rc1/8	60	
244	115	161	22	61	14	20	13	137	Rc1/8	30	

B507 B508

Unit: mm

^{2.} Values for axial rigidity K are obtained when 5% of the basic dynamic load ratings is applied as the preload.

B-3-3.3 HMC Model for High-Speed Machine Tools

1. Features

High-speed travel

High helix leads of 16 mm to 36 mm are used. Furthermore, the tube recirculation is reinforced to make high-speed travel of 40 to 120 m/min. possible.

 High rigidity, high load carrying capacity Double start threads increase the number of effective ball turns, and a smaller ball size increases the number of the balls. Together they contribute to high rigidity and high load carrying capacity, despite the high helix lead.

Compact nut

The size of nut diameter and length were reduced.

2. Specifications

(1) Ball recirculation system

The ball recirculation circuits and grooves are suited for high-speed operation. The structure of the recirculation system is shown in Fig. 1.

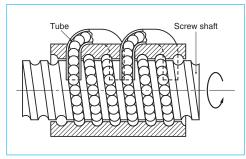


Fig. 1 Structure of tube recirculation system

(2) Accuracy grades and axial play

Standard accuracy grades and axial play are shown in Table 1. Please consult NSK for other grade.

Table 1 Accuracy grades and axial play

Accuracy grade	C3, C5
Axial play	0 mm (preloaded)

(3) Options

 Equipped with NSK K1 lubrication unit Optional NSK K1 lubrication units, molded from resin and saturated with lubrication oil, are available. Please consult NSK when using NSK K1.

For twin-drive systems (See page B553.)

Upon request, the variations in lead accuracy and preload torque between paired twin-drive ball screws can be controlled for the further improvement of reliability.

 Hollow shaft ball screw specifications (See page B554.)

Temperature rise and measures to prevent thermal expansion of the ball screw drive mechanism are especially challenging for high-speed machine tools. For HMC models, we recommend a hollow shaft, forced cooling system.

For a vertical axis ball screw

For a vertical axis ball screw, which constantly supports the load of vertical axis system, a high load capacity ball screw is required. A high load capacity type with compact design is available for the nut models I and II in the dimension tables. For details, please consult NSK.

(4) Allowable $d \cdot n$ value and the criterion of maximum rotational speed

The allowable $d \cdot n$ value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable den value: HZC, HDC; 100 000 or less HZF, HDF: 135 000 or less

Criterion of maximum rotational speed: 3 750 min⁻¹ Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

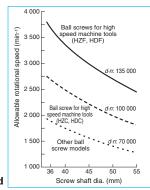


Fig. 2 Comparison of permissible rotational speed

(5) Other specifications

For specifications not listed in the dimension tables such as high-speed, high-load capacity, and NSK K1, please consult NSK.

3. Design precautions

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

4. Lineup

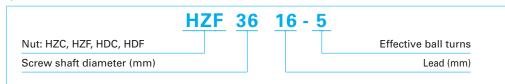
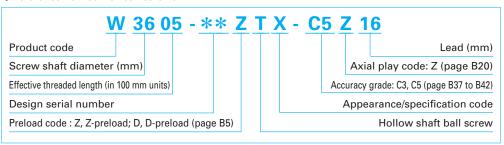

The HMC model is available in the following varieties: (Table 2)

Table 2 HMC model lineup

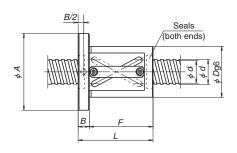

Nut	Shape	Flange shape	Preload
HZC HZF		Flanged Circular I	Z-preload (medium preload)
HDC HDF		Flanged Circular I	D-preload (medium preload)

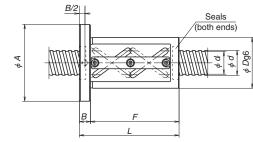
5. Structure of model number and reference number

The following explains the codes used in model numbers and ball screw reference numbers.



○Reference number for ball screws.

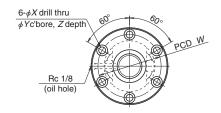

B509

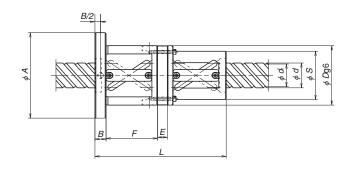


Model No.	Shaft dia.	Lead	Root dia.	Effective ball	Nut	Basic load Dynamic	ratings (N) Static		rigidity /µm)
iviodel No.	d	l	d,	turns	model	C _a	C _{0a}	5% <i>C</i> 。	10% C _a
HZF3616-5 HZC3616-5		16	31.5	5	I	47 000	102 000	1 156	1 456
HZF3620-3.5 HZC3620-3.5	36	20	30.4	3.5	I	51 100	98 600	862	1 086
HZF4016-5 HZC4016-5		16	35.5	5	I	49 500	113 000	1 269	1 599
HZF4020-3.5 HZC4020-3.5	40			3.5	I	53 600	107 000	933	1 176
HZF4020-5 HZC4020-5		20	34.4	5	I	72 900	154 000	1 316	1 659
HZF4516-5 HZF4516-7.5		16	40.5	5 7.5	I	51 400 72 800	126 000 189 000	1 390 2 045	1 751 2 576
HZF4520-3.5 HZC4520-3.5				3.5	I	57 300	121 000	1 037	1 307
HZF4520-5 HZC4520-5	45	20	39.4	5	I	77 900	172 000	1 455	1 834
HZF4525-3.5 HZC4525-3.5		25	39.1	3.5	I	65 900	137 000	1 045	1 317
HZF5020-3.5 HZC5020-3.5				3.5	I	59 000	132 000	1 119	1 410
HZF5020-5 HZC5020-5		20	44.4	5	I	80 200	189 000	1 575	1 985
HZF5025-3.5 HZC5025-3.5	50			3.5	I	70 700	152 000	1 153	1 452
HZF5025-5 HZC5025-5		25	44.1	5	I	96 100	217 000	1 617	2 037
HZF5030-3.5 HZC5030-3.5		30	44.1	3.5	I	70 200	152 000	1 140	1 437
HZF5520-3.5 HZF5520-5		20	49.4	3.5 5	I II	62 100 84 300	146 000 207 000	1 218 1 706	1 534 2 149
HZF5525-3.5 HZF5525-5	55	25	49.1	3.5	I I	73 100 99 300	165 000 236 000	1 237 1 735	1 558 2 186
HZF5530-3.5		30	49.1	3.5	I	72 700	167 000	1 235	1 556

Notes: 1. Ball screws with leads of 32 or 36 mm have triple-start threads. Others have double-start threads.

Nut model I (offset preload)


Nut model I (offset preload)


									Unit: mm
				nut dimens	ions			ı	Max. feed
Nut total length	Nut dia.	Flange dia.	Flange width	Nut length	Bolt	hole dimens	sions	Bolt hole PCD	speed
L	D	A	B	F	X	l Y	Z	W	(m/min)
134	78	120	18	116	11	17.5	11	98	60
134	71	113	18	110	11	17.5	11	91	44
121	94	136	18	103	11	17.5	11	114	75
121	78	120	10	100	- ' '	17.0		98	56
134	79	121	18	116	11	17.5	11	99	54
	76	118						96	40
121	96	138		103				116	67
	82	124	18		11	17.5	11	102	50
161	96	138		143				116	67
101	82	124	10	110	1.1	47.5	4.4	102	50
134 187	82	124 128	18 22	116 165	11 14	17.5 20	11 13	102 104	48
187	98	140	22	100	14	20	13	118	60
122	88	130		104				108	44
	98	140	18		11	17.5	11	118	60
162	88	130		144				108	44
	101	143						121	75
141	92	134	18	123	11	17.5	11	112	56
400	101	143		404				121	54
122	95	137	10	104	1.1	17.5	11	115	40
100	101	143	18	1.4.4	11	17.5	11	121	54
162	95	137		144				115	40
141	103	145		123				123	67
141	98	140	18	123	11	17.5	11	118	50
191	103	145	10	173	11	17.5	11	123	67
131	98	140		173				118	50
159	103	145	18	141	11	17.5	11	123	81
	98	140	10		- ' '	17.0	'''	118	60
122 162	103	145	18	104 144	11	17.5	11	123	49
141	105	147	18	123	11	17.5	11	125	61
191				173					
159	105	147	18	141	11	17.5	11	125	73

B511 B512

^{2.} Axial rigidity K is split into two columns; the 5% C_s column indicates values when 5% of basic dynamic load rating is applied as the preload while the 10% C_s column indicates values when 10% is applied.

Nut model II (double nut spacer, preload)
(the figure indicates use of double start threads)

Unit: mm

	01 (1.1)		D	Effective		Basic load	ratings (N)		igidity
Model No.	Shaft dia.	Lead	Root dia.	ball	Nut model	Dynamic	Static		/µm)
	d	l	d,	turns		$C_{\scriptscriptstyle a}$	C_{oa}	5% <i>C</i> 。	10% <i>C</i> 。
HDF3620-5	36	20	30.4	5	Ш	69 400	139 000	1 204	1 516
HDC3620-5	00	20	00.4	J		00 400	100 000	1 204	1 310
HDF4025-5		25	34.1	5	Ш	85 500	176 000	1 334	1 681
HDC4025-5			0 1.1	Ŭ		00 000	170 000		
HDF4030-5		30	34.1	5	π	84 600	175 000	1 313	1 654
HDC4030-5	40		0			0.000	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
HDF4032-7.5		32	34.4	7.5	ш	104 000	232 000	1 909	2 405
HDC4032-7.5									
HDF4036-4.5		36	34.4	4.5	II	66 500	137 000	1 214	1 530
HDF4525-5		25	39.1	5	Ш	89 600	195 000	1 460	1 840
HDC4525-5									
HDF4530-5		30	39.1	5	Ш	91 800	197 000	1 476	1 860
HDC4530-5	45								
HDF4532-7.5		32	39.4	7.5	Ш	108 000	259 000	2 100	2 646
HDC4532-7.5									
HDF4536-4.5		36	39.4	4.5	Ш	69 200	15 500	1 280	1 612
HDF5030-5		30	44.1	5	Ш	95 500	216 000	1 600	2 016
HDC5030-5	50			_					
HDF5032-7.5		32	44.4	7.5	Ш	112 000	285 000	2 286	2 881
HDC5032-7.5		J2					200 000		
HDF5530-5	530-5 55		49.1	5	Ш	98 700	235 000	1 719	2 166
HDF5532-7.5		32	49.4	7.5	II	118 000	312 000	2 483	3 128

Notes: 1. Ball screws with leads of 32 or 36 mm have triple-start threads. Others have double-start threads.

2. Axial rigidity K is split into two columns; the 5% C_s column indicates values when 5% of basic dynamic load rating is applied as the preload while the 10% C_s column indicates values when 10% is applied.

				Ball	nut dimen:	sions					Max.
Nut total	Nive	dia.	Flange	Flange	Nut length	Spacer	Bolt h	ole dimer	sions	Bolt hele	feed
length <i>L</i>	D	uia.	dia. A	width <i>B</i>	F	dimensions E	X	Y	Z	PCD W	speed (m/min)
404	94	76	136	40	77	_	4.4	47.5	4.4	114	75
191	78	60	120	18	77	5	11	17.5	11	98	56
228.5	98	80	140	18	91	13.5	11	17.5	11	118	84
220.0	86	68	128	10	91	13.5	11	17.5	11	106	63
248	98	80	140	18	104	8	11	17.5	11	118	101
240	86	68	128	10	104	0	11	17.5	11	106	75
265	96	78	142	22	109	11	14	20	13	118	108
200	82	64	128	22	103	''	14	20	13	106	80
200	96	78	138	18	83	4	11	17.5	11	116	120
228.5	101	83	143	18	91	13.5	11	17.5	11	121	75
220.5	92	74	134	10	91	13.5	11	17.5	- 11	112	56
248	101	83	143	18	104	8	11	17.5	11	121	90
240	92	74	134	0	104	0	11	7.5	-	112	67
266	98	80	144	22	109	11	14	20	13	120	96
200	88	70	134	22	100	- ' '	14	20	15	110	71
200	98	80	140	18	83	4	11	17.5	11	118	108
249	103	85	145	18	104	8	11	17.5	11	123	81
	98	80	140	10	104	0	' '	17.5	- ' '	118	60
266	101	83	147	22	109	11	14	20	13	123	86
	95	77	141		100	''	14	20	10	117	64
249	105	87	147	18	104	8	11	17.5	11	125	73
266	103	85	149	22	109	11	14	20	13	125	78

B513 B514

NSK

B-3-3.4 BSL™ Model for Miniature Lathes

1. Features

Prompt delivery

Screw shaft configuration and ball nut shape are standardized for prompt delivery.

High speed and low noise

Adoption of end-deflector recirculation system realizeds high-speed operation with low noise.

Excellent dust resistance

Thin plastic seal and specially designed ball grooves prevent the entry of foreign matters.

2. Specifications

(1) Ball recirculation system

End-deflector recirculation systems offer highspeed, low-noise operation and a compact ball nut. The structure of the recirculation system is shown in **Fig.1**.

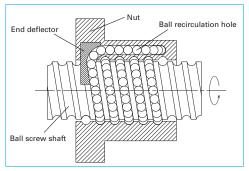


Fig. 1 Structure of end-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grades and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C5
Axial play	0 mm (preloaded)

(3) Allowable d·n value and the criterion of maximum rotational speed

The allowable $d \cdot n$ value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable *d·n* value: 180 000 or less Criterion of maximum rotational speed

: 4 000 min⁻¹

Note: Please also review the critical speed.

See "Technical Description: Permissible
Rotational Speed" (page B47) for details.

(4) Options

The optional NSK K1 lubrication unit, molded from resin and saturated with lubrication oil, supplies fresh oil onto ball rolling surfaces, ensuring long-term, maintenance-free operation. Please consult NSK when using NSK K1.

3. Design Precautions

When designing the screw shaft end, one end of the shaft must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

- · Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove d, specified in the dimension tables.

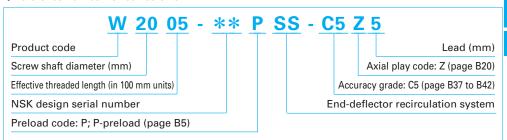
Special bearings which have higher-load carrying capacity are available.

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

4. Lineup

The BSL model is available in the following varieties:

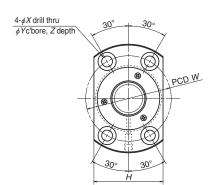
Table 2 BSL model lineup

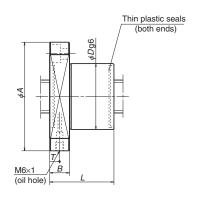

N	lut	Shape	Flange shape	Preload
В	SL		Circular II	P-Preload (Slight preload)

5. Structure of model number and reference number

The following explains the codes used in model numbers and ball screw reference numbers.

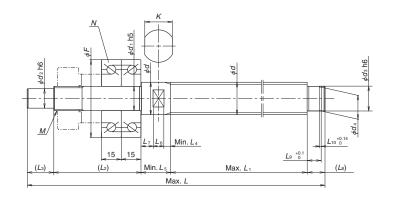
○Reference number for ball screws


6. Handling Precautions


Maximum operating temperature: 80°C

If using NSK K1, operating temperature should not exceed 50°C. Refer to "Design Precautions" (page B83).

B515 B516



				Basic load	ratings (N)					Ball r	nut di	mensi	ons			
	Shaft	Lead	Root	Dynamic	Static	Ex	terna	l dim	ensic	ns	Bolt	hole c	limer	sions	Oil hole	
Model No.	dia.		dia.													
	d	l	d,	C _a	C _{Oa}	D	A	Н	В	L	W	X	Y	Z	Т	d_1
BSL2005	20	5	17.2	10 500	16 200	36	63	38	12	37	49	6.6	11	6.5	6.5	15
BSL2006	20	6	16.4	14 000	20 000	40	65	42	12	45	51	0.0	11	0.5	6.7	115
BSL2505		5	22.2	11 700	20 400	40	65	42		38	51				7.1	
BSL2506	25	6	21.4	15 700	25 400	43	69	45	12	44	55	6.6	11	6.5	6.3	20
BSL2508	25	8	20.5	20 100	29 900	46	72	48	'	55	58	0.0	' '	0.5	6.5] 20
BSL2510		10	20.5	20 000	29 800	46	72	48		65	58				6	
BSL3210	32	10 26.4		32 500	51 800	61	93	63	18	68	76	9	14	8.5	10	25
BSL3212	32	12	20.4	32 400	51 600	וט	93	03	10	77	70 9		14	0.0	10	25

Notes: 1. Right-turn screws are standard. Please contact NSK for left-turn screws.
2. Recommended shaft configurations are provided for reference.

Unit: mm

	Shaft configuration/dimensions and reccomended bearing (reference)																		
				Sha	ft co	nfigu	ıratic	n/dir	mei	nsior	ns ar	nd reco	omen	ded l	pearing (ref	erence)			
						Sha	aft di	men	sio	ns						Specialized bear	ring N	Basic	Permissible
d_2	d ₃	d ₄	L (max.)	L₁ (max.)	L ₂	L ₃	<i>L</i> ₄ (min.)	L₅ (min.)	L ₆	L ₇	L _s	L ₉	L ₁₀	К	M	Bearing designation	F	dynamic load rating <i>C</i> _a	axial load (N)
12	15	14.3 0.11	500	500	66	20	3	20 21	8	9	14	10.15	1.15	17	M15×1.0	15TAC47C	47	21 900	26 600
							3	27											
15	20	19 ^{-0.21}	700	700	71	27	4	28	10	14	19	15.35	1.35	22	M20×1 0	20TAC62C	62	28 500	40 500
10	20	13	700	700	' '	21	5	29	0	14	13	10.00	1.55	22	10120 ~ 1.0	201AC02C	02	20 300	40 300
							5	29											
20	25	23.9 0.21	1 000	800	71	33	6	33	12	15	20	16.35	1.35	27	M25×1.5	25TAC62C	62	28 500	40 500
20	25	20.0	1 000	000	, ,	00	7	34	12	13	20	10.55	1.55	21	10120/1.0	201/40020	02	20 300	- 0 300

3. Shaft length L_1 and shaft total length L are maximum lengths. When L is the same length as L_1 , the thread becomes an all screw specification.

B517 B518

B-3-3.5.1 HTF-SRC Model for High-Load Drives

1. Features

High-speed operation and low noise

The SRC recirculation system contributes to more than twice the feed speed (*d-n* value: 140 000 and 160 000) and 8 to 10 db(A) less noise (half to 1/3 of noise) compared with the HTF model.

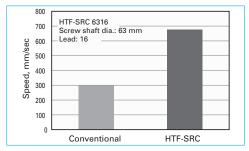


Fig. 1 Feed speed comparison

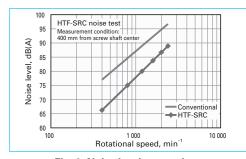


Fig. 2 Noise level comparison

2. Specifications

(1) Ball recirculation system

The SRC recirculation system picks up balls in the direction they are moving, and thus contibutes to high-speed, low-noise operation. The structure of the recirculation system is as follows.

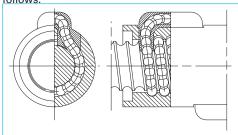


Fig. 3 Structure of SRC recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	Ct7
Axial play	S,0.020 mm or less; N,0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

The allowable $d \cdot n$ value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Table 2 Allowable d·n value and the criterion of maximum rotational speed

Lead	14, 16 mm	20, 25 mm	
	160 000 or less	140 000 or less	
Criterion of maximum rotational speed	3 225 min ⁻¹		

 $d \cdot n$ value: shaft dia. d [mm] × rotational speed n [min⁻¹] $\frac{1}{2}$ Allowable $d \cdot n$ value for HTF-SRC5020: 160 000

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Ball retaining piece NSK S1[™]

NSK S1 resin retainers between balls significantly extend ball screw durability to moment load.

(5) Other

Please consult NSK for special requests, such as the addition of a recirculation circuit to increase load capacity, or the arrangement of all recirculation circuits on the same phase of the ball nut circumference.

3. Design Precautions

The HTF-SRC model is designed to distribute the load uniformly to the balls in the high-load drive mechanism. We recommend installing the ball screws in the way shown for the full use of this characteristic.

In addition, we can provide a full analysis when you use the HTF-SRC model under extreme conditions such as extremely high loads or short strokes. Contact NSK about operating conditions (See page B541).

When designing the screw shaft end, one end

of the screw shaft must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove *d*, specified in the dimension table.

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

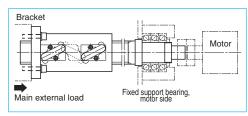


Fig. 4 Recommended installing direction of high-load drive ball screw

4. Lineup

The HTF-SRC model is available in the following varieties:

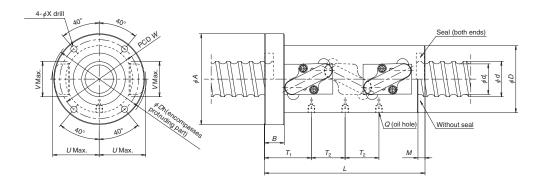
Table 3 HTF-SRC model lineup


N	ut	Shape	Flange shape	Preload
HTF-	-SRC		Flanged Circular I	No preload Slight axial play

5. Structure of model number and reference number

The following explains the codes used in model numbers and ball screw reference numbers.

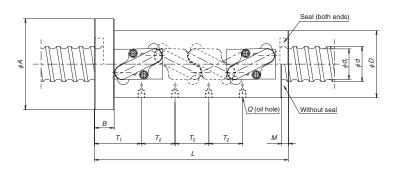
Reference number for ball screws


6. Handling Precautions

Maximum operating temperature: 70°C (at outside diameter of ball nut)
As lubricant will deteriorate, we recommend an

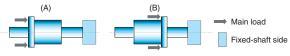
operating temperature of 60 °C or lower.

Please consult NSK in the case of a short stroke operation less than or equal to four times the length of the ball screw lead.



Nut model I

						I				
	Lead	Shaft	Root	Effective ball		Basic load	0			
Model No.		dia.	dia.	turns	Nut	Dynamic	Static			
	1	d	d _r	Turns × Circuits	model	C _a	C_{0a}	D	Α	В
HTF-SRC5014-7.5	14	50	41.6	2.5×3	Ι	264	623	80	114	28
HTF-SRC5016-7.5	16	50	39	2.5×3	I	383	818	95	129	28
HTF-SRC6316-7.5	16	63	52	2.5×3	I	429	1 050	105	139	28
HTF-SRC6316-10	16	63	52	2.5×4	П	549	1 410	105	139	28
HTF-SRC6316-10.5	16	63	52	3.5×3	I	562	1 450	105	139	28
HTF-SRC6316-14	16	63	52	3.5×4	П	720	1 930	105	139	28
HTF-SRC8016-10.5	16	80	69	3.5×3	I	627	1 870	120	154	32
HTF-SRC8016-14	16	80	69	3.5×4	П	802	2 490	120	154	32
HTF-SRC5020-7.5	20	50	39	2.5×3	I	383	818	95	129	28
HTF-SRC6320-7.5	20	63	49	2.5×3	I	572	1 280	117	157	32
HTF-SRC6320-10	20	63	49	2.5×4	П	732	1 710	117	157	32
HTF-SRC8020-10.5	20	80	66	3.5×3	I	838	2 300	130	170	32
HTF-SRC10020-10.5	20	100	86	3.5×3	I	936	2 910	145	185	32
HTF-SRC10020-14	20	100	86	3.5×4	П	1 200	3 890	145	185	32
HTF-SRC12020-7.5	20	120	106	2.5×3	I	776	2 550	173	213	40
HTF-SRC12020-10	20	120	106	2.5×4	П	994	3 400	173	213	40
HTF-SRC6325-10.5	25	63	49	3.5×3	I	750	1 770	117	157	32
HTF-SRC8025-7.5	25	80	63	2.5×3	I	790	1 960	145	185	40
HTF-SRC10025-10.5	25	100	83	3.5×3	I	1 200	3 430	159	199	40
HTF-SRC10025-14	25	100	83	3.5×4	П	1 540	4 580	159	199	40
HTF-SRC12025-10.5	25	120	103	3.5×3	I	1 300	4 200	173	213	40
HTF-SRC12025-14	25	120	103	3.5×4	П	1 660	5 600	173	213	40


Remarks: 1, If no seals are equipped, the ball nut length will be shortened by dimension M.

- 2. Contact NSK if the applied load will exceed the permissible axial load.
- 3. Right-turn screws are standard. Contact NSK for left-turn screws.
- Values for permissible axial load are obtained with S clearance. If the amount of clearance or mounting conditions are different, the permissible axial load will also change.

Nut model ${\mathbb I}$

Unit: mm												
				Б. І.						Permissible a	axial load (kN)	
				Ball nut	aimensi	ons				Mounting	*See below	
L	М	W	X	U	V	<i>D</i> h	Q	<i>T</i> ₁	<i>T</i> ₂	[A] Recommended	[B]	
202	10	97	9	54.5	46	111	M6×1	69	42	104	76.8	
228	10	112	9	66	50	134	Rc1/8	74.5	48	129	107	
228	10	122	9	72.5	50	148	Rc1/8	74.5	48	184	142	
276	10	122	9	72.5	50	148	Rc1/8	74.5	48	209	152	
276	10	122	9	72.5	50	148	Rc1/8	74.5	64	217	157	
340	10	122	9	72.5	50	148	Rc1/8	74.5	64	236	162	
278	10	137	9	80	60	165	Rc1/8	78.5	64	321	209	
342	10	137	9	80	60	165	Rc1/8	78.5	64	360	217	
268	10	112	9	66	50	135	Rc1/8	83.5	60	121	99.4	
279	12	137	11	80	62	163	Rc1/8	90	60	211	172	
339	12	137	11	80	62	163	Rc1/8	90	60	232	182	
339	12	150	11	88	64	180	Rc1/8	90	80	362	254	
339	12	165	11	97	78	199	Rc1/8	90	80	524	325	
419	12	165	11	97	78	199	Rc1/8	90	80	588	335	
287	12	193	11	109.5	88	229	Rc1/8	98	60	525	376	
347	12	193	11	109.5	88	229	Rc1/8	98	60	628	407	
405	12	137	11	81.5	61	167	Rc1/8	101.75	100	222	172	
347	17	165	11	99.5	73	202	Rc1/8	111.75	75	334	269	
422	17	179	11	108	79	220	Rc1/8	111.75	100	560	383	
522	17	179	11	108	79	220	Rc1/8	111.75	100	612	395	
421	17	193	11	116	92	238	Rc1/8	111.25	100	750	465	
521	17	193	11	116	92	238	Rc1/8	111.25	100	836	479	

B521 B522

B-3-3.5.2 HTF-SRD Model for High-Load Drives

1. Features

High-speed operation and low noise

Used with end deflectors, HTF-SRD model ball screws achieve a maximum feed speed of 1 600 mm/s. The ball nut body surface is completely round, thus enabling well balanced ball nut rotation.

A double start thread structure which has more recirculation circuits, and large diameter balls contribute to high load carrying capacity.

Low noise and compact design

End deflector systems using a ball scooping mechanism in the direction of the screw spiral offer smoother ball recirculation, thus contributing to less than half the noise level compared with existing ball screws equipped with a tube.

A compact, high-performance seal is available. Nut outside diameter is compact compare with the tube recirculation system.

Compact, thin plastic seals are also available. Nut outside diameter is compact compared with the tube recirculation system.

2. Specifications

(1) Ball recirculation system

End-deflector recirculation systems feature high-speed, low-noise operation and a compact ball nut. The structure of recirculation parts are as follows.

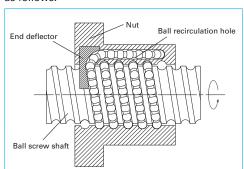


Fig. 1 Structure of End-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grades and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	Ct7
Axial play	S, 0.020 mm or less; N, 0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

The allowable $d \cdot n$ value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Table 2 Allowable d·n value and the criterion of maximum rotational speed

Allowable <i>d·n</i> value	120 000 or less
Criterion of maximum rotational speed	2 400 min ⁻¹

 $d \cdot n$ value: shaft dia. $d \text{ [mm]} \times \text{ rotational speed } n \text{ [min}^{-1}]$

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Ball retaining piece NSK S1[™]

NSK S1 resin retainers between the balls significantly extend ball screw durability to moment load.

3. Design Precautions

The HTF-SRD model is designed to distribute the load uniformly to the balls of the high-load drive mechanism. We recommend installing the ball screws in the way shown below for the full use of this characteristic.

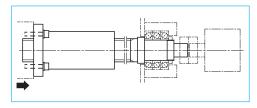


Fig. 2 Recommended installing direction of high-load drives ball screw

In addition, we will perform a full analysis when you use the HTF-SRD model under extreme conditions such as extremely high load or short strokes. Contact NSK about operating conditions (see page B541).

When designing the screw shaft end, one end

of the screw shaft must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

- · Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove *d*, specified in the dimension table.

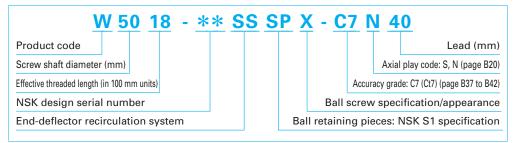
For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and

"Handling Precautions" (page B103).

4. Lineup

The HTF-SRD model is available in the following varieties:

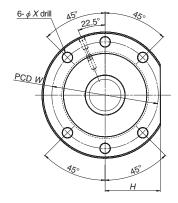
Table 3 HTF-SRD model lineup

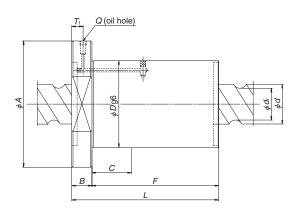

Nut	Shape	Flange shape	Preload
HTF-SRD		Circular I I	No preload Slight axial play

5. Structure of model number and reference number

The following explains the codes used in model numbers and ball screw reference numbers.

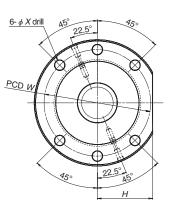
○Reference number for ball screw

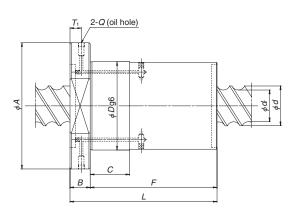

6. Handling Precautions


Maximum operating temperature: 70°C (at outside diameter of ball nut)
As lubricant will deteriorate, we recommend an

operating temperature of 60 °C or lower.

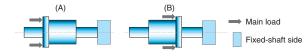
Please consult NSK in the case of short stroke operation less than or equal to four times the length of the ball screw lead.




Nut model I

	11	Shaft dia.	Root dia.		Basic load r	ratings (kN)			
Model No	Lead	Snart dia.	Root dia.	Nut	Dynamic	Static			
Model No.	l	d	d _r	model	C _a	C _{0a}	D	Α	В
HTF-SRD6332-4E	32	63	49	Ι	292	590	140	190	32
HTF-SRD5040-6E	40	50	39	П	243	491	115	165	28
HTF-SRD5040-8E	40	50	39	П	319	679	115	165	28
HTF-SRD6340-6E	40	63	49	Π	363	768	140	200	32
HTF-SRD6340-8E	40	63	49	П	476	1 060	140	200	32
HTF-SRD5050-6E	50	50	39	П	243	491	115	165	28
HTF-SRD5050-8E	50	50	39	П	319	679	115	165	28
HTF-SRD8050-6E	50	80	63	П	502	1 180	175	250	40
HTF-SRD8050-8E	50	80	63	П	658	1 630	175	250	40
HTF-SRD6360-6E	60	63	49	П	363	768	140	200	32
HTF-SRD6360-8E	60	63	49	П	476	1 060	140	200	32
HTF-SRD10060-6E	60	100	83	П	583	1 490	195	270	40
HTF-SRD10060-8E	60	100	83	П	765	2 060	195	270	40
HTF-SRD12070-6E	70	120	103	П	630	1 810	210	285	50
HTF-SRD12070-8E	70	120	103	П	826	2 520	210	285	50
HTF-SRD8080-6E	80	80	63	П	502	1 180	175	250	40
HTF-SRD8080-8E	80	80	63	П	658	1 630	175	250	40
HTF-SRD100100-6E	100	100	83	П	583	1 490	195	270	40
HTF-SRD100100-8E	100	100	83	П	765	2 060	195	270	40
HTF-SRD80120-4E	120	80	63	П	337	751	175	250	40
HTF-SRD120120-6E	120	120	103	П	630	1 810	210	285	50
HTF-SRD120120-8E	120	120	103	Π	826	2 520	210	285	50

Remarks: 1. Contact NSK if the applied load will exceed the permissible axial load.


- 2. Right-turn screws are standard. Contact NSK for left-turn screws.
- 3. Values for permissible axial load are obtained with S clearance. If the amount of clearance or mounting conditions are different, the permissible axial load will also change.
- 4. When F and C dimensions are the same, the total surface of F is ϕ **Dg6**.

Nut model I

Unit: mm													
			Ball nut dim	:				Permissible a	axial load (kN)				
		t	sali nut dim	iensions				Mounting	*See below				
F	С	L	Н	W	X	Q	<i>T</i> ₁	[A] Recommended	[B]				
144	_	176	85	165	14	Rc1/8	22	119	114				
131	131	159	72.5	140	14	Rc1/8	18	106	99.1	丟			
171	171	199	72.5	140	14	Rc1/8	18	123	111	HTF-SRD			
131	131	163	90	170	18	Rc1/8	22	181	169	콥			
171	171	203	90	170	18	Rc1/8	22	213	192				
159	159	187	72.5	140	14	Rc1/8	18	102	94.6				
209	209	237	72.5	140	14	Rc1/8	18	116	103				
154	154	194	110	210	22	Rc1/8	30	284	263				
204	204	244	110	210	22	Rc1/8	30	336	302				
188	188	220	90	170	18	Rc1/8	22	168	153				
248	248	280	90	170	18	Rc1/8	22	190	169	-			
185	185	225	122	235	22	Rc1/8	30	366	330				
245	245	285	122	235	22	Rc1/8	30	436	378				
210	210	260	130	250	22	Rc1/8	40	451	393				
280	280	330	130	250	22	Rc1/8	40	549	450	-			
244	244	284	110	210	22	Rc1/8	30	258	234				
324	100	364	110	210	22	Rc1/8	30	293	258				
301	100	341	122	235	22	Rc1/8	30	336	294				
401	100	441	122	235	22	Rc1/8	30	383	320				
243	243	283	110	210	22	Rc1/8	30	185	172				
356	100	406	130	250	22	Rc1/8	40	413	343				
476	100	526	130	250	22	Rc1/8	40	480	375				

B-3-3.5.3 HTF Model for High-Load Drives

1. Features

High load carrying capacity

Has an ideal design to bear heavy load. It significantly enhances load rating as well as maximum permissible load.

Respond to various shaft end configurations Additional ball screw shaft machining is not required. HTF models respond to various shaft ends that convey high torque.

The HTF model can be used with: involute spline (JIS B 1603), straight sided spline (JIS B 1601), key seat, etc.

2. Specifications

(1) Ball recirculation system

The structure of the recirculation system is shown in Fig. 1.

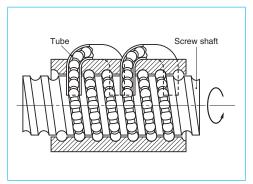


Fig. 1 Structure of tube recirculation system

(2) Accuracy grade and axial play

The allowable standard accuracy grades and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	Ct7
Axial play	S, 0.020 mm or under; N, 0.050 mm or under

(3) Allowable d·n value and the criterion of maximum rotational speed

The allowable *d·n* value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below. For higher-speed operation, the HTF-SRC model is recommend (See page B511).

Table 2 Allowable d•n value and the criterion of maximum rotational speed

Lead	k	– 20 mm	25 mm	30 – 32 mm		
Allowable	Standard specification	70 000 or less	70 000 or less	50 000 or less		
d∙n value		10 0000 or less		_		
Criterion of maximum	rotational speed	3 125 min ⁻¹				

 $d \cdot n$ value: shaft dia. d [mm] \times rotational speed n [min⁻¹]

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Ball retaining piece NSK S1™

NSK S1 resin retainers between the balls significantly extend ball screw durability to moment load.

(5) Other

Please consult NSK for special requests, such as the addition of a recirculation circuit to increase the load capacity, or the arrangement of all recirculation circuits on the same phase of the ball nut circumference.

3. Design precautions

When designing shaft end configurations, note that HTF model ball screws are specialized for high-load drives.

The HTF model is designed to distribute load uniformly to balls in the high-load drive mechanism.

We recommend installing ball screws in the way shown in Fig. 2 for the full use of this characteristic. In addition, we will perform a full analysis when you use the HTF model under extreme conditions such as application of extremely high load or operating in short stroke. Contact NSK about operating conditions (See page B541).

When designing the screw shaft end, the one end must be cut-through and the shaft end dimension must be less than the root diameter

of the ball groove. If not, the nut cannot be assembled.

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

4. Lineup

The HTF model is available in the following varieties:

Table 3 HTF model lineup

Nut	Shape	Flange shape	Preload
HTF		Flanged Circular I	No preload Slight axial play

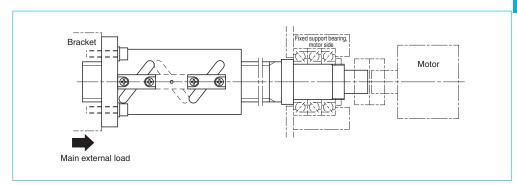
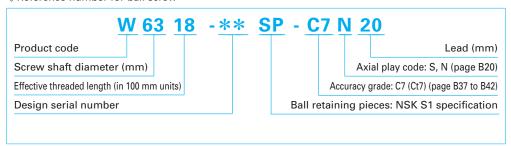


Fig. 2 Recommended installing direction of ball screws for high-load drives

B527 B528

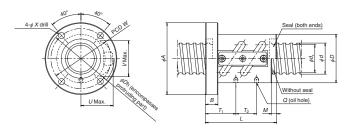

5. Structure of model number and reference number

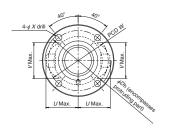
The following explains the codes used in model numbers and ball screw reference numbers.

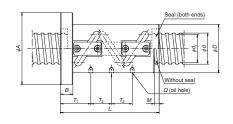
♦ Model number

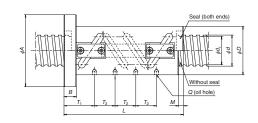
○Reference number for ball screw

6. Handling precautions


Maximum operating temperature : 70°C (at outside diameter of all nut)


As lubricant will deteriorate, we recommend an operating temperature of 60 °C or lower.


Please consult NSK in the case of short stroke

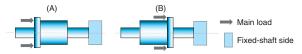

operation less than or equal to four times the length of the ball screw lead.

B529 B530

Nut model I

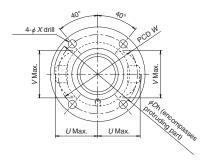
	Lead	Shaft dia.	Root dia.	Effective ball turns	Nut	Basic load ratings (kN) Dynamic Static				
Model No.	1	d	d _r	Turns × Circuits	model	C _a	C _{0a}	D	А	В
HTF3210-5	10	32	25.6	2.5×2	I	88.7	169	58	92	18
HTF3610-5	10	36	29.6	2.5×2	I	96.1	191	62	96	18
HTF4010-7.5	10	40	33.6	2.5×3	П	149	344	66	100	18
HTF4510-7.5	10	45	38.6	2.5×3	П	158	386	70	104	18
HTF4510-10	10	45	38.6	2.5×4	Ш	203	514	70	104	18
HTF5010-7.5	10	50	43.6	2.5×3	П	166	435	75	109	18
HTF5010-10	10	50	43.6	2.5×4	Ш	213	580	75	109	18
HTF5510-7.5	10	55	48.6	2.5×3	П	173	477	80	114	18
HTF5510-10	10	55	48.6	2.5×4	Ш	222	636	80	114	18
HTF3612-5	12	36	29	2.5×2	I	112	228	66	100	22
HTF4012-7.5	12	40	33	2.5×3	П	184	422	70	104	22
HTF4512-7.5	12	45	38	2.5×3	П	195	473	72	106	22
HTF5012-7.5	12	50	43	2.5×3	П	205	525	77	111	22
HTF5012-10	12	50	43	2.5×4	Ш	263	700	77	111	22
HTF5512-7.5	12	55	48	2.5×3	П	214	586	82	116	22
HTF5512-10	12	55	48	2.5×4	Ш	274	781	82	116	22
HTF6312-7.5	12	63	56	2.5×3	П	227	668	92	126	22
HTF6312-10	12	63	56	25×4	Ш	290	891	92	126	22

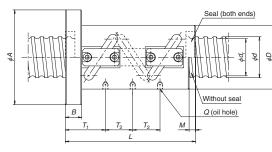
Nut model I

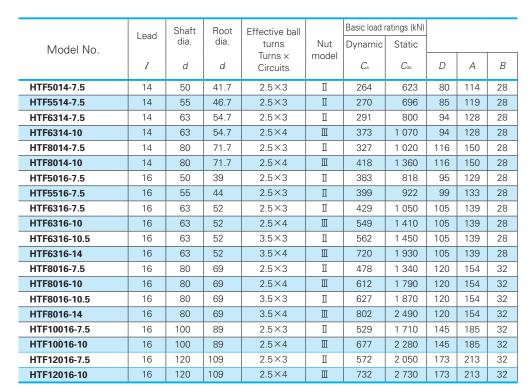

Nut model II

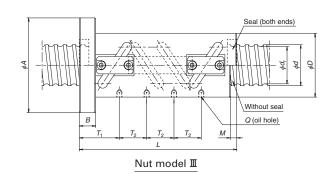
Unit: mm

											Unit: mm
				Dell sust						Permissible a	axial load (kN)
				Ball nut	aimensi	ons				Mounting	*See below
L	М	W	X	U	V	Dh	Q	<i>T</i> ₁	T ₂	[A] Recommended	[B]
103	7	75	9	40.5	42	82	M6×1	36.5	30	33.0	29.5
103	7	79	9	43	45	87	M6×1	36.5	30	37.5	33.3
143	7	83	9	45	48	91	M6×1	46.5	30	59.5	46.1
143	7	87	9	47	52	95	M6×1	46.5	30	70.2	52.3
173	7	87	9	47	52	95	M6×1	46.5	30	81.4	56.1
143	7	92	9	49	57	99	M6×1	46.5	30	82.0	59.6
173	7	92	9	49	57	99	M6×1	46.5	30	92.4	67.1
143	7	97	9	51.5	62	104	M6×1	46.5	30	92.8	66.2
173	7	97	9	51.5	62	104	M6×1	46.5	30	110	71.5
123	8	83	9	46.5	46	94	M6×1	44	36	42.8	38.2
171	8	87	9	47.5	50	96	M6×1	56	36	62.7	49.8
171	8	89	9	49.5	54	100	M6×1	56	36	75.9	56.5
171	8	94	9	52	59	105	M6×1	56	36	88.5	64.2
207	8	94	9	52	59	105	M6×1	56	36	102	68.5
171	8	99	9	54.5	63	110	M6×1	56	36	101	71.9
207	8	99	9	54.5	63	110	M6×1	56	36	118	77.0
171	8	109	9	58.5	70	118	M6×1	56	36	120	85.8
207	8	109	9	58.5	70	118	M6×1	56	36	143	92.5

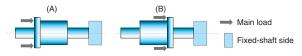

Remarks: 1. If no seals are equipped, the ball nut length will be shortened by dimension M.


- 2. Contact NSK if the applied load will exceed the permissible axial load.
- 3. Right-turn screws are standard. Contact NSK for left-turn screws.
- 4. Values for permissible axial load are obtained with S clearance. If the amount of clearance or mounting conditions are different, the permissible axial load will also change.

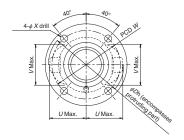

B531 B532

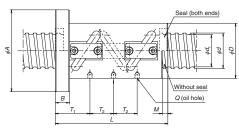


Nut model I


Remarks: 1. If no seals are equipped, the ball nut length will be shortened by dimension M.

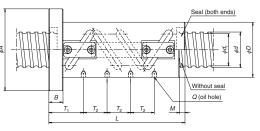
- 2. Contact NSK if the applied load will exceed the permissible axial load.
- 3. Right-turn screws are standard. Contact NSK for left-turn screws.
- 4. Values for permissible axial load are obtained with S clearance. If the amount of clearance or mounting conditions are different, the permissible axial load will also change.




Unit: mm

											Unit: mm
				Poll put	dimensi	000				Permissible a	axial load (kN)
				Dali Hut	aimensi	ONS				Mounting	*See below
L	М	W	X	U	V	<i>D</i> h	Q	<i>T</i> ₁	<i>T</i> ₂	[A] Recommended	[B]
200	10	97	9	55.5	61	112	M6×1	66.5	42	104	76.8
200	10	102	9	57.5	65	116	M6×1	66.5	42	119	86.0
200	10	111	9	61.5	72	124	M6×1	66.5	42	145	102
242	10	111	9	61.5	72	124	M6×1	66.5	42	170	109
200	10	133	9	72	87	146	M6×1	66.5	42	195	139
242	10	133	9	72	87	146	M6×1	66.5	42	234	151
223	10	112	9	68	66	137	Rc1/8	73	48	128	109
223	10	116	9	70	70	141	Rc1/8	73	48	150	121
223	10	122	9	72.5	76	146	Rc1/8	73	48	184	142
271	10	122	9	72.5	76	146	Rc1/8	73	48	209	152
271	10	122	9	72.5	76	146	Rc1/8	73	64	217	157
335	10	122	9	72.5	76	146	Rc1/8	73	64	236	162
227	10	137	9	80	92	161	Rc1/8	77	48	259	186
275	10	137	9	80	92	161	Rc1/8	77	48	305	200
275	10	137	9	80	92	161	Rc1/8	77	64	321	209
339	10	137	9	80	92	161	Rc1/8	77	64	360	217
227	10	165	11	91	109	184	Rc1/8	77	48	347	250
275	10	165	11	91	109	184	Rc1/8	77	48	418	272
227	10	193	11	104	126	210	Rc1/8	77	48	425	318
275	10	193	11	104	126	210	Rc1/8	77	48	519	351

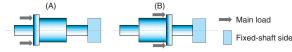
B533 B534

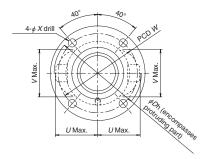


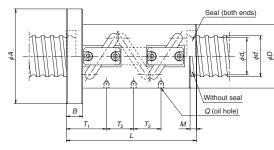
Nut model I

		Shaft	Root	Effective ball		Basic load r	atings (kN)			
Madal Na	Lead	dia.	dia.	turns	Nut	Dynamic	Static			
Model No.	1	d	d _r	Turns × Circuits	model	C _a	<i>C</i> 0a	D	А	В
HTF6320-7.5	20	63	49	2.5×3	П	572	1 320	117	157	32
HTF6320-10	20	63	49	2.5×4	Ш	732	1 760	117	157	32
HTF6320-10.5	20	63	49	3.5×3	П	749	1 810	117	157	32
HTF8020-7.5	20	80	66	2.5×3	П	639	1 690	130	170	32
HTF8020-10	20	80	66	2.5×4	Ш	818	2 250	130	170	32
HTF8020-10.5	20	80	66	3.5×3	П	838	2 300	130	170	32
HTF10020-7.5	20	100	86	2.5×3	П	713	2 140	145	185	32
HTF10020-10	20	100	86	2.5×4	${\rm I\hspace{1em}I}$	914	2 850	145	185	32
HTF10020-10.5	20	100	86	3.5×3	П	935	2 920	145	185	32
HTF10020-14	20	100	86	3.5×4	Ш	1 200	3 890	145	185	32
HTF12020-7.5	20	120	106	2.5×3	П	775	2 550	173	213	40
HTF12020-10	20	120	106	2.5×4	Ш	993	3 400	173	213	40
HTF12020-10.5	20	120	106	3.5×3	П	1 020	3 530	173	213	40
HTF12020-14	20	120	106	3.5×4	Ш	1 300	4 710	173	213	40
HTF14020-7.5	20	140	126	2.5×3	П	829	3 000	204	250	40
HTF14020-10	20	140	126	2.5×4	${ m I\hspace{1em}I}$	1 060	4 000	204	250	40
HTF6325-10.5	25	63	49	3.5×3	П	749	1 810	117	157	32
HTF8025-7.5	25	80	64	2.5×3	П	829	2 020	145	185	40
HTF10025-7.5	25	100	84	2.5×3	П	917	2 550	159	199	40
HTF10025-10	25	100	84	2.5×4	\blacksquare	1 170	3 400	159	199	40
HTF10025-10.5	25	100	84	3.5×3	П	1 200	3 490	159	199	40
HTF10025-14	25	100	84	3.5×4	\blacksquare	1 540	4 650	159	199	40
HTF12025-7.5	25	120	104	2.5×3	П	990	3 080	173	213	40
HTF12025-10	25	120	104	2.5×4	Ш	1 270	4 110	173	213	40
HTF12025-10.5	25	120	104	3.5×3	Π	1 300	4 200	173	213	40
HTF12025-14	25	120	104	3.5×4	Ш	1 660	5 600	173	213	40
HTF14025-7.5	25	140	124	2.5×3	П	1 050	3 610	204	250	40
HTF14025-10	25	140	124	2.5×4	Ш	1 350	4 810	204	250	40
HTF14025-10.5	25	140	124	3.5×3	П	1 380	4 910	204	250	40
HTF14025-14	25	140	124	3.5×4	Ш	1 770	6 540	204	250	40
HTF16025-7.5	25	160	144	2.5×3	П	1 140	4 140	234	280	40
HTF16025-10	25	160	144	2.5×4	Ш	1 450	5 520	234	280	40

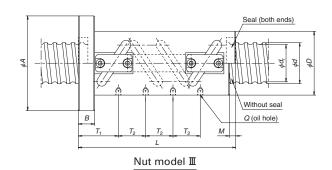
Remarks: 1. If no seals are equipped, the ball nut length will be shortened by dimension M.


- 2. Contact NSK if the applied load will exceed the permissible axial load.
- 3. Right-turn screws are standard. Contact NSK for left-turn screws.
- Values for permissible axial load are obtained with S clearance. If the amount of clearance or mounting conditions are different, the permissible axial load will also change.

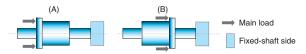

٧u	t m	od	el	${ m I\hspace{1em}I\hspace{1em}I}$
----	-----	----	----	------------------------------------


Unit: mm

				Permissible a	axial load (kN)						
				Ball nut	dimensi	ons				Mounting	*See below
L	М	W	X	U	V	<i>D</i> h	Q	<i>T</i> 1	<i>T</i> ₂	[A] Recommended	[B]
273	12	137	11	83.5	81	168	Rc1/8	88	60	212	173
333	12	137	11	83.5	81	168	Rc1/8	88	60	234	183
333	12	137	11	83.5	81	168	Rc1/8	88	80	243	190
273	12	150	11	89.5	96	181	Rc1/8	88	60	310	233
333	12	150	11	89.5	96	181	Rc1/8	88	60	353	247
333	12	150	11	89.5	96	181	Rc1/8	88	80	365	255
273	12	165	11	97.5	114	196	Rc1/8	88	60	427	295
333	12	165	11	97.5	114	196	Rc1/8	88	60	501	314
333	12	165	11	97.5	114	196	Rc1/8	90	80	520	324
413	12	165	11	97.5	114	196	Rc1/8	90	80	582	335
281	12	193	11	111	130	223	Rc1/8	96	60	522	376
341	12	193	11	111	130	223	Rc1/8	96	60	624	407
341	12	193	11	111	131	223	Rc1/8	96	80	657	424
421	12	193	11	111	131	223	Rc1/8	96	80	748	442
281	12	226	14	122.5	148	248	Rc1/8	96	60	630	468
341	12	226	14	122.5	148	248	Rc1/8	96	60	765	514
398	12	137	11	83.5	83	169	Rc1/8	98.75	100	228	175
338	17	165	11	102	100	206	Rc1/8	109.25	75	338	271
338	17	179	11	108.5	118	219	Rc1/8	109.25	75	484	354
413	17	179	11	108.5	118	219	Rc1/8	109.25	75	554	375
413	17	179	11	108.5	118	219	Rc1/8	109.25	100	575	388
513	17	179	11	108.5	118	219	Rc1/8	109.25	100	629	399
338	17	193	11	116	135	223	Rc1/8	109.25	75	612	424
413	17	193	11	116	135	223	Rc1/8	109.25	75	712	450
413	17	193	11	116	134	233	Rc1/8	109.25	100	739	464
513	17	193	11	116	134	233	Rc1/8	109.25	100	821	479
338	17	226	14	127.5	153	258	Rc1/8	109.25	75	752	531
413	17	226	14	127.5	153	258	Rc1/8	109.25	75	897	572
413	17	226	14	127.5	153	258	Rc1/8	109.25	100	939	594
513	17	226	14	127.5	153	258	Rc1/8	109.25	100	1 060	618
338	17	256	14	138	173	279	Rc1/8	109.25	75	874	638
413	17	256	14	138	173	279	Rc1/8	109.25	75	1 050	696



Nut model I

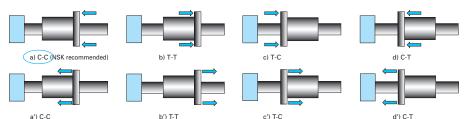

	Lead	Shaft	Root	Effective ball		Basic load r	atings (kN)			
Model No.	Lead	dia.	dia.	turns	Nut	Dynamic	Static			
Woder No.	1	d	d _r	Turns × Circuits	model	C _a	C_{0a}	D	А	В
HTF14030-7.5	30	140	121	2.5×3	П	1 310	4 110	222	282	50
HTF14030-10	30	140	121	2.5×4	Ш	1 670	5 490	222	282	50
HTF14030-10.5	30	140	121	3.5×3	П	1 710	5 710	222	282	50
HTF16030-7.5	30	160	141	2.5×3	П	1 400	4 760	234	294	50
HTF16030-10	30	160	141	2.5×4	Ш	1 790	6 340	234	294	50
HTF16030-10.5	30	160	141	3.5×3	П	1 830	6 520	234	294	50
HTF20030-7.5	30	200	181	2.5×3	П	1 550	5 960	290	350	50
HTF20030-10	30	200	181	2.5×4	Ш	1 980	7 950	290	350	50
HTF14032-7.5	32	140	118	2.5×3	П	1 590	4 740	222	296	70
HTF14032-10	32	140	118	2.5×4	Ш	2 040	6 320	222	296	70
HTF14032-10.5	32	140	118	3.5×3	П	2 080	6 420	222	296	70
HTF16032-7.5	32	160	138	2.5×3	П	1 660	5 370	234	308	70
HTF16032-10	32	160	138	2.5×4	Ш	2 130	7 160	234	308	70
HTF16032-10.5	32	160	138	3.5×3	П	2 180	7 460	234	308	70
HTF20032-7.5	32	200	178	2.5×3	П	1 840	6 840	290	364	70
HTF20032-10	32	200	178	2.5×4	Ш	2 360	9 120	290	364	70

Remarks: 1. If no seals are equipped, the ball nut length will be shortened by dimension M.

- Contact NSK if the applied load will exceed the permissible axial load.
 Right-turn screws are standard. Contact NSK for left-turn screws.
- 4. Values for permissible axial load are obtained with S clearance. (For models with 32mm lead, values are obtained with N clearance, which is the basic specification.) If the amount of clearance or mounting conditions are different, the permissible axial load will also change.

											Unit: mm
				Dell sust						Permissible a	axial load (kN)
				Ball nut	dimensi	ons				Mounting	*See below
L	L M W X U V Dh Q T ₁ T										[B]
411	22	252	18	139	160	281	Rc1/8	134.5	90	809	613
501	22	252	18	139	160	281	Rc1/8	134.5	90	938	659
501	22	252	18	139	160	281	Rc1/8	134.5	120	987	688
411	22	264	18	148	177	299	Rc1/8	134.5	90	1 010	708
501	22	264	18	148	177	299	Rc1/8	134.5	90	1 190	761
501	22	264	18	148	177	299	Rc1/8	134.5	120	1 240	786
411	22	320	18	178	212	359	Rc1/8	134.5	90	1 300	955
501	22	320	18	178	212	359	Rc1/8	134.5	90	1 570	1 040
465	22	259	22	148	163	299	Rc1/8	166.5	96	828	621
561	22	259	22	148	163	299	Rc1/8	166.5	96	954	664
561	22	259	22	148	163	299	Rc1/8	166.5	128	998	690
465	22	271	22	152	181	307	Rc1/8	166.5	96	1 020	708
561	22	271	22	152	181	307	Rc1/8	166.5	96	1 200	757
561	22	271	22	152	181	307	Rc1/8	166.5	128	1 270	791
465	22	327	22	182	215	367	Rc1/8	166.5	96	1 340	968
561	22	327	22	182	215	367	Rc1/8	166.5	96	1 610	1 050

B537 B538


NSK Technical Data Sheet for NSK High-Load Drive Ball Screws

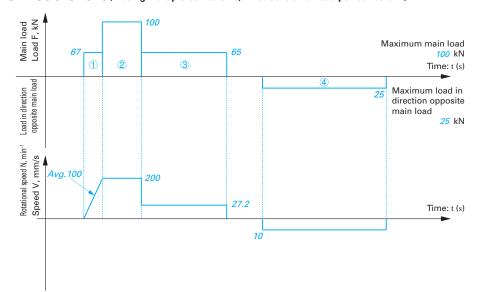
Custom-made hall screw

Custom-mau	e ball screw			
Company nan	ne: Date:			NSK sales office
Section:	Contact	person:		
Address:				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Drawing/roug *1 Please speci *2 Please indica	chine*1: Electric injection molding gh sketch attached?: Yes fy the capacity of injection molding mate the axis of injection molding mach onditions	☐ No achines or presses.		² : Injection axis
Operating conditions	Shaft rotation — Moving nut Shaft rotation — Moving shaft Nut rotation — Moving nut Nut rotation — Moving shaft	✓ Normal operation ☐ Back drive operation ☐ Oscillation	Degree of vibration/impacts	☐ Smooth operation without impact ☑ Normal operation ☐ Operation with impacts or vibration

Operating conditions	☐ Shaft rotation – ☐ Nut rotation — ☐ Nut rotation —		Back drive operation Oscillation	Degree of vibration/impacts	Normal operation Operation with impacts or vibration
Direction of load*3	☐ Per image bel	low 🗌 Other (,	Attached)	Mounting orientation	Horizontal Vertical (Indicate direction of gravity)
Lubricant		and name: High-load pressure ker:	d grease with an extreme additive	Lubricant replenishment	☐ Manual ☐ (grease gun, etc.) ☑ Automatic
Oil holes	☑ Per NSK reco	mmendations 🗆	Yes □No	method	(cm ³ / cycles)
Seals	✓Yes] No	NSK S1 ball retaining piece	✓ Per NSK recommendations □ No
Environment	Temp: 40 ℃/°F Contaminants ☐ Yes: Pour No			e size (a) 0.1 or less, (b) 0	1.1 to 0.3, (c) Over 0.3; Material:
Surface treatment	✓ Not required	☐ Low-tempera	ture chrome platii	ng 🗌 Fluoride low	-temperature chrome plating
Quantity for mass-production	/Month	/Year	/Lot	Quantity used per machine	1 pcs./machine

*3 Please specify load direction using the images below. (Fixed-shaft side: ____, Main load: ____)
Load applied in the opposite direction of the main load indicated by the arrows is defined as "load in direction opposite main load

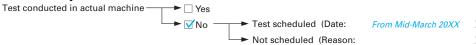
*4 Confirm the strength of the ball screw and nut sections for both load in the direction of main load and in the direction opposite the main load.


2. Specifications

Shaft diameter	φ <i>63</i> mm	Lead	<i>16</i> mm	Accuracy grade	Ct7	Axial play	0.050 or less mm max.
Nut Model No.	HTF-SRC 6316-7.5-S1	Effective ball circuits	2.5 × 3	Direction of turn	right	Thread length/ Overall shaft length	800 1200

Special Notes / Requests

NSK Technical Data Sheet for NSK High-Load Drive Ball Screws


3. Load chart (If using multiple ball screws, fill out the axial load per ball screw.)

	Axial load*	Rotational speed	or Average speed	Time	Stroke	Remarks
	F (kN)	N (min ⁻¹)	V (mm/s)	t (s)	St (mm)	nemarks
1	<i>67</i>		100	0.1	10	
2	100		200	0.5	100	
3	<i>65</i>		27.2	7	190	
4	25		10	<i>30</i>	300	
(5)	0		0	10.4	0	
6			1	Total: 48	Total: 600	
7						
8			1			
9						
10						

*If using multiple ball screws, fill out the axial load per ball screw.

4. Durability test

Endurance of the ball screw

- (1) Mounting accuracy, load conditions, and lubricating conditions are the main factors affecting ball screw fatigue life. Therefore, we recommend evaluating the influence of those factors on actual machines.
- (2) Temperature rise caused by operational and environmental conditions may reduce the effectiveness of lubricant.
- (3) Insufficient or incorrect information for the direction or size of loads may lead to premature failure.

NSK Technical Data Sheet for NSK High-Load Drive Ball Screws


Custom-made ball screw

Company nam	e:	Dat		NSK sale	es office				
Section:		Coi	ntact person:						
Address:						[7]			
Name of macl	nine*1:				Applicatio				
Drawing/roug	h sketch attacl	hed?: 🗆 \	/es □ No						
*1 Please specify	the capacity of in	njection mole	ling machines or machines (inject	presses. ion, claimpir	ng, etc.).				
1. Use co	nditions	5							
Operating	☐ Shaft rotatio			al operation	Degree of	☐ Smooth o	peration without impacts		
conditions	☐ Nut rotation		nut Back di	rive operation	vibration/impact				
	☐ Nut rotation	— Moving s	shaft	lation		· ·	with impacts or vibration		
Direction of load*3	☐ Per image	below \square	Other ()	Mounting orientation	∩ Horizonta	al dicate direction of gravity)		
Lubricant		Brand nam	e:)	Lubricant	_ Manual			
	□ Oil \ \	Maker:		1	replenishment	(grease gu	n, etc.) 🗌 Automatic		
Oil holes	☐ Per NSK re	commenda	ations Yes	No	method	cm³/ cycles)			
Seals	☐ Yes		□No		NSK S1 ball retaining piece	☐ Per NSK re	ecommendations		
Environment	Temp:	°C / °F C	ontaminants 🗌 ՝		size (a) 0.1 or less, (b) (0.1 to 0.3, (c) Over 0	0.3; Material:		
Surface treatment	☐ Not require	d 🗆 Low-	-temperature ch	rome platir	ng 🗌 Fluoride low	-temperature chro	ome plating		
Quantity for mass-production	/Mont	h	/Year	/Lot	Quantity used per machine				
			nages below. (Fixe		: , Main load:				
Load appli	ed in the opposite	e direction of	the main load ind	icated by the	e arrows is defined as	load in direction (opposite main load."		
						_			
a) C-C (I	NSK recommended)		b) T-T		c) T-C		d) C-T		
				· _		~	-		
			_	-					
a') C-C			□	·	c') T-C		■ L. d') C-T		
	e strength of the b	all screw and		oth load in th			ion opposite the main load.		
2. Specifi	cations								
Shaft diameter	φ mm	Lead	mm	Accuract grade	y Ax	ial play	mm max.		
Nut Model No.		Effective ball circuits		Direction of turn		ead length/ rall shaft length	/		
Special Notes	/ Requests								

NSK

NSK Technical Data Sheet for NSK High-Load Drive Ball Screws

3. Load chart (If using multiple ball screws, fill out the axial load per ball screw.)

$ \cdot\rangle$	Axial load*	Rotational speed	or Average speed	Time	Stroke	Remarks
	F (kN)	N (min ⁻¹)	V (mm/s)	t (s)	St (mm)	Heiliaiks
1						
2						
3						
4						
(5)						
6						
7						
8						
9						
10						
Main load		Dynamic axial	load (Max.)*:	(kN) Static	axial load (Max.)* (at	0 mm/s): (kN)

4. Durability test

Load in direction opposite main load Dynamic axial load (Max.)*:

Stroke in normal use:

Cycle time:

Test conducted in actual machine Yes

No Test scheduled (Date:

Not scheduled (Reason:

Static axial load (Max.)* (at 0 mm/s):

(h or cycles)

Maximum stroke:

* If using multiple ball screws, fill out the axial load per ball screw.

Required life:

Endurance of the ball screw

- (1) Mounting accuracy, load conditions, and lubricating conditions are the main factors affecting ball screw fatigue life. Therefore, we recommend evaluating the influence of those factors on actual machines.
- (2) Temperature rise caused by operational and environmental conditions may reduce the effectiveness of lubricant.
- (3) Insufficient or incorrect information for the direction or size of loads may lead to premature failure.

B-3-3.6.1 VSS Model for Contaminated Environments

1. Features

High dust-resistance

Specially profiled screw shaft grooves and high performance seals prevent the entry of fine contaminants. Reduces particle penetration rate to less than 1/15 existing standard products.

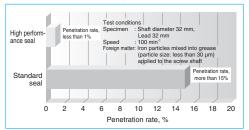


Fig. 1 Particle penetration rate

Fig. 2 Contamination before and after particle penetration test

Long life

High performance seals extend ball screw durability under severely contaminated environments with iron powder.

Extreme durability tests under contaminated environments show the durability of the VSS model extends life by more than four times that with a standard seal.

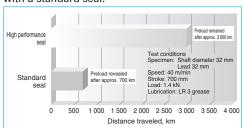


Fig. 3 Extreme durability test results using iron particles

High speed

For ultimate smoothness of ball recirculation, the internal ball recirculation system enables high-speed operation at a maximum of $d \cdot n$

150 000. Large lead specifications allow high-speeds of 150 m/min.

Low-noise

Reduces noise by more than 6 dB(A) compared with our conventional tube recirculation ball screws, thereby providing low-noise and good noise tone features.

Compact size

Ball nut external diameter is up to 25% smaller than our conventional models.

2. Specifications

(1) Ball recirculation system

End-deflector recirculation systems feature high-speed operation with low-noise, and compact ball nut. The structure of recirculation system is shown in **Fig. 4**.

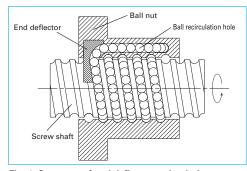


Fig. 4 Structure of end deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C5
Avial play	Z, 0 mm (preloaded)
	T, 0.005 mm or less; S, 0.020 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

The allowable $d \cdot n$ value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value: 150 000 or less

Criterion of maximum rotational speed: 3 000 min⁻¹

Note: Please also review critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) High performance seal

A high performance seal with special lip that contacts the screw shaft cross-section and prevents entry of fine contaminants.

(5) Lubrication unit

Incorporates NSK K1 Iubrication unit to sufficiently lubricate the high performance seal lip, reduce friction, and improve durability.

(6) Options

Non-contact metal protector that traces the ball screw grooves and safeguards the seal against high-temperature foreign matter.

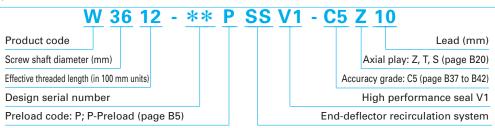
the screw must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove d, specified in the dimension tables.

High performance seals may increase torque, which may in turn increase temperature. Please inform NSK about your service conditions using the technical data sheet on page B552.

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

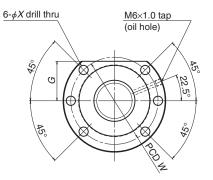
3. Design precautions When designing the screw


When designing the screw shaft end, one end of

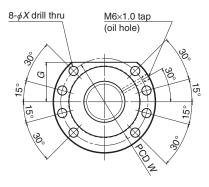
4. Structure of model number and reference number

The following explains the codes used in model numbers and ball screw reference numbers.

Reference number for ball screws

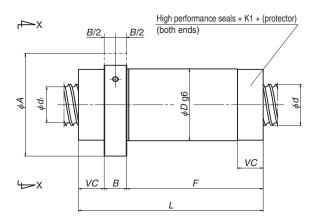

5. Handling Precautions

Maximum operating temperature: 50°C


Maximum momentary operating temperature: 80°C

Chemical precautions: Never expose the ball screw to grease-removing organic solvents such as hexane or thinner. Never immerse the ball screw in kerosene or rust preventive oils which contain kerosene. The data shown in the catalogs are the results of our tests, and no warranty is given to sealing performance on actual usage on machinery. Sealing performance is affected by usage environment and lubrication conditions. Dust covers and other measures to keep machinery free of dust are recommended.

View X-X



Screw shaft diameter $d \ge 40 \text{ mm}$

	Shaft dia.	Lead	Root dia.	Effective	Basic load	ratings (N)	Axial rigidity	
Model No.				ball	Dynamic	Static	K K	
				turns			(N/µm)	
	d	l	d _r		$C_{\scriptscriptstyle \mathrm{a}}$	$C_{\scriptscriptstyle \mathrm{OB}}$	(14/μ111/	
VSS3210-6E		10		6	50 900	110 000	720	
VSS3216-5E	32	16	27.2	5	44 300	90 800	600	
VSS3220-5E	32	20	21.2	5	43 900	91 200	596	
VSS3232-4E		32		4	32 100	65 800	421	
VSS4040-4E	40	40	34.4	4	42 900	94 300	513	
VSS5050-4E	50	50	44.4	4	47 400	117 000	606	

Notes: 1. Right-turn screws are standard. Contact NSK for left-turn screws.

- 2. Values for axial rigidity K above are theoretical values obtained from the elastic deformation between the screw groove and ball when preload is 1.5% of the basic dynamic load rating C, and axial load is applied. Refer to the "Technical Description" on page B37 if axial load and preload differ from the conditions above or if deformation of the ball nut body must be considered.
- Products with clearance (axial play) may have partially negative clearance (preload) depending on the screw length. Refer to page B20 for details.

Unit: mm

	Ball nut dimensions												
Nut total	Nut outside	Flange outside	Flange	Nut	Notch	Seal installation	Bolt hole	Bolt hole	Maximum				
length	diameter	diameter	width	length	length dimensions		PCD	dimensions	shaft length				
L	D	Α	В	F	G	VC	W X						
132				89.5									
150	F.0	00	18	107.5	24	24.5	74		0.000				
169	56	86		126.5	34		71	9	2 800				
122				79.5									
144	70	100	22	94.5	38.5	27.5	85	9	3 800				
164	82	118	22	114.5	46	27.5	100	11	5 000				

B545 B546

B-3-3.6.2 Ball Screws with X1 Seals for Contaminated Environments and Grease Retention

1. Features

High dust resistance

Particle penetration ratio reduced to less than 1/30 existing standard seals, thus contributing to longer service life for machine tools.

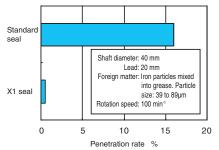


Fig. 1 Results of particle penetration rate test

Superior grease retention

Automatically adding grease makes it possible to reduce the amount used and keep it from spattering.

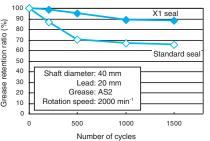


Fig. 2 Results of grease leakage test

Contact seal with low torque

Optimizing the seal shape reduces torque and enhances seal performance.

2. Specifications

(1) Structure

The ball screw with X1 seals has a double seal structure combining a dust-resistant seal and a grease-retaining seal.

Fig. 3 Seal structure

(2) Scope of application

This model is standard for the following four types.

Ball screws	HMS model	Nut: ZFRC
for high-speed machine tools	HMD model	Nut: EM
	BSS model	Nut: BSS
	Deflector (bridge) recirculation	Nut: ZFD

For specifications other than above, please consult NSK. Table 1 shows the minimum nut outer diameter on which X1 seals can be mounted.

Table 1 The minimum nut outer diameter on which X1 seals can be mounted

Shaft diameter: 32 mm	56 mm
Shaft diameter: 40 mm	70 mm (68 mm)
Shaft diameter: 45 mm	75 mm (73 mm)
Shaft diameter: 50 mm	82 mm (78 mm)

Values in parentheses are applicable to the deflector (bridge) recirculation.

(3) Accuracy grade / axial play

Table 2 shows standard tolerance classes and axial clearances. Please consult NSK for tolerance classes other than those in the table.

Table 2 Accuracy grade and axial play

Accuracy grade	C3, C5
Axial play	0 mm (preloaded)

(4) Design-related precautions

When designing the screw shaft end, assume that the end of the screw shaft is cut.

The temperature will increase somewhat when torque is applied if an X1 seal is attached. Please inform NSK about your service conditions using the technical data sheet on page B552.

Maximum overall shaft length is 2900 mm.

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

Right-turn screws are the standard. For specifications on left-turn screws, contact NSK.

Fig. 4 External appearance

3. Example reference number

The following explains the codes used in ball screw reference numbers.

Note: "X1" is added at the end of the "nut code" and Provisional Ref. No.

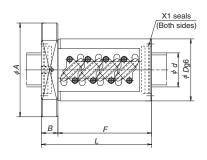
○Reference number for ball screws

W4010-**ZMX1-C5Z16

X1 seal equipped ball screw code

4. Precautions for use

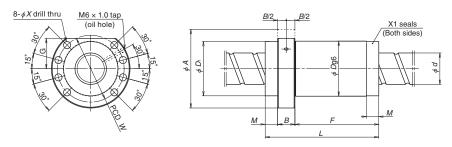
Temperature range for use: Maximum


temperature: 60°C

(at outside diameter of ball nut)

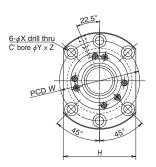
Chemicals to avoid contact with:

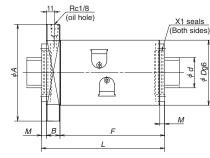
Do not leave ball screw in organic solvent, white kerosene such as hexane, thinner which removes oil, or rust preventive oil which contains white kerosene.


The data shown in the catalogs are the results of our tests, and no warranty is given to sealing performance on actual usage on machinery. Sealing performance is affected by usage environment and lubrication conditions. Dust covers and other measures to keep machinery free of dust are recommended.

HMS model (Nut: ZFRC)

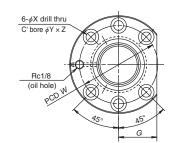
Applicable dimensions for HMS model

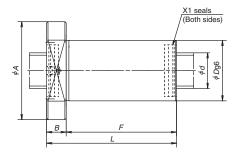

Applicable difficulti for finder Unit														Jnit: mm	
	Shaft dia.	Lead	Basic load	ratings (N)	Nut dimensions										
Model No.			Dynamic	Static	,	F	В	D	A	G		Oil hole			
	d	l	C _a	$C_{\scriptscriptstyle 0a}$	L	,	D	D	^		X	Y	Z	W	Q
ZFRC3205-10	32	5	21 800	56 000	107	87	20	58	85	32	6.6	11	6.5	71	M6×1
ZFRC4010-10	40	10	61 200	137 000	173	151	22	82	124	47	11	17.5	11	102	Rc1/8
ZFRC4012-10	40	12	71 700	154 000	197	175	22	86	128	48	' '	17.5	' '	106	Rc1/8
ZFRC4508-10	45	8	44 000	118 000	146	124	22	82	124	47	11	17.5	11	102	Rc1/8
ZFRC5010-10	50	10	68 100	174 000	174	151	23	93	135	51	11	17.5	11	113	Rc1/8
ZFRC5012-10	50 -	12	91 500	218 000	200	177	23	100	146	55	14	20	13	122	Rc1/8



End deflector recirculation (Nut: BSS)

Applicable dimensions for End deflector recircul
--


Applicable	pplicable dimensions for End deflector recirculation Unit: m													
	Shaft dia	. Lead	Basic load	ratings (N)										
Model No).		Dynamic	Static	,	F	М	В	D			G	Bolt I	holes
	d	l	C _a	C_{0a}	L	-	IVI	D	D	D_1	A	G	X	W
BSS3205-	4E 32	5	16 800	41 700	72	41	19	12	E6	55	86	34	9	71
BSS3210-		10	50 900	110 000	114	80.5	15.5	18	- 56	55.5	00	34	9	/ 1
BSS4010-	5E 40	10	58 100	130 000	112	73	17	22	70	69	100	38.5	9	85
BSS4020-		20	57 400	130 000	159	120	17	_ 22 70	03	100	30.5	9	00	
BSS5010-	4E 50	10	52 600	129 000	102	63	17	22	82	81	118	46	11	100



HMD model (Nut: EM)

	Applicable din	nensions	s for HN	/ID mode	ı										Uni	it: mm	
		Shaft dia.	Lead	Basic load	Nut dimensions												
	Model No.			Dynamic	Static	,	F	М	В	D	A	Н		Bolt I	holes		
		d	l	C _a	$C_{\scriptscriptstyle \mathrm{Oa}}$	L	Γ	IVI	D	D	A	П	Χ	Y	Z	W	
	EM4016-4E	40	16	66 900	131 000	172	148	6	18	86	128	96	11	17.5	11	106	
	EM4020-6E	40	20	77 900	166 000	164	139	7	10 0	00	120		11	17.5	''	100	
	EM4516-4E	45	16	69 900	146 000	173	148.5	6.5	18	92	134	102	11	17.5	11	112	
•	EM4520-6E	45	20	83 200	187 000	164	139	7	10	32	134	102	11	17.5	''	1112	
	EM5016-4E		16	72 700	161 000	173	148.5	6.5									
ĺ	EM5020-6E	50	20	85 700	205 000	164	139	7	18	98	140	107	11	17.5	11	118	
	EM5030-6E		30	102 000	235 000	227	202	7	- 10								

Deflector (bridge) recirculation (Nut: ZFD)

Applicable dimensions for Deflector (bridge) recirculation

Applicable dim	opilicable dimensions for Deflector (bridge) recirculation Unit:													it: mm	
	Shaft dia.	Lead	Basic load	ratings (N)	Nut dimensions										
Model No.			Dynamic	Static	,	F	В	D	Α	G		Bolt	holes		
	d	l	C _a	$C_{\scriptscriptstyle 0a}$	L	<i></i>	D	D	А	G	X	Y	Z	W	
ZFD4005-12		5	26 500	78 300	119	97									
ZFD4006-12	1	6	35 600	95 200	135	113	22	68	102	40	9	14	8.5	84	
ZFD4008-8	40	8	32 000	75 000	131	109									
ZFD4010-8		10	45 200	93 100	153	131	22	68	110	43	11	17.5	11	88	
ZFD5010-8	- 50	10	51 500	122 000	154	131	22	78	120	47	11	17.5	11	98	
ZFD5020-6] 50	20	52 400	109 000	199	176	23	78	120	47	' '	17.5	'	98	

B549 B550

[Example] (Please copy) 1/1

Model: Washing machine Location: Workpiece transfer axis

1. Operating Conditions

	a) Shaft rotation – nut moving	Stroke in Normal Use	400	[mm]
Operating Conditions	b) Shaft rotation – shaft moving		(Please indicate opera	ating pattern)
	c) Nut rotation – nut moving d) Nut rotation – shaft moving	Mounting Orientation	a) Vertical	b) Horizontal
Lubricant	a) Grease (Brand: AS2 b) Oil (Brand:) Lubricating Method	a) Automatic (cm³/	b) Grease gun min)
Operating Duration	years 6 months A	kial play: 0.1 mm	Seal: standard /	

2. Ball Screw Environment (Accessories & Contamination)

Contaminant	Iron particles and washing solution	Contaminant Size	Particle size 30 µm max
Cause of Contamination Does not fall directly on it, but there is a possibility that it could happen. (Please reference with photographs)			nat it could happen.
Countermeasures (For already assembled parts, complete after inspection)	a) Telescopic cover b) Bellow e) Other (-c) Dust coll e	betord)-Dust-resistant-lubricant-
complete after inspection)	(Please supply drawings to demonstra	ate dust countermeasures)	

3. Ball Screw Dimensions

Screw Shaft Diameter	Ф 32	Lead	5 mm	Accuracy Grade	C5	Axial Play	Z
Nut	ZFRC	Effective ball turns	2.5×2	Direction of Turn	Right	Screw/Overall Length	510 / 750

Request X1 seal

4. Durability Test

Durability test Scheduled Scheduled to perform functional evaluation for about 2 months.

Not scheduled (Reason:

Ball Screw Use in Contaminated Environments

Welease read the below and tick the relevant boxes

- ☐ The results for evaluation tests carried out by NSK for dust-resistant seals represent an example under set testing conditions (foreign matter and operating conditions). Seals may be unable to completely prevent contamination under actual conditions and life may be affected by the environment, lubrication conditions, etc.
- Dust-resistant accessories (covers, lubrication, collectors, etc.) are required in addition to the seals to improve wear life in contaminated environments.
- ☐ Ball screw wear life is greatly impacted by foreign matter entering the nut, offset load from misalignment, and lubricating conditions.

 The customer is responsible for evaluating and checking final durability in the actual machine.

Company Name:	Date:		NSK Ltd. Sales Representative	NSK Ltd. Sales Manager
Department:	Name:			
Address:	Tel:	Fax:	Sign	Sign

NSK Ltd.

(Please copy) 1/1

NSK Data Sheet for Ball Screws in Contaminated Environments

Model:	Location:	

1 <u>. Ope</u>	erating (Condit	ions							
Operation	g Conditions	b) Shaft ro	tation – nut tation – sha	ft moving		Stroke i	n Normal Use	(Please inc	dicate opera	[mm] ating pattern)
Орогали	Operating Conditions	c) Nut rotation – nut moving d) Nut rotation – shaft moving		Mountin	g Orientation	a) Vertical		b) Horizontal		
Lubrican	t	a) Grease b) Oil	(Brand: (Brand:)	Lubrica	ting Method	a) Automa	tic cm ³ /	b) Grease gun min)
Operatin	g Duration		vears	months	Axial	plav:	mm	Seal: stand	ard /	

2. Ball Screw Environment (Accessories & Contamination)

_	Dan Colow El	1411011110111 (71000	3301103 0 00	mannanon,
	Contaminant		Contaminant Size	Particle size -
	Cause of Contamination	(Please reference with photograph	s)	
	Countermeasures	a) Telescopic cover b) Bellov	c) Dust colle	ector d) Dust-resistant lubricant
	(For already assembled parts,	e) Other ()	
	complete after inspection)	(Please supply drawings to demor	strate dust countermeasures)

3. Ball Screw Dimensions

Screw Shaft Diameter	φ	Lead	mm	Accuracy Grade	Axial Play	
Nut		Effective ball turns		Direction of Turn	Screw/Overall Length	1

Remarks Programme Remarks					
INCITIATING					

4. Durability Test

Durability test	Scheduled
<u></u>	Not scheduled (Reason:

Ball Screw Use in Contaminated Environments

**Please read the below and tick the relevant boxes

- ☐ The results for evaluation tests carried out by NSK for dust-resistant seals represent an example under set testing conditions (foreign matter and operating conditions). Seals may be unable to completely prevent contamination under actual conditions and life may be affected by the environment. lubrication conditions, etc.
- Dust-resistant accessories (covers, lubrication, collectors, etc.) are required in addition to the seals to improve wear life in contaminated environments.
- ☐ Ball screw wear life is greatly impacted by foreign matter entering the nut, offset load from misalignment, and lubricating conditions.

 The customer is responsible for evaluating and checking final durability in the actual machine.

Company Name:	Date:		NSK Ltd. Sales Representative	NSK Ltd. Sales Manager
Department:	Name:			
Address:	Tel:	Fax:	Sign	Sign

B-3-3.7 Twin-Drive Ball Screws

(1) Features

Variations in the lead accuracy and preload torque between two ball screws, which make up a twin-drive unit, are controlled, improving travel accuracy and ball screw operating lifetime.

Fig. 1 shows measured variation in lead accuracy while Fig. 2 displays an example of variation in thermal expansion between the two ball screws. Fig. 3 is a schematic diagram comparing the travel accuracy between a twin-drive ball screw

High rigidity and long lifetime

and conventional model.

Twin-drive systems are superior to single-drive systems in system rigidity, supporting the design of the long-life feeding mechanism, even at one size smaller shaft diameter.

- High responsiveness to positioning commands Twin-drive systems permit the use of screw shaft diameters that are one size smaller, thereby reducing screw shaft inertia by up to 50%, offering high responsiveness to positioning commands.
- Improved high-speed capability and noise level Twin-drive systems allow the use of smaller screw diameters, resulting in no increase in the level of noise. The end-deflector recirculation system significantly improves high-speed capability and noise levels compared with existing tube recirculation systems, offering high-speed feeding of up to 1 200 mm/min (shaft dia. 40 mm, lead 30 mm, rotational speed 4 000 min⁻¹).

(2) Specifications

Table 1 Specifications of twin-drive systems

Item	End-deflector, Tube,
item	Deflector (bridge)
Shaft dia.	32 – 63 mm
Lead	10 – 30 mm
Accuracy grade	C5
Screw shaft length	3 m or less

(3) Optional specifications

- · Hollow shaft ball screw and nut-cooled ball screw
- Provides high accuracy through the use of forced cooling. Please refer to ball screws for high precision machine tools (page B554 to B562) for more details.

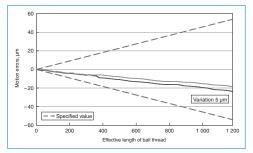


Fig. 1 Example of measured variation in lead accuracy

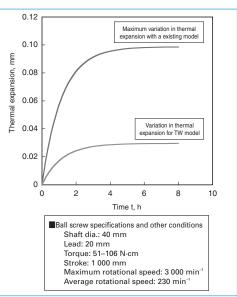


Fig. 2 Calculation example of the variation of thermal expansion

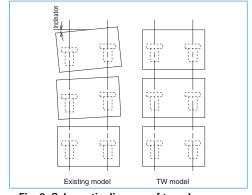


Fig. 3 Schematic diagram of travel accuracy

B-3-3.8.1 Hollow Shaft Ball Screws for High Precision Machine Tools

The increase in speed of the feeding mechanism for highly accurate positioning may require some measures against thermal expansion of the ball screw (forced cooling using hollow ball screw). NSK standardized hollowed screw shafts and shaft end configurations (sealing section and support bearing seat). NSK recommends this as the most effective measure against thermal expansion.

1. Features

Stable positioning accuracy

Suppresses expansion of the ball screw shaft by rising temperature, and provides stable, precise positioning.

Prevents displacement of various sections Minimizes deformation of the ball screw support bearings as well as machine base caused by thermal expansion of the ball screw. Forced cooling keeps heat from spreading to other sections, and prevents the processing table from deforming due to heat.

Reduces warm-up time

Temperature does not rise high, therefore shortening the machine warm-up period.

Maintains lubricant's effect

Removes heat from the ball screw, deterring lubricant deterioration.

Easy design for installation

Uses a specialized bearing support unit for NSK ball screws (high speed and high load capacity support unit for machine tools, see page B405) and seal unit (page B557) on the standardized shaft end. This makes designing for mounting easy.

NSK also provides nut-cooled ball screws. The

level of temperature rise for nut-cooled ball screw is equal to hollow shaft ball screw thanks to the optimized nut internal design for cooling. Please refer to nut-cooled ball screws (page B559) for more details.

2. Design precautions

Refer to the HMC model, end-deflector recirculation system, tube recirculation system, and deflector (bridge) recirculation system for ball screw specifications. If the overall ball screw length exceeds 3 000 mm, contact NSK. For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling precautions" (page B103).

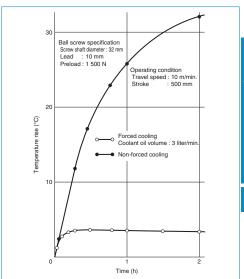
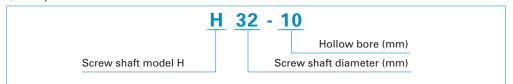
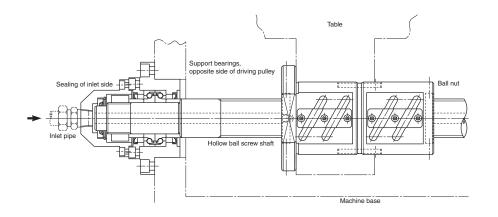
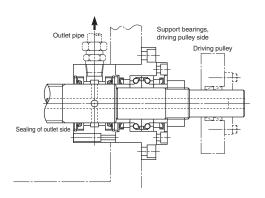
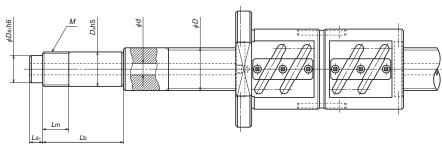



Fig. 1 Effect of forced cooling by hollow shaft ball screw

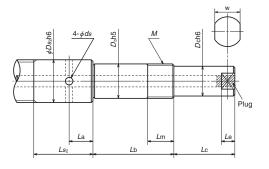

3. Structure of model no.


The following explains the codes used in model numbers:



Hollow Shaft Ball Screws

4. Installation example and standard dimensions



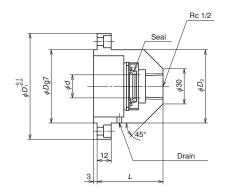
	Ls ₁	<u>Lm</u> ↓)	-	+			- - (// π <u>-</u>					
	Screw	/ shaft		Bearing	seat				Sea	ling			
Model No.	Outside dia.	Bore dia.	Outside dia.	ia. Lock nut		In	let		Ou	tlet			
	D d Db M Im Ib				Ds.	ls.	Ds.	l so	l a	ds			

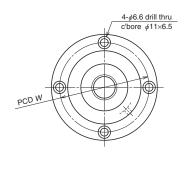
	Screv	/ shaft		Bearing	seat		Sealing					
Model No.	Outside dia.	Bore dia.	Outside dia.	Lo	ock nut		In	let		Ou	tlet	
	D	d	<i>D</i> b	М	<i>L</i> m	<i>L</i> b	Ds ₁	Ls ₁	Ds ₂	Ls ₂	La	ds
H32-10	32	10	25	M25×1.5	26	89 104 119	20	15	32	60	25	6
H40-12	40	12	30	M30×1.5	26	89 104 119	25	15	40	60	25	7
H50-15	50	15	40	M40×1.5	30	92 107 122	32	15	50	65	27	8

Notes: 1. Please consult NSK for other models.

Unit: mm

	ri	side	Cnann	er flats	Applicable		Equipped	seal unit
D	live	side	Sparin	ei iiats	support	Applicable bearing	Shaft end	Shaft outer
D	c)c	Lc	W	Le	unit		Snart end	surface
					WBK25DF-31H	25TAC62CSUHPN7C DF arrangement		
20	0	40	17	8	WBK25DFD-31H	25TAC62CSUHPN7C DFD arrangement	WSK20A-01	WSK32B-01
						(25TAC62CSUHPN7C DFF arrangement)		
					WBK30DF-31H	30TAC62CSUHPN7C DF arrangement		
2	5	50	22	10	WBK30DFD-31H	30TAC62CSUHPN7C DFD arrangement	WSK25A-01	WSK40B-01
						(30TAC62CSUHPN7C DFF arrangement)		
					WBK40DF-31H	40TAC72CSUHPN7C DF arrangement		
3!	5	70	30	13	WBK40DFD-31H	40TAC72CSUHPN7C DFD arrangement	WSK32A-01	WSK50B-01
					WBK40DFF-31H	40TAC72CSUHPN7C DFF arrangement		

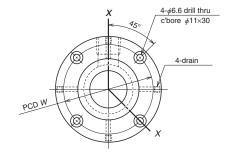

B555 B556

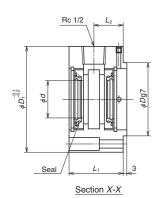

^{2.} See B416 for bearing arrangement codes.

5. Seal units for hollow ball screw shafts (available by order)

This is an exclusive joint for coolant for the hollow ball screw shaft.

A Type (for shaft end)





Unit: mm

Reference No.	d	D	D_1	D_2	L	W	Fixing bolt
WSK20A-01	20	57	85	57	56	70	M6
WSK25A-01	25	57	85	57	56	70	M6
WSK32A-01	32	69	95	67	61	80	M6

B Type (for shaft outer surface)

Unit: mm g bolt

Reference No.	d	D	D_1	L ₁	L_2	W	Fixing bolt
WSK32B-01	32	57	85	46	25	70	M6
WSK40B-01	40	57	85	46	25	70	M6
WSK50B-01	50	69	95	49	27	80	M6

♦ Handling precautions

- Use NSK support units (high speed and high load capacity support units for machine tools on page B405) for installation in order to maintain the eccentricity between screw shaft and seal unit.
- Apply grease to the lip section for protection at the time of installation to the ball screw.
- · Make certain that the drain holes (one for A Type, four for B Type) of the seal unit directly face downward when the unit is installed.

B557 B558

B-3-3.8.2 Nut-Cooled Ball Screws for High Precision Machine Tools

Nut-cooled ball screws are easily cooled with a ball nut cooling system and are ideal for use in high-speed and high-precision machine tools that have nut cooling systems.

Using nut-cooled ball screws makes it possible to cool long ball screws that are difficult to cool with hollow-core cooling, and they accommodate the broad high-precision needs of machine tools both small and large.

1. Features

Cooling effects

By optimizing the cooling structure inside the nut, cooling capacity equivalent to hollow shaft cooling has been achieved. The nut in contact with the table is cooled, so that heat conduction from the table to the ball screw is blocked. Moreover, by cooling the hollow shaft in parallel, the screw shaft and ball nut can be cooled at the same time for even more precise temperature control.

Internal design in consideration of preload torque change

The nut-cooled ball screw has double contactpoint preload in the tensile direction. This prevents an increase in preload torque when the nut is cooled, enabling effective cooling of the ball screw.

Cooling structure

The cooling fluid goes in a balanced way through the nut. Double nuts have separate coolant routes for each nut for efficient cooling. Cooling fluid does not go through the inside of spacers, so coolant fluid does not leak even when preload drops and airtightness is maintained.

Improved handling

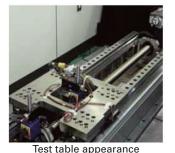
Ball screws can be cooled by simply attaching piping to the exterior flange part.* Sliding seals and rotary joints for hollow shaft cooling are not needed. Dimensions for mounting area (without nut cooling) are the same as conventional products, so the nut cooling can be implemented without changing machine designs.

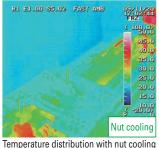
*When cooling double nuts, piping is required on the nut end face on the other side of the flange.

 Long ball screws can be cooled at a low cost Since these products are suitable for long ball screws for which hollow hole processing is difficult, improved precision of large machine tools can be achieved at a low cost.

2. Design precautions

If heat from the bearing is too great, separate cooling for the bearing and surrounding areas is recommended. For details, please contact NSK.


♦ Reference number for nut-cooled ball screws


W4012-**ZMNC-C5Z20

Nut-cooled ball screw code

Change of screw shaft temperature Test conditions: Specimen; Shaft dia. 50 mm, Coolant; Oil Coolant flow rate; 3 L/min in temperature ncrease 3 Time hour

Fig. 1 Effect of forced cooling by nut-cooled ball screw

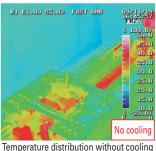
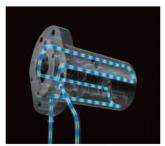
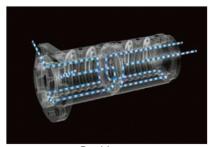
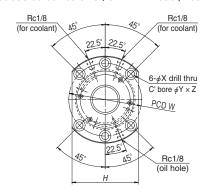
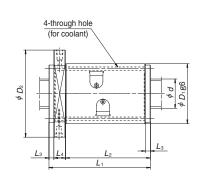




Fig. 2 Effect of forced cooling by nut-cooled ball screw

Cooling structure

Single nut

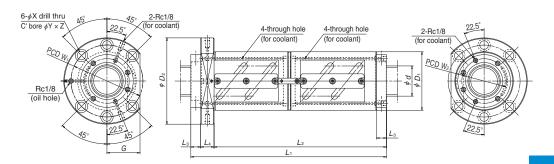

Double nut


Fig. 3 Cooling structure of a nut-cooled ball screw

B559 B560

Nut-Cooled Ball Screws: Dimension Tables

Single nut-cooled ball screws (for HMD model, nut: EM)



Applicable dimensions for HMD model Unit: mm

Shaft dia.	Lead					Nut dim	ensions					
d	l	D ₁	D_2	Н	L,	L_2	L ₃	L ₄	W	Χ	Y	Ζ
	16				166	140.5						
40	20	0.6	100	06	156	130.5	7 -	40	100	11	17 5	11
40	25	80	128	96	188	162.5	7.5	18	106	11	17.5	' '
	30				219	193.5						
	16				166	140.5						
45	20	92	134	102	156	130.5	7.5	18	112	11	17.5	11
	25				188	162.5						
	16				166	140.5						
E0	20	00	140	107	156	130.5	7 5	10	110	11	17 5	11
50	25	30	140	107	188	162.5	7.5	10	110	1.1	17.5	' '
	30				219	193.5						
63	16	122	180	138	176	139	9	28	150	18	26	17.5
	d 40 45 50	d l 16 20 25 30 16 45 20 25 16 20 25 16 20 25 30	d l D ₁ 16 20 86 25 30 16 20 92 25 16 20 25 16 20 98 25 30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Double nut-cooled ball screws (tube recirculation, nut: DFT)

Dimensions for tube recirculation

															-
Dimensions f	or tub	e recirc	culatio	n									U	Init: mm	Nut-Cooled Ball Screws
Maralal Nie	Shaft dia.	Lead				1	Nut dim	nensions	3						Sci
Model No.	d	l	D_1	D_2	L ₁	L ₂	L3	L ₄	G	W ₁	X	Y	Z	W_2	swa.
DFT5010-7.5		10	93	135	303	275	10	18	51	113	11	17.5	11	73	0,
DFT5012-5	50	12	100	146	279	245	12	22							
DFT5016-5	50	16	100	146	344	306	16	22	55	122	14	20	13	78	
DFT5020-3		20	100	146	327	279	20	28							
DFT5510-5	55	10	102	144	243	215	10	18	54	122	11	17.5	11	80	
DFT6310-7.5		10	108	154	307	275	10	22	58	130	14	20	13	88	
DFT6312-5	63	12	115	161	279	245	12	22	61	137	14	20	13	91	
DFT6316-5	- 03	16	122	180	350	306	16	28	- 69	150	18	26	17.5	93	
DFT6320-5		20	122	180	407	359	20	28	09	150	10	20	17.5	95	
DFT8010-5		10	130	176	247	215	10	22	66	152	14	20	13	108	
DFT8012-5	80	12	136	182	279	245	12	22	68	158	14	20	13	110	
DFT8016-5	00	16	143	204	350	306	16	28	77	172	18	26	17.5	112	
DFT8020-5	1!	20	143	204	407	359	20	28	''	1/2	10	20	17.5	112	
DFT10012-5		12	160	220	285	245	12	28	82	188	18	26	17.5	134	
DFT10016-5	100	16	170	243	354	306	16	32	91	205	22	32	21.5	136	
DFT10020-5		20	170	243	411	359	20	32	91	200	22	32	21.5	130	

B561 B562

B-3-3.9 Rotary Nut Ball Screws

A rotary nut ball screw is developed as a unit into which angular contact support ball bearings are integrated. It is best suited for an application that requires rotation of the ball nut while the screw shaft is fixed.

NDT model

1. Structure

Balls are installed between the assembly housing and the ball nut. The outer bearing rings are integrated into the assembly housing and thus, a compact design is attained.

A timing pulley (prepared by the user) is directly secured to the end face of the nut.

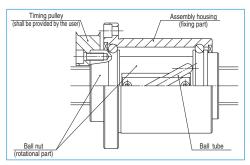


Fig. 1 Ball nut structure

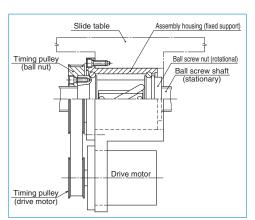


Fig. 2 Example of installation to the slide

2. Features

Multi-nut drive

Two or more nut units can be installed in a single ball screw shaft. They can be operated by respective motors.

High operation speed

High feeding speed operation, yet low rotational speed is feasible by medium to high-helix lead ball screws.

Easy installation

Merely install a mount housing to the table of the machine to take advantage of this multi-nut rotation system.

Simple shaft end configuration

Shaft end configuration is simple because this unit does not need support bearings.

Shaft diameter/lead combination

There are 10 types of "shaft diameter/lead" combinations.

Selections are: Shaft diameters -- 32, 40, 50 mm; Leads -- 20, 25, 32, 40, 50 mm.

Low inertia

Compared to conventional NSK products (end cap ball recirculation system), rotational inertia was reduced by up to 16%.

3. Specifications

(1) Ball recirculation system

The structure of the tube recirculation system is shown below.

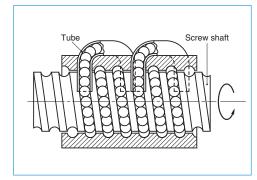


Fig. 3 Structure of ball tube recirculation svstem

(2) Accuracy grade and axial play

The available standard accuracy grades and axial play are as follows. Please consult NSK for other grades.

Table 1 Axial play

Axial play code	Z	Т	S
Axial play	0	0.005 mm or less	0.020 mm or less

Table 2 Combination of accuracy grades and axial play

Accuracy grade	C3	C5	Ct7
Axial play code	Z, T, S	Z, T, S	S

4. Allowable don value and the criterion of maximum rotational speed

The allowable $d \cdot n$ value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Note: The basic concept is the same as that of general ball screws. Refer to "Technical Description: Permissible Rotational Speed" (page B47).

Table 3 Allowable den value and the criterion of maximum rotational speed

Allowable <i>d·n</i> value	Standard specification 7	0 000 or less
Allowable <i>u·II</i> value	High-speed specification 10	00 000 or less
Criterion of maximum rotational speed	3 000) min ⁻¹

d·n value: shaft dia. d [mm] × rotational speed n [min-1]

Critical speed n_a

As shown Fig. 4, calculate mounting distance (mm) of L_1 , L_2 , and L_3 (assume that the nut section is a fixed support.) Table 4 shows coefficient "f" of each shaft end mounting condition.

$$n_c = f \cdot \frac{d_r}{L^2} \times 10^7 \text{ (min}^{-1})$$
 (III-1)

- d: Screw shaft root diameter (See the dimension table.)
- L: Distance between support positions (mm) (See Fig. 4)
- f: Factor determined by the ball screw shaft end mounting condition

Table 4

Shaft end mounting condition	f
Fixed Fixed	21.9
Fixed - Simple	15.1
Fixed Free	3.4

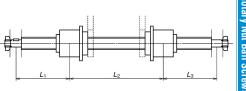


Fig. 4 Installation example

5. Design precautions

One end of the screw thread should be cutthrough to the end. Also, if the nut must be removed from the screw shaft, the user should have an arbor to prevent the balls from falling out during this process. (NSK manufactures arbors on request.)

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

NDD model: (Incorporating vibration damper)

An increase in stroke length may restrict required rotational speed of a ball screw due to critical speed even if there is no $d \cdot n$ limitation. In such a case, we recommend using NDD model rotary nut ball screws equipped with vibration dampers.

This makes it possible to operate a ball screw exceeding the critical speed, which is conventionally considered impossible.

Notes: 1) However, the NDD model cannot be used exceeding the $d \cdot n$ limitation. Please consult with NSK in such a case.

2) You cannot rotate the screw shaft of the NDD model.

1. Structure

Hollow ball screw shafts have a mechanism to absorb vibration energy (vibration damper). This increases dynamic rigidity of the screw shaft and lowers vibration when exceeding the critical speed.

Construction of the ball nuts are the same as those of the NDT model.

2. Features

No need for measures against critical speed. Conventionally, an increase in screw shaft diameter or use of intermediate support is the measure against critical speed. NDD model ball screw will make these measures needless.

Dimensional interchageability with NDT model ball screws

The vibration damper is set inside the ball screw shaft, and therefore, there is no difference with the existing model in regards to external dimensions. The ball nuts of NDD models are interchangeable with those of NDT models.

Others

Benefits include multiple ball nuts on a screw shaft, high feeding speed for long stroke, easy installation, and low inertia of ball nuts identical to the NDT model.

3. Specifications

Recirculation system, accuracy grade, axial play and preload are the same as the NDT model.

4. Design precautions

Design precautions are identical to those of the NDT model.

5. Permissible rotational speed

The d•n value is the same as the NDT model. You don't need to consider the critical speed.

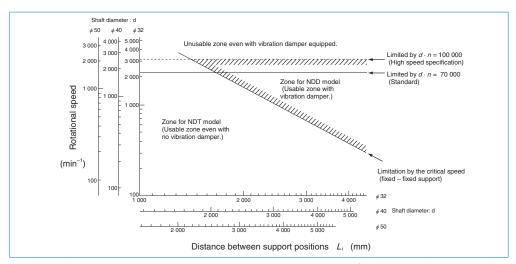
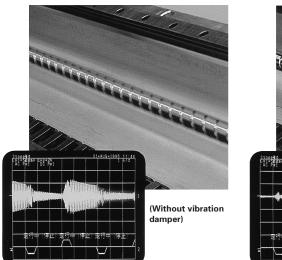



Fig. 5 Rotational speed and distance between support positions for NDT and NDD models

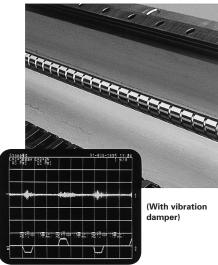


Fig. 6 Vibration of screw shaft when nut is rotating

(Without vibration damper)

(With vibration damper)

Fig. 7 Effect of vibration damper (results of endurance test)

Example calculation of permissible rotational speed

[Example calculation]

Assume a system which moves two nuts on a shaft as shown below.

Does this system operate appropriately if: both ends of the ball screw (shaft diameter 40 mm/ lead 40 mm) are fixed, and the travel speed is at 60 m/min?

[Answer]

The rotational speed n (min⁻¹) when the lead of the ball screw is 40 mm, and the travel speed is at 60 m/min is:

$$n = \frac{60 \times 10^3}{40} = 1500 \text{ (min}^{-1}\text{)}$$

Calculate d • n value

As the *d* • *n* value of standard specification is 7 000, therefore, permissible rotational speed is:

$$n \le \frac{70\ 000}{40} = 1\ 750\ (min^{-1})$$

Calculate critical speed

The maximum distance between support positions comes between Nut A and B.

$$L_2 = 3 300 \text{ (mm)}$$

f = 21.9 (Fixed-Fixed)

Root diameter: $d_r = 35.1$ (mm)

Therefore, the permissible rotational speed is;

$$n \le \frac{21.9 \times 35.1}{3300^2} \times 10^7 = 706 \text{ (min}^{-1}\text{)}$$

The calculation indicates that the $d \cdot n$ value is at the safe level. But critical speed exceeds the limitation. However, with a vibration damper, the system can be operated at 1 500 min⁻¹.

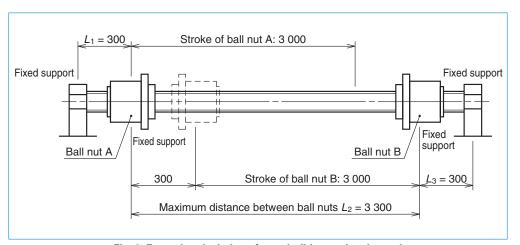
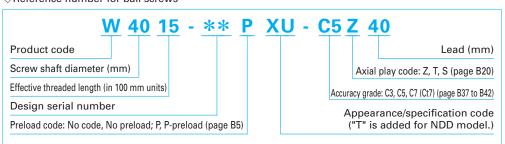
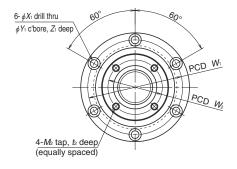



Fig. 8 Example calculation of permissible rotational speed


Structure of reference number

The following explains the codes used in reference numbers:

♦ Reference number for ball screws

	1	ı	I			ı	ı		I	
Model No.	Shaft dia.	Lead	Ball dia.	Ball pitch circle dia.	Root dia.	Effective ball turns Turns ×		ratings (N) Static	Moment of inertia, ball nut	Ball nut mass W
	d	l	D_{w}	d _m	d,	Circuits	C _a	C_{0a}	(kg·cm²)	(kg)
NDT NDD 3220-2.5		20	4.762	33.25	28.3	2.5×1	20 700	41 900	6.2	2.9
NDT NDD 3225-2.5	32	25	4.762	33.25	28.3	2.5×1	20 400	42 200	6.7	3.2
NDT NDD 3232-1.5 NDT	32	32	4.762	33.25	28.3	1.5×1	13 300	25 200	6.2	2.9
NDD 3232-3						1.5×2	24 100	50 400		
NDT NDD 4025-2.5		25	6.35 41.7		35.1	2.5×1	34 100	70 100	19.3	6.0
NDT NDD 4032-1.5		32	6.35	41.75	35.1	1.5×1	21 600	41 300	18.0	5.5
NDT NDD 4032-3	40	32	0.33	41.75	35.1	1.5×2	39 300	82 700	18.0	5.5
NDT NDD 4040-1.5		40	6.35	41.75	35.1	1.5×1	21 200	42 000	19.2	6.0
NDT NDD 4040-3		40	0.33	41.75	35.1	1.5×2	38 500	84 000	19.2	0.0
NDT NDD 5025-2.5		25	7.938	52.25	44.0	2.5×1	51 300	110 000	45.7	8.5
NDT NDD 5032-2.5		32	7.938	52.25	44.0	2.5×1	50 900	109 000	48.9	9.4
NDT NDD 5040-1.5	50	40	7.938	52.25	44.0	1.5×1	32 300	64 600	45.5	8.5
NDT 5040-3	50	40	7.336	52.25	44.0	1.5×2	58 700	129 000	40.0	0.0
NDT NDD 5050-1.5		E0	7.020	E2 2E	44.0	1.5×1	31 700	65 700	40.7	0.4
NDT NDD ⁵⁰⁵⁰⁻³		50 7.938 52.	52.25	44.0	1.5×2	57 500	131 000	48.7	9.4	

1	Seal /(both sides)
A A O HT	9 d d d d d D D D D D D D D D D D D D D
!	Т В F

Unit: mm

					Ball	nut dime	ensions						Tap hole	
Nut total length	Nut outside diameter	Flange outside diameter	Flange width	Nut length	Projection tub	e dimensions	Bolt ho	ole dime	nsions	Bolt hole PCD	Tap hole o	limensions	PCD	
Ľ	D	Α	В	Ĕ	D _r	T	X_1	Y_1	Z_1	W_1	M_2	t_2	W_2	
107	78	105	12	83	60	12	6.6	11	6.5	91	M6	12	50	
120	78	105	12	96	60	12	6.6	11	6.5	91	M6	12	50	
107	78	105	12	83	60	12	6.6	11	6.5	91	M6	12	50	ND Model
136	100	133	15	106	76	15	9	14	8.5	116	M8	16	62	
122	100	133	15	92	76	15	9	14	8.5	116	M8	16	62	
136	100	133	15	106	76	15	9	14	8.5	116	M8	16	62	
140	120	156	18	107	96	15	11	17.5	11	136	M10	18	78	
158	120	156	18	125	96	15	11	17.5	11	136	M10	18	78	
140	120	156	18	107	96	15	11	17.5	11	136	M10	18	78	
158	120	156	18	125	96	15	11	17.5	11	136	M10	18	78	

Notes: 1. Right-turn screws are standard. Contact NSK for left-turn screws.

2. Seals are standard equipment.

B569 B570

B-3-3.10 ∑ (Sigma) Model for Robots

1. Features

 Σ model (NSK's Robotte) is a ball screw with a high-performance spline. It is ideal for various actuators such as the vertical axis of SCARA robots.

A ball screw groove and a ball spline groove are made in one shaft, combining the ball screw and the ball spline.

Mount housing, nuts, and support bearings are combined into a single unit.

Timing pulley (prepared by the user) is directly secured at the end face of the nut.

High functions

A single shaft has both feeding mechanism and guide functions. This allows the shaft ends to move back and forth (linear motion), as well as to rotate.

Compact and lightweight

A ball screw nut and a spline nut are placed on one shaft, and support bearings are combined to the unit. This allows for a compact and highprecision design. Hollow shafts are standard to reduce weight. The hollow shaft can be used for wiring and piping. Other components are also designed to be light in weight.

Low inertia

Tube recirculation decreases the outside diameter of the nut, allowing for a low intertia desian.

It reduces the inertia by 19% of conventional products.

2. Functions

As shown in Fig. 1, the ball screw nut and a spline nut are rotated independently to control rotation. Thereby the shaft can move in any direction -- linear and rotational. Table 1 shows the relationship between power input and output.

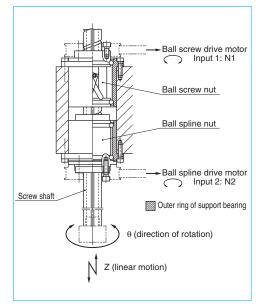


Fig. 1 Example structure of Z axis plus θ axis actuator

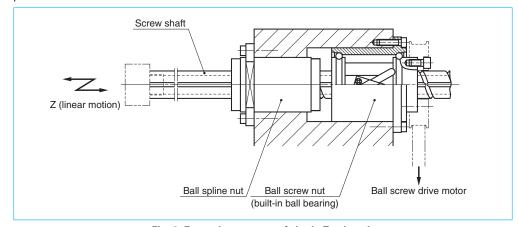


Fig. 2 Example structure of single Z axis unit

Table 1 Power input and output of Σ model

Shaft movem	nent (output)		Input	
Z (vertical movement) (mm/min)	θ (rotational movement) (min ⁻¹)	① Ball screw (min ⁻¹)	② Spline (min ⁻¹)	Notes
Up, down	Stop	Rotate	Stop	
$N1 \times l$	0	N1	0	-
Stop	Rotate	Rotate	Rotate	N1 = N2
0	N2	N1	N2	141 = 142
Up, down	Rotate	Stop	Rotate	
$N2 \times l$	N2	0	N2	_
Up, down	Rotate	Rotate	Rotate	N1≠N2
$ $ N1–N2 $ \times l$	N2	N1	N2	IN I + INZ

3. Specifications

(1) Ball recirculation system

The structure of the tube recirculation system is shown below.

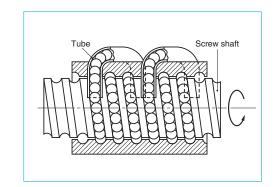


Fig. 3 Structure of tube recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grades and axial play for ball screw are as follows. The axial play for the spline is 0 mm (preloaded product). Please consult NSK for other grades.

Table 2 Accuracy grade and axial play

Accuracy grade	C3, C5, Ct7
Axial play	Z, 0 mm (preloaded)
Axiai piay	T, 0.005 mm or less; S, 0.020 mm or less

(3) Allowable don value and the criterion of maximum rotational speed

The allowable $d \cdot n$ value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Permissible den value: 70 000 or less

Criterion of maximum rotational speed: 3 000 min⁻¹

Note: Please also review the critical speed.

For details, see "Technical Description: Permissible Rotational Speed" (page B47).

(4) Applications

SCARA and Cartesian industrial robots. semiconductor manufacturing machines, machines for automobile production facilities, material handling systems, other Z (vertical) axis and Z axis plus θ (rotation) axis actuators.

4. Design precautions

The overall length L can be extended to 25 times the shaft diameter.

To remove the spline nut from the shaft for assembling, use an arbor as shown in Fig. 4. (page B573). Avoid removing ball screw nuts as much as possible. Refer to root diameter in the dimension tables for arbor diameters. (NSK manufactures arbors on request.)

For general precautions regarding ball screws, refer to "Design Precautions" (page B83) and "Handling Precautions" (page B103).

B571 B572

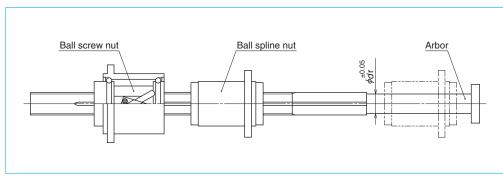


Fig. 4 Removing spline nut

5. Lineup

The Σ model (NSK's Robotte) comes in four varieties with different functions and performance. Select a standard model if rigidity is important. A compact system is recommended for reducing weight.

Table 3 ∑ Model lineup

Model	Appearance	Size	Structure (Movement)
Σ		Standard	Z+θ Unit
ΣΖ		Standard	Z Unit
ΣC		Compact	Z+θ Unit
ΣCZ		Compact	Z Unit

6. Load rating and life

The relationship between load rating of the ball spline section and life is the same as other NSK linear motion products. However, various loads that apply to Robotte must be taken into account. For example, the following factors must be considered in calculating life when the product is used as shown in **Fig. 5**.

- Fa: Load that is generated when the shaft moves vertically. (Load is applied to the ball screw nut.)
- T : Torque that is generated to the shaft by $F_{\rm a}$.
- Fr: Load that is generated by moment of inertia of the shaft and the work attached to Robotte as well as by centrifugal force when the arm rotates.
- θ : Direction of F_r load that changes by shaft rotation.

NSK has life calculation programs which take these factors into account. Please ask NSK for more details.

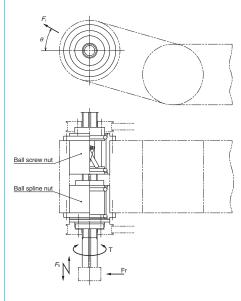
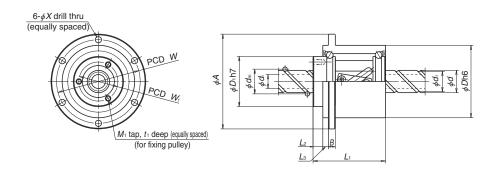
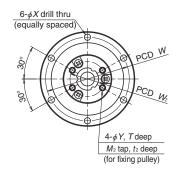
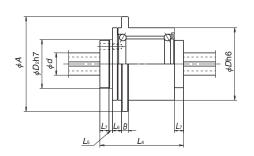
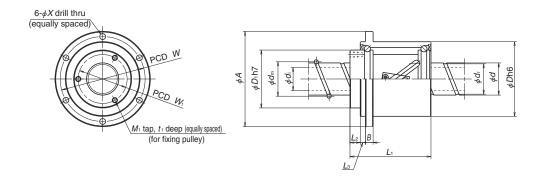


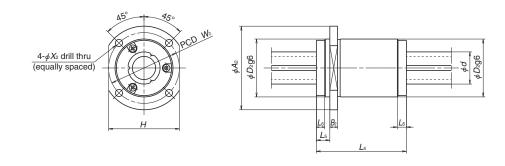

Fig. 5 Example structure of Z axis plus θ axis actuator


7. Structure of reference number


The following explains the codes used in reference numbers:

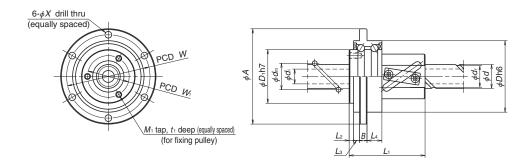

○Reference number for ball screws

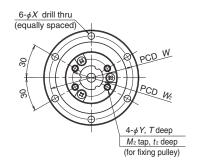

Unit: mm

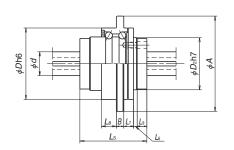

	Shaft	Lead	Ball	Ball	Root	Screw						В	alls	scre	w nut						
Model	dia.		dia.	circle	dia.	shaft bore	Basic load	ratings (N)					[Dim	ensions	3					Moment
No.				dia.		dia.	Dynamic	Static													of inertia
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d,	d_{i}	C _a	$C_{\scriptscriptstyle \mathrm{Oa}}$	D	Α	В	L_1	L_2	L ₃	M_1	t ₁	W_1	D_1	W	Χ	(kg·cm²)
∑ 1610	16	10	0 175	10.75	10.4	(0)	5 610	8 300	48	C4	5	47	7	1	0.144	_	20	٥٦	FC	4 -	0.41
∑ 1632	16	32	3.175	16.75	13.4	(8)	3 600	5 200	48	64	5	52	/	4	3-M4	Ь	28	35	56	4.5	0.44
∑ 2010		10					9 560	17 300				57									0.64
∑ 2020	20	20	3.175	20.75	17.4	(14)	6 100	10 500	54	70	6	63	8	4	3-M4	6	32	40	62	4.5	0.65
∑ 2040		40					4 050	7 020				57									0.64
∑ 2510		10					10 700	22 000				57									1.10
∑ 2520	25	20	3.175	25.75	22.4	(18)	6 860	13 100	58	74	6	63	8	4	3-M4	6	38	45	66	4.5	1.18
∑ 2525	20	25	3.175	25.75	22.4	(10)	6 720	13 300	30	/4	O	72	0	4	3-1014	0	30	45	00	4.5	1.30
∑ 2550		50					4 490	8 270				64									1.20
∑ 3220	32	20	3.175	22.75	20.4	(DE)	7 710	16 900	70	95	8	70	10	6	3-M5	10	44	E-0	00	6.6	2.60
∑ 3232	32	32	3.175	32.75	29.4	(25)	7 590	16 700	70	95	ŏ	91	10	О	3-1015	10	44	53	82	0.0	3.15
∑ 4020	10	20	2 000	41.0	20.0	(20)	11 600	26 500	٥٦	110	0	73	10		4 1 4 5	10		07	00		5.96
∑ 4040	40	40	3.969	41.0	36.9	(30)	11 300	26 200	85	110	8	107	10	6	4-M5	10	58	6/	96	6.6	7.85
∑ 4520	4E	20	2 060	46.0	41.0	(DE)	12 000	30 000		115	0	73	10	6	4 1 4 5	10	62	72	101	66	7.73
∑4540	45	40	3.969	46.0	41.9	(35)	11 800	29 700	90	115	8	107	10	6	4-M5	10	63	12	101	6.6	10.3

	_																					
									Ва	all spl	line r	nut										
Mass	Basic load	ratings (N)	Basic tor	que (N·m)							Dim	nensi	ions							Moment	Mass	
	Dynamic	Static	Dynamic	Static																of inertia		
(kg)	C_{r}	C_{0r}	C_{t}	C_{Ot}	D	Α	В	L ₄	L ₅	L_6	L ₇	Y	T	M_2	t_2	W_2	D_2	W	X	(kg·cm²)	(kg)	M
0.50	5 530	7 270	61.5	91.3	48	64	5	60	2.5	6.5	6.5	4.5	6 5	M4	7	25	35	E6	4.5	0.71	0.63	Wodel
0.55	5 890	8 000	65.5	100	40	04	5	00	2.5	0.5	0.5	4.5	0.5	1014		20	30	50	4.5	0.71	0.03	量
0.74	6 260	8 720	86.3	135																		
0.81	6 610	9 450	91.1	145	54	70	6	65	2.5	6.5	6.5	5.5	6.5	M5	8	30.5	40	62	4.5	1.15	0.87	
0.74	6 610	9 450	91.1	145																		
0.81	6 630	9 450	115	185																		
0.88	7 290	10 900	125	210	58	74	6	70	25	65	65	5.5	65	M5	8	35.5	45	66	4.5	1.88	1.03	
1.00	7 290	10 900	125	210	00	, -		′ ′	2.0	0.0	0.5	0.0	0.5	1010	U	00.0	75		7.5	1.00	1.00	
0.91	7 290	10 900	125	210																		
1.46	7 630	11 600	165	285	70	95	8	75	2.5	7.5	6.5	5.5	65	M5	8	42	50	82	6.6	3.80	1.62	
1.83	7 950	12 400	175	305	70	00	Ü	/ 5	2.0	7.5	0.0	0.0	0.0	1010		72	50	02	0.0	0.00	1.02	
2.02	10 600	14 800	290	455	85	110	8	80	4	7.5	8	5.5	8	M5	8	55	65	96	6.6	9.74	2.38	
2.85	11 200	15 900	305	490	00	110	U	00	7	7.0	0	0.0	0	1010	0	00	00	00	0.0	5.74	2.00	
2.17	11 200	15 900	340	550	90	115	8	85	4	7.5	8	5.5	8	M5	8	60	70	101	6.6	12.5	2.56	
3.06	11 700	17 000	360	590	50	113	J	00		7.5	٥	0.5	٦	1910	J	00	, 0	101	0.0	12.0	2.00	

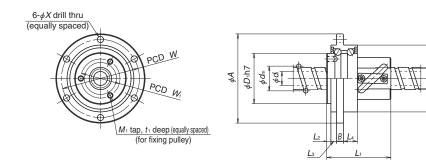
B575 B576

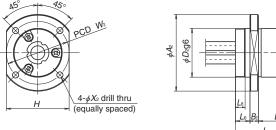

	ıt:	mm	

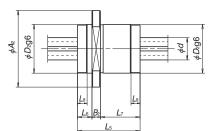

	Shaft	Lead	Ball	Ball	Root	Screw						Ball	scre	w nı	ut					
Model	dia.		dia.	circle	dia.	shaft	Basic load	ratings (N)						Dime	ensions					
No.				dia.		bore dia.	Dynamic	Static												
	d	l	$D_{\rm w}$	d _m	d,	d_{i}	C _a	$C_{\scriptscriptstyle 0a}$	D	Α	В	L ₁	L ₂	L ₃	$M_{\scriptscriptstyle 1}$	t ₁	W_1	D_1	W	Χ
∑ Z 1610	16	10	3.175	16.75	13.4	(8)	5 610	8 300	48	64	5	47	7	4	3-M4	6	28	35	56	4.5
∑ Z1632	10	32	3.175	10.75	13.4	(0)	3 600	5 200	40	04	5	52		4	3-1014	0	20	30	50	4.5
∑ Z2010		10					9 560	17 300				57								
∑ Z2020	20	20	3.175	20.75	17.4	(14)	6 100	10 500	54	70	6	63	8	4	3-M4	6	32	40	62	4.5
∑ Z2040		40					4 050	7 020				57								
∑ Z2510		10					10 700	22 000				57								
∑ Z2520	25	20	3.175	25.75	22.4	(18)	6 860	13 100	58	74	6	63	8	4	3-M4	6	38	45	66	4.5
∑ Z2525	25	25	5.175	20.70	22.4	(10)	6 720	13 300		74	U	72	0	4	0-1014		30	40	00	4.5
∑ Z2550		50					4 490	8 270				64								
∑ Z3220	32	20	3.175	32.75	29.4	(25)	7 710	16 900	70	95	8	70	10	6	3-M5	10	44	53	82	6.6
∑ Z3232	52	32	3.173	32.73	25.4	(23)	7 590	16 700		33		91	10		0-1010	10	44	55	02	0.0
∑ Z4020	40	20	3.969	41.0	36.9	(30)	11 600	26 500	85	110	8	73	10	6	4-M5	10	58	67	96	6.6
Σ Z4040	40	40	3.909	41.0	30.9	(30)	11 300	26 200	00	110	O	107	10	U	4-1010	10	50	07	90	0.0
∑ Z4520	45	20	3.969	46.0	41.9	(35)	12 000	30 000	90	115	8	73	10	6	4-M5	10	63	72	101	6.6
∑ Z 4540	45	40	5.303	40.0	41.9	(33)	11 800	29 700	30	115	O	107	10	U	4-1010	10	03	12	101	0.0


								Ball sp	line nut							
Moment	Mass	Basic load	ratings (N)	Basic tor	que (N·m)				Di	mensio	ns				Mass	
of inertia (kg·cm²)	(kg)	Dynamic C_{r}	Static Cor	Dynamic $C_{\rm t}$	Static Cot	D_2	A_{2}	B_2	L ₄	L ₅	L ₆	Н	W_2	X_2	(kg)	M
0.41	0.50	5 530	7 270	61.5	91.3	35	55	6	60	10.5	6.5	45	4.5	4.5	0.35	3
0.44	0.55	5 890	8 000	65.5	100	35	55	О	60	10.5	0.5	45	4.5	4.5	0.35	Model
0.64	0.74	6 260	8 720	86.5	135											
0.65	0.81	6 610	9 450	91.1	145	40	60	6	65	10.5	6.5	50	50	5.5	0.46	
0.64	0.74	6 610	9 450	91.1	145											
1.10	0.81	6 630	9 450	115	185											
1.18	0.88	7 290	10 900	125	210	45	65	6	70	10.5	6.5	55	55	5.5	0.57	
1.30	1.00	7 290	10 900	125	210	40	00	0	70	10.5	0.5	55	55	0.0	0.57	
1.20	0.91	7 290	10 900	125	210											
2.60	1.46	7 630	11 600	165	285	50	70	6	75	10.5	6.5	60	60	5.5	0.64	
3.15	1.83	7 950	12 400	175	305	50	70	0	75	10.5	0.5	00	00	5.5	0.04	
5.96	2.02	10 600	14 800	290	455	65	88	8	80	12	8	76	76	6.6	1.20	
7.85	2.85	11 200	15 900	305	490	00	00	0	00	12	0	70	70	0.0	1.20	
7.73	2.17	11 200	15 900	340	550	70	93	8	85	12	8	81	81	6.6	1.39	
10.3	3.06	11 700	17 000	360	590	70	93	0	05	12	0	01	01	0.0	1.39	

B577 B578


Unit: mm


	Shaft	Lead	Ball	Ball	Root	Screw							Ball	SCI	ew	nut						
Model	dia.		dia.	circle	dia.	shaft bore	Basic load	ratings (N)						Di	mer	nsions						Moment
No.				dia.		dia.	Dynamic	Static														of inertia
	d	l	$D_{\rm w}$	d _m	d,	d _i	Ca	$C_{\scriptscriptstyle 0a}$	D	Α	В	L ₁	L_2	L ₃	L_4	M_1	t ₁	W_1	D_1	W	Χ	(kg·cm²)
∑C1610	16	10	3.175	16.75	13.4	(8)	5 670	8 300	10	64	5	46	3	4	10	3-M4	6	28	25	56	15	0.40
∑C1632	10	32	3.175	10.75	13.4	(0)	3 600	5 200	40	04	Ü	51	J	4	10	3-1014	U	20	33	50	4.5	0.43
∑C2010		10					9 560	17 300				56										0.63
∑C2020	20	20	3.175	20.75	17.4	(14)	6 100	10 500	54	70	6	63	4	4	10	3-M4	6	32	40	62	4.5	0.65
∑ C2040		40					4 050	7 020				56										0.63
∑C2510		10					10 700	22 000				56										1.04
∑ C2520	25	20	3.175	25.75	22.4	(18)	6 860	13 100	58	74	6	63	4	4	10	3-M4	6	38	15	66	1 5	1.13
∑ C2525	25	25	3.175	25.75	22.4	(10)	6 720	13 300		/4	U	71	4	4	10	3-1014	U	50	45	00	4.5	1.24
∑ C2550		50					4 490	8 270				63										1.13


									E	3all s	pline	e nut											
Mass	Basic load	ratings (N)	Basic tor	que(N·m)							D	imer	nsior	าร							Moment	Mass	
	Dvnamic	Static	Dynamic	Static																	of inertia		
(kg)	C _r	C_{or}	C _t	C_{0t}	D	Α	В	L ₅	L ₆	L ₇	L ₈	L ₉	Y	T	M_2	t_2	W_2	D_2	W	X	(kg·cm²)	(kg)	M
0.41	4.000	F 000	47.0	00.0	40	0.4	_	4.5	۵ -	٥٠	4.0	٥٠	4.5	۵ -		_	٥٦	٥٦		4.5	0.50	0.40	3
0.43	4 300	5 090	47.9	63.9	48	64	5	45	2.5	6.5	10	6.5	4.5	6.5	M4	7	25	35	56	4.5	0.52	0.42	Model
0.53	4 730	5 820	65.1	90.5																			
0.56	5 110	6 540	70.5	100	54	70	6	50	2.5	6.5	10	6.5	5.5	6.5	M5	8	30.5	40	62	4.5	0.86	0.56	
0.53	5 110	6 540	70.5	100																			
0.60	5 130	6 540	87.8	125																			
0.64	5 870	8 000	100	155	58	74	6	55	2.5	6.5	10	6.5	5.5	6 5	M5	8	35.5	45	66	4.5	1.44	0.67	
0.69	5 870	8 000	100	155	58	/4	О	55	2.5	0.5	10	0.5	5.5	0.5	CIVI	Ö	35.5	45	00	4.5	1.44	0.67	
0.64	5 870	8 000	100	155																			

B579 B580

Unit: mm

	Shaft	Lead	Ball	Ball	Root	Screw						Ball	scr	ew	nut						
Model	dia.		dia.	circle	dia.	shaft bore	Basic load	ratings (N)						Di	mer	nsions					
No.				dia.		dia.	Dynamic	Static													
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	$d_{\scriptscriptstyle i}$	C _a	$C_{\scriptscriptstyle \mathrm{Oa}}$	D	Α	В	L_1	L_2	L ₃	L ₄	M_1	t ₁	W_1	D_1	W	X
∑CZ1610	16	10	0 175	16.75	13.4	(0)	5 670	8 300	40	64	5	46	3	4	10	3-M4	6	20	O.E.	EG	4.5
∑CZ1632	10	32	3.175	10.75	13.4	(8)	3 600	5 200	48	04	5	51	3	4	10	3-1014	О	28	35	90	4.5
∑ CZ2010		10					9 560	17 300				56									
∑ CZ2020	20	20	3.175	20.75	17.4	(14)	6 100	10 500	54	70	6	63	4	4	10	3-M4	6	32	40	62	4.5
∑ CZ2040		40					4 050	7 020				56									
∑ CZ2510		10					10 700	22 000				56									
∑ CZ2520	25	20	3.175	25.75	22.4	(18)	6 860	13 100	E0	74	6	63	4	4	10	3-M4	6	20	15	66	4.5
∑ CZ2525	25	25	3.175	25.75	22.4	(18)	6 720	13 300	58	/4	O	71	4	4	10	3-1014	0	38	45	00	4.5
∑ CZ2550		50					4 490	8 270				63									

								Ball	spline	nut							
Moment	Mass	Basic load	ratings (N)	Basic tor	que(N·m)					Dime	nsions					Mass	
of inertia		Dynamic	Static	Dynamic	Static												
(kg·cm²)	(kg)	C_{r}	C_{or}	C_{t}	C_{0t}	D_2	A_2	B_2	L_{5}	L_6	L ₇	L ₈	Н	W_2	X_2	(kg)	M
0.40	0.41	4 000	F 000	47.0	00.0	٥٦		_	4.5	10.5	20.5	٥٦	4.5	4.5	4.5	0.00	Mod
0.43	0.43	4 300	5 090	47.9	63.9	35	55	6	45	10.5	28.5	6.5	45	45	4.5	0.26	del
0.63	0.53	4 730	5 820	65.1	90.5												
0.65	0.56	5 110	6 540	70.5	100	40	60	6	50	10.5	33.5	6.5	50	50	5.5	0.35	
0.63	0.53	5 110	6 540	70.5	100												
1.04	0.60	5 130	6 540	87.8	125												
1.13	0.64	5 870	8 000	100	155	45	65	6	55	10.5	38.5	6.5	55	55	5.5	0.44	
1.24	0.69	5 870	8 000	100	155	45	05	0	55	10.5	38.5	0.5	55	55	5.5	0.44	
1.13	0.64	5 870	8 000	100	155												

B-3-3.11 Balls Screws with the "NSK K1™" Lubrication Unit

1. Features

NSK K1 is a new, efficient lubrication unit. Equipped with NSK K1, ball screws demonstrate superb performance as shown below.

Long-term, maintenance-free usage

In mechanical environments where lubrication is difficult to apply, long-term running efficiency is maintained by using the NSK K1 in combination with grease.

[ex.] For automotive component processing lines, etc.

Does not pollute the environment

A very small volume of grease combined with NSK K1 can provide sufficient lubrication in environments where grease is undesirable as well as in environments where high cleanliness is required.

- [ex.] Food processing equipment, medical equipment, flat panel display/ semiconductor manufacturing equipment, etc.
- Good for environments where lubricant is washed away

When used with grease, life of the machine is prolonged even when the machine is washed entirely by water, or in an environment where the machine is exposed to rain or wind.

[ex.] Food processing equipment, housing/ construction machines, etc.

• Maintains efficiency in dusty environments In environments where oil- and greaseabsorbing dust is produced, long-term efficiency in lubrication and protection from foreign matter entry are maintained by using the NSK K1 in combination with grease.

[ex.] Woodworking machines, etc.

 Comparative duration test of samples with and without NSK K1

Samples, testing conditions, and test results are shown in **Table 1** and **Fig. 1**.

Without lubricant, operation became impossible after running 8.6 km. With NSK K1 alone, it was possible to continue running past 10 000 km.

NSK conducts various tests under different conditions. Please consult NSK for details.

Table 1 Sample and testing conditions

Ball screw	Shaft dia. 20 mm, lead 20 mm
Lubrication	Comparison with only NSK K1 against no lubrication
Speed	4 000 min ⁻¹ (80 m/min)
Stroke	600 mm

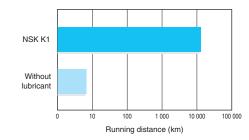


Fig. 1 Duration test results of ball screws without lubricant

2. Specifications

(1) Structure

The structure makes it possible to have stable contact between the NSK K1 and outside a ball screw with moderate force by a garter spring which fits outside the NSK K1.

NSK K1 is installed between the ball screw nut and the labyrinth seal. The overall nut length is slightly longer than that of standard ball screws. Combinations of NSK standard grease (factory-

Combinations of NSK standard grease (factorypacked in the nut) and NSK K1 are standard specifications.

Fig. 2 NSK K1

(2) Accuracy grade and axial play

Accuracy grades, clearance and preload specifications remain unchanged from existing products. There is a slight increase in torque due to the equipped NSK K1.

(3) Overall nut length equipped with NSK K1™

The nut length becomes longer than that of standard ball screws. The nut length equipped with K1 is shown in pages B585 to B588 for each type of ball recirculation. NSK K1 can be installed on other types not listed in the dimension tables. Please consult with NSK if you require K1 for a special ball nut.

(4) Application examples

Ball screws equipped with NSK K1 are maintenance-free for a long period. Its application is expanding in various industries.

Semiconductor/flat panel display manufacturing equipment Industrial robot

Wood working machines

Machine tools

Automobile manufacturing machines

3. Precautions for use

Temperature range for use: Maximum temperature: 50°C

Momentary maximum
temperature: 80°C

Chemicals that should not contact K1:

Do not leave NSK K1 in organic solvents, white kerosene such as hexane, thinners which remove oil, and rust preventive oils which contain white kerosene.

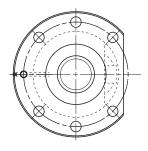
Note: Water-type cutting oil, oil-type cutting oil, grease such as mineral-type AS2 and ester-type PS2 do not damage K1.

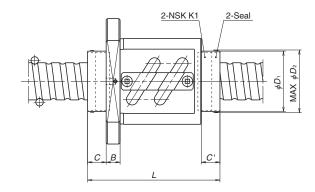
Note: NSK K1 is not applicable to the Compact FA model.

4. Example reference number

The following explains the codes used in reference numbers:

Note: "K1" is added at the end of the nut code and provisional Ref. No.


♦ Reference number for ball screws equipped with NSK K1


W1401 -** P K1 - C3 Z10

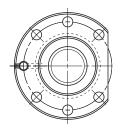
NSK K1 equipped ball screw code

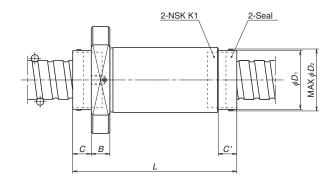
B583 B584

(1) Tube recirculation

Tube recirculation

Model No.	Screw shaft dia.	Lead		ounting nsions	Flange width	Overall length with	· ·	dimensions								
Model No.		_		1		K1	Cap dia.	Protrusion								
	d	l	С	C'	В	L	φ D₁	dimension ϕD_2								
PFT1004-2.5	10	4	14	15	10	61.5	φ 22	MAX φ 24								
PFT1205-2.5	12	5	14	15	10	66	φ 26.5	MAX φ 29								
LPFT1210-2.5	12	10	14	17	10	79	φ 20.5	ΙνίΑλ φ 29								
PFT1405-2.5	14	5	14	15	10	65	ø 30	MAX φ 32								
LPFT1510-2.5	15	10	14	15	10	76	φ30	MAX φ 32								
PFT1605-2.5	16	5	14	15	10	67	φ32	MAX φ 34								
PFT2005-5		5				81										
LPFT2010-2.5	20	10	14	14	10	78	φ38	MAX φ 40								
LPFT2020-1.5		20				84										
ZFT2505-10		5	16	17	10	115	φ 44	MAX φ 46								
PFT2506-5		6	16	17	12	93	φ 44	MAX φ 46								
PFT2510-2.5	25	10	10	17	10	89		NANY 4 40								
ZFT2510-3	25	10	16	17	12	103	φ 44	MAX φ 46								
LPFT2520-2.5	1	20	12	12	12	109	φ38	MAX φ 40								
LPFT2525-1.5]	25	12	12	12	98	φ38	MAX φ 40								
DFT2805-5		5				137	,	,								
PFT2810-2.5	28	4.0	16	17	12	90	φ48	MAX φ 50								
DFT2810-3		10				174	,	,								
PFT3206-5		_	10	17		93	, 50	NAN (FA								
ZFT3206-10		6	16	17		129	φ 52	MAX φ 54								
PFT3210-5	1			17		122										
ZFT3210-5		10	16	17		122	φ 52	MAX φ 54								
DFT3210-5	32			16	12	212		,								
PFT3212-3		10	10	17		114	, 50	NANY (E4								
DFT3212-3		12	16	16		198	φ 52	MAX φ 54								
LPFT3225-2.5			-		-	1	-	-	-	-	25	12	12		122	φ 46
LPFT3232-1.5	1	32	12	12	1	109	φ46	MAX ø 48								

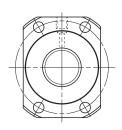

Notes:	1 NSK K1	can be installed in	other types no	nt listed in the table	Please consult NSK.

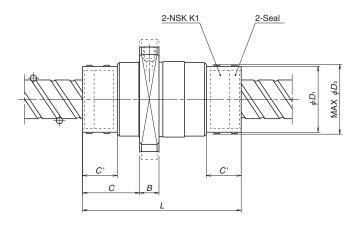

^{2.} C,C', and L refer to dimensions when one NSK K1 is equipped to both ends of the nut.

	Screw	Lead	K1 mc	unting	Flange	Overall	K1 cap c	limensions	耍	
Model No.	shaft dia.	Load	dimer	nsions	width	length with	Cap dia.	Protrusion	틍	
	d	1	С	C'	В	K1	ϕD_1	dimension ϕD_2	Equipped with NSK K1TM	
PFT3610-5			Ū	20		131	, ,		٤	
DFT3610-5		10	4.0	19	4.5	221	. = 0	1440/ 150	∰	
HZF3616-5	36	16	19	19	15	163	φ 56	MAX φ 58	S	
HZF3620-3.5		20		19		146			Ê	
PFT4008-5		8	19	20		117	φ 62	MAX φ 64		
ZFT4008-10			10			165	,	1017-01-40-4	_	
ZFT4010-7		10	19	20		152	φ 62	MAX φ 64		
DFT4010-5		10	10	19		222	φ 61	1017-01-40-4		
PFT4012-5	40	12	19	20	16	144	φ 62	MAX φ 64		
DFT4012-5	1 10			19	1 '	252	φ 61	,	_	
HZF4016-5		16	19	19	-	164	φ 61	MAX φ 64	-	
HZF4020-5		20	19	19	1	189	ø 61	MAX φ 64	_	
LPFT4032-2.5		32	14	14		151	φ 54	MAX ø 56	_	
LPFT4040-1.5		40	14	14		133	φ 54	MAX ø 56		
DFT4510-5		10			16	222				
DFT4512-5	45	12	19	19	16	254	φ 72	MAX φ 75		
HZF4520-5		20			18	190				
ZFT5010-10		10		20	-	194				
DFT5012-5	-	12		19	-	256				
ZFT5016-5	50	16	19	20	18	172	φ73	MAX φ 76		
DFT5016-5				19		300	7.5			
HZF5020-5	-	20		19	-	192				
HZF5025-5		25		19		221				
DFT5516-5		16				178		MAX φ 87		
HZF5520-5	55	20	22	22	18	198	φ 81	MAX φ 81		
HZF5525-5		25				227		MAX ø 81		
DFT6316-5	63	16	22	22	18	322	φ 89	MAX φ 95		
DFT6320-5		20			.0	362	φ 89	ετφοσ		

B585 B586

(2) Deflector (bridge) recirculation




Deflector (bridge) recirculation

	Screw shaft dia.	Lead		unting	Flange width	Overall length with	K1 cap d	limensions	
Model No.	d d	l	dimer C	nsions <i>C'</i>	В	K1 L	Cap dia. ∳ D₁	Protrusion dimension ϕD_2	
ZFD2005-6	20	5	9	9	12	87	φ32	MAX φ 34	
ZFD2506-6	٥٦	6	10	_	10	102	, 20	NAAV 440	
ZFD2510-4	25	10	12	12	12	106	φ 38	MAX ø 40	
ZFD3208-8		8				136			
ZFD3210-6	32	10	12	12	12	138	φ 46	MAX φ 48	
ZFD3212-6		12				153			
ZFD4010-8	40	10	1.4	1.4	16	167	, = 4	NANY 4 57	
ZFD4012-8	40	12	14	14	16	189	φ 54	MAX φ 57	
ZFD5010-8	F0	10	1.4	1.4	10	169	1.04	NAAV 4 07	
ZFD5012-6	50	12	14	14	18	167	φ 64	MAX φ 67	

Notes: 1. NSK K1 can be installed in other types not listed in the table. Please consult NSK.

(3) End cap recirculation

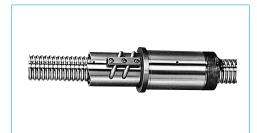
End cap recirculation

Model No.	Screw shaft dia.	Lead	K1 mo	ounting	Flange width	Overall length with	K1 cap dimensions			
Wiodel No.	d	l	С	C'	В	K1 <i>L</i>	Cap dia. <i>∳</i> D₁	Protrusion dimension ϕD_2		
UPFC1520-1.5	15	20	29	18	10	81	φ 30	MAX φ 32		
LPFC1616-3	16	16	28	18	10	74	φ 28	MAX ø 30		
LPFC2020-3	20	20	29.5	18	10	82	φ 34	MAX ø 36		
UPFC2040-1	20	40	29	10	10	77	φ32	MAX φ 34		
LPFC2525-3	25	25	0.4	21	12	97		NANY 4 40		
UPFC2550-1	25	50	34	21	12	92	φ 44	MAX φ 46		
LPFC3232-3	32	32	37	21	12	112	, 50	NAN/ 154		
UPFC3264-1	32	64	36.5	21	12	104	φ 52	MAX φ 54		
LPFC4040-3	40	40	43.5	24	15	133	φ 62	MAX ø 65		
LPFC5050-3	50	50	45.5	24	20	155	φ74	MAX φ 77		

Notes: 1. NSK K1 can be installed in other types not listed in the table. Please consult NSK.

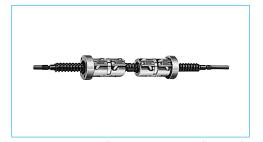
B587 B588

^{2.} C, C', and L refer to dimensions when one NSK K1 is equipped to both ends of the nut.


^{2.} C,C' and L are the dimensions when one NSK K1 is equipped to both ends of the nut.

B-3-3.12 Special Ball Screws

In addition to standard ball screws, NSK manufactures various types of ball screws in special shapes as shown below.

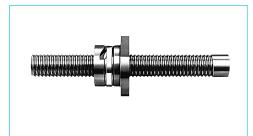

Nut with gear

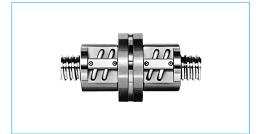
Lightly preloaded single nut with bearing seat

Nut with trunion

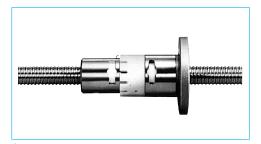
Double nut with right and left turn thread on each side of screw shaft

Thoroughly consult with NSK before determining specifications and ordering ball screws with special shapes.


Double nut with flat mounting surface


Lightly preloaded single nut with flat mounting surface

Hollow shaft, lightly preloaded single nut, with large shaft diameter and fine lead


Ceramic ball screw

Flange to flange ball nut

Cylindrical double nut

Spring preloaded ball screw

Ball screw for aircraft

Ball screw for nuclear power plants

Right and left hand thread on each side of screw

B589 B590

C-1 Monocarrier™

2. 3.	Features Classification and Model Accessories Selection of Monocarrier 4.1. Selection Procedures 4.2. Rigidity 4.3. Maximum Speed 4.4. Accuracy Grade 4.5. Stroke and Ball Screw Lead 4.6. Basic Load Ratings	C7 C9 C10 C10 C10 C11 C15 C15
	4.7. Estimation of Life Expectancy	
_	4.8. Example Life Estimation	
b.	MCM Model	
	5.1. MCM Model Reference Number Coding	
	5.2. MCM Model Dimension Tab	
	for Standard Products	
	5.3. MCM Model Accessories ···	
6.	MCH Model ·····	
	6.1 MCH Model Reference Number Coding · · ·	
	6.2 MCH Model Dimension Table	es
	for Standard Products	C76
	6.3 MCH Model Accessories	C83

C-2 Toughcarrier™

2. 3.	Features	
	Accuracy Grade C100	
	4.4 Maximum Speed C101	
	4.5 Rigidity C103	
	4.6 Basic Load Rating C104	
	4.7 Estimation of Life Expectancy · C105	
	4.8 Example Life Estimation · · · · C107	
5.	TCH Model Dimension Tables for	
	Standard Products C111	
	5.1 TCH06 Model C111	
	5.2 TCH09 Model C113	
_	5.3 TCH10 Model C115	
э.	Accessories C117	
	6.1 Sensor Unit	
	6.3 Motor Bracket C116	
7	Motor Bracket Compatibility ··· C130	
	Sensor Rail and Top Cover Unit	
٠.	Compatibility	

C-3 Technical Materials

1.	Sensor Specifications	
	1.1 Proximity Switch	C137
	1.2 Photo Sensor ·····	C138
2.	Characteristics and Evaluation	
	Methods ·····	C139
	2.1 Positioning Accuracy	C139
	2.2 Repeatability	C139
	2.3 Running Parallelism	
3.	Special Specifications	C140
4.	Maintenance ······	C141
	4.1 Maintenance Method	C141
	4.2 NSK K1™ Lubricant Unit ····	C141
5.	NSK Clean Grease LG2 Specification	C142

BLOCK

9. Toughcarrier High-Thrust Model ·· C134

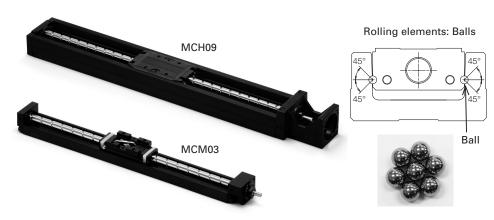
Monocarrier TM

Toughcarrier™

C3-C92

C93 -C134

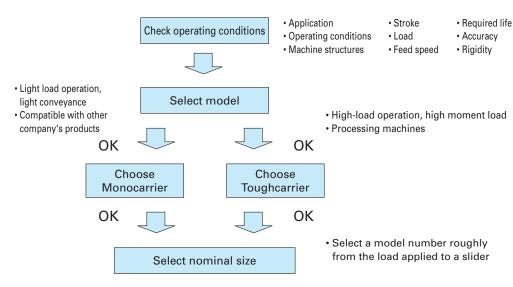
C135 -C142

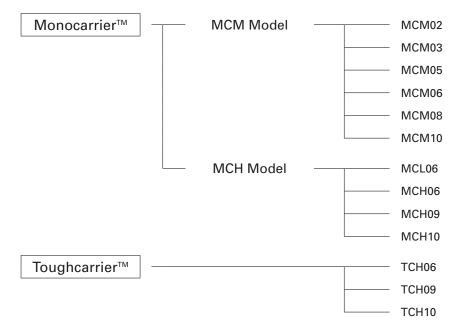

NSK

Monocarrier[™], Toughcarrier[™]

All-in-one structure (integrated ball screw, linear guide and base) results in a light and compact actuator without extra work for design or adjustment when installing. Design and assembly loads can be reduced by unit type. Also, the many variations make it possible to deal with many different uses.

Monocarrier[™] and Toughcarrier[™] Classifications




■Toughcarrier™: High load capacity

Selecting Monocarrier™ and Toughcarrier™ Actuators

Monocarrier[™] and Toughcarrier[™] Composition

NSK

C-1 Monocarrier[™]

1 Features	C 5
2 Classification and Model	C7
3 Accessories	C9
4 Selection of Monocarrier	C10
4.1 Selection Procedures	C10
4.2 Rigidity	C10
4.3 Maximum Speed	C11
4.4 Accuracy Grade	C15
4.5 Stroke and Ball Screw Lead	C15
4.6 Basic Load Ratings	C17
4.7 Estimation of Life Expectancy	C 19
4.8 Example Life Estimation	C21
5 MCM Model	C25
5.1 MCM Model Reference Number	
Coding	C27
5.2 MCM Model Dimension Tables for	
Standard Products	C28
5.3 MCM Model Accessories	C 49
6 MCH Model	C7 3
6.1 MCH Model Reference Number Coding	C 75
6.2 MCH Model Dimension Tables for	
Standard Products	C 76
6.3 MCH Model Accessories	C83

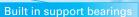
C-1 Monocarrier™

C3 C4

C-1 Monocarrier™

C-1-1 Features

NSK's Monocarrier is the culmination of technology and innovation in linear motion. This lightweight, compact single axis linear actuator integrates quality NSK ball screw, linear guide and support bearings into one unit.

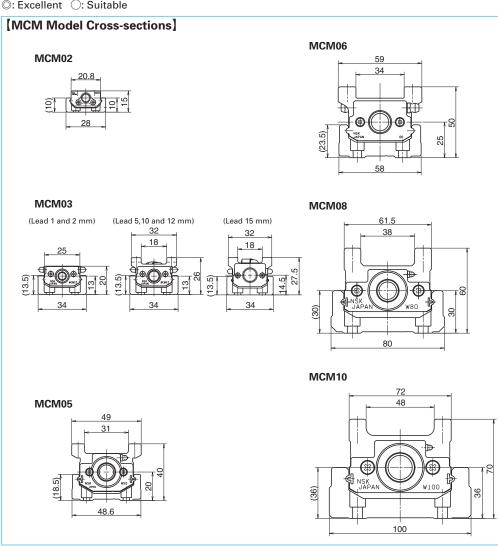

Light weight, compact design

OAvailable in two different shapes of cross-section, depending on application.

Light weight type: MCM Series Rigid type: MCH Series

All -in-one structure

- OThe all-in-one structure integrates a ball screw, a linear guide and support bearings into a single unit to significantly reduce design and installation time.
- OMultiple datum planes, the bottom and a lateral side of the rail, facilitate highly accurate installation.
- Olmmediate operation after installation and run-in is possible.
- OA wide selection of fine to high helix leads are available.



C-1-2 Classification and Models

Table 2.1

	Light Weight	Beam Rigidity	Moment Rigidity
MCM Model	0	0	0
MCH Model	0	0	0

©: Excellent ○: Suitable

Accuracy	Long Stroke	Size Variation
©	0	0
©	0	0

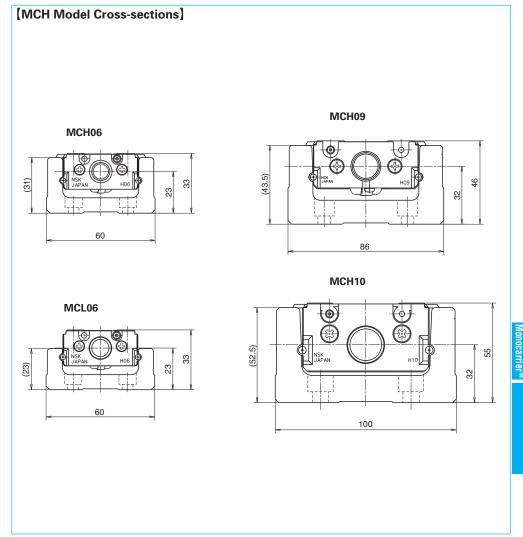


Fig. 2.1 Fig. 2.2

C-1-3 Accessories

MCM Model

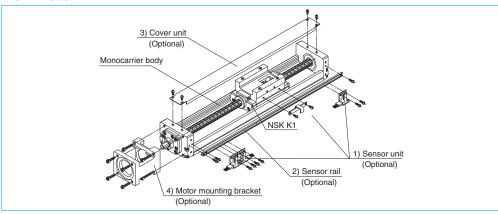


Fig. 3.1 Assembly: Accessories for MCM10 (example)

- 1) Sensor unit: Sensors, sensor mounting parts and a sensor dog are available in a set.
 - * When a sensor unit is used, the full cover unit cannot be used.
- 2) Sensor rail: Rail for sensor mounting is available.
- 3) Cover unit: Top cover or full cover (included top cover and side cover) is available.
- 4) Motor bracket for motor mounting: Available for a variety of models.

Note: We assemble accessories upon request.

MCH Model

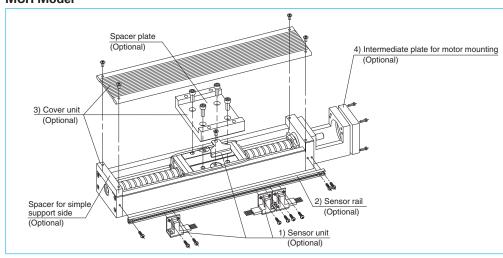


Fig. 3.2 Assembly: Accessories for MCH10 (example)

- 1) Sensor unit: Sensors, sensor mounting parts and a sensor dog are available in a set.
- 2) Sensor rail: Rail for sensor mounting is available.
- 3) Cover unit: Top cover (included spacer plate and spacer for simple support side) is available.
- 4) Intermediate plate for motor mounting: Available for a variety of models.

Note: We assemble accessories upon request.

C-1-4 Selection of Monocarrier C-1-4. 1 Selection Procedures

Select a model of Monocarrier based on stroke and rigidity (refer to **Figs. 4.2**, and **4.3**).

Select a ball screw lead referring to "C-1-4.3 Maximum Speed" so that the rotational speed does not exceed the limit.

Study the loads to be applied to the linear guide and obtain the equivalent load (Fe) substituting them for equation (1) or (2) on page C19. Obtain the mean effective load (Fm) substituting them for equation 3) on page C20, then calculate the life.

Study the loads to be applied to the ball screw and support unit. Obtain the mean effective load (Fm) substituting them for equation 3) on page C20, then calculate the life.

C-1-4. 2 Rigidity

Rigidity of rail

Selection

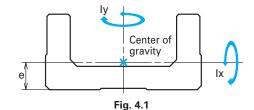


Table 4.1 Rigidity of rail

Model No.	Geometrical mo	oment of inertia (mm ⁴)	Center of gravity (mm)	Mass (kg/ 100 mm)		
	lx	ly	е	W		
MCM02	0.097	1.32	3.3	0.11		
MCM03	0.30	3.3	4.5	0.18		
MCM05	0.78	11.4	6.0	0.31		
MCM06	2.14	26.1	7.0	0.57		
MCM08	5.90	81.0	9.2	0.88		
MCM10	15.6	219	12.2	1.52		
MCL06	2.58	29.6	7.8	0.56		
MCH06	6.5	38.2	10.8	0.67		
MCH09	28.7	172	15.5	1.48		
MCH10	54.0	307	18	1.93		

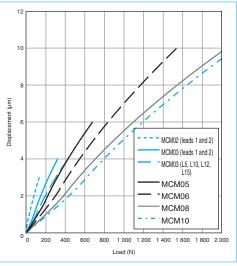


Fig. 4.2 MCM Model rigidity in radial direction

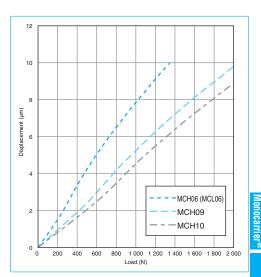


Fig. 4.3 MCH Model rigidity in radial direction

C-1-4. 3 Maximum Speed

(1) Maximum Speed of MCM Model

Maximum speed of a Monocarrier actuator is determined by critical speed of ball screw shaft and d • n value.

Do not exceed maximum speeds in the table below.

Table 4.2

	Ball screw lead	Stroke (mm)	Rail length L ₂ (mm)	Maximum speed (mm/s)				
		50	100					
	1	100	150	50				
MCM02		150	200	1				
Single slider		50	100					
Siluei	2	100	150	100				
		150	200	100				
		50	115					
	1	100	190	50				
MCM03 Single slider				. 50				
		150	240					
		50	115					
	2	100	190	100				
		150	240					
	5	50 to	140 to	410				
slider		250	340					
	10	50 to	140 to	830				
		250	340					
	12	50 to	140 to	1 000				
		250	340					
	15	50 to	140 to 340	1 250				
		250 50	340 180					
		to 400	to 530	410				
	5	500	630	370				
		600	730	270				
		50	180	270				
		to	to	830				
	10	400 500	530 630	750				
MCM05		600	730	540				
Single		50	180	540				
slider		to	to 530	1 660				
	20	400 500	1 470					
		600	630 730	1 070				
		50	180	1 070				
		to	to	2 500				
	30	400	530	2 160				
		500 630						
		600 60	730 280	1 570				
	10	to	to	830				
MCM05	10	410	630	710				
Double		510 60	730 280	/10				
slider	20	to	to	1 660				
	20	410	630	1.460				
		510	730	1 460				

	Ball screw lead	Stroke (mm)	Rail length L ₂ (mm)	Maximum speed (mm/s)
		50 to 500	190 to 640	410
	5	600	740	330
		700	840	250
		800	940	190
MCM06		50 to 500	190 to 640	830
Single	10	600	740	650
slider		700	840	500
		800	940	390
		50 to 500	190 to 640	1 660
	20	600	740	1 300
		700	840	990
		800	940	780
	5	110 to 410	340 to 640	410
		110 to 510	190 to 640	830
MCM06	10	610	740	660
Double slider		710	840	500
Jiluoi		210 to 510	440 to 640	1 660
	20	610	740	1 310
		710	940	1 000

Notes: 1) Please consult NSK before operating Monocarrier actuators near maximum speed.

- 2) Maximum rotational speed is (5000 min-1). (For leads 5,10,12,15,20 & 30)
- 3) Refer to the above table for maximum speed for each stroke.

	Ball screw lead	Stroke (mm)	Rail length L ₂ (mm)	Maximum speed (mm/s)
		50 to 500	220 to 670	410
	5	600	770	speed (mm/s)
		700	870	250
		800	970	190
		50 to 500	220 to 670	830
	10	600	770	640
MCM08		700	870	490
Single		800	970	380
slider		50 to 500	220 to 670	1 660
	20	600	770	1 280
		700	870	980
		800	970	770
		400	570	2 500
	30	500	670	2 480
	30	600	770	1 830
		700	870	1 400
		80 to 380	370 to 670	830
	10	480	770	810
		580	870	630
MCM08 Double		680	970	500
slider		180 to 380	470 to 670	1 660
	20	480	770	1 640
		580	870	1 270
		680	970	1 010

	Ball screw lead	Stroke (mm)	Rail length L ₂ (mm)	Maximum speed (mm/s)		
		50 to 600	280 to 780	830		
	l [700	880	660		
	10	800	980	520		
		900	1 080	420		
		1 000	1 180	340		
MCM10		50 to 600	280 to 780	1 660		
Single		700	880	1 310		
slider	20	800	980	1 030		
		900	1 080	840		
		1 000	1 180	690		
		500	680	2 500		
		600	780	2 430		
	30	700	880	1 870		
	i i	800	980	1 480		
	10	70 to 570	380 to 880	830		
	10	670	980	660		
MCM10		870	1 180	450		
Double slider	20	170 to 570	480 to 880	1 660		
	20	670	980	1 340		
		870	1 180	910		

Notes: 1) Please consult NSK before operating Monocarrier actuators near maximum speed.

- 2) Maximum rotational speed is (5000 min⁻¹). (For leads 5,10,12,15,20 & 30)
- 3) Refer to the above table for maximum speed for each stroke.

C11 C12

(2) Maximum Speed of MCH Model

Maximum speed of a Monocarrier actuator is determined by critical speed of ball screw shaft and d • n value.

Do not exceed maximum speeds in the table below.

Table 4.3

	Ball screw lead	Stroke (mm)	Rail length L ₂ (mm)	Maximum speed (mm/s)
MCH06 MCL06 Single slider MCH06 Double slider	5	410		
MCL06	10	50 to 500	150 to 600	830
slider	20	50 to 400	150 to 500	1 660
Single slider MCH06 Double		500	600	1 610
MCH06	5	100 to 300	300 to 500	410
Double	10	100 to 400	300 to 600	830
	20	400	600	1 660
		100 to 500	240 to 640	410
	5	600	740	360
	1	700	840	270
	1	800	940	210
MCLIOO		100 to 500	240 to 640	830
	10	600	740	710
slider		700	840	530
	1	800	940	410
		100 to 500	240 to 640	1 660
	20	600	740	1 410
	i i	700	840	1 060
		800	940	830
	5	150 to 350	440 to 640	410
MCH09 Double	10	150 to 450	440 to 740	830
slider		650	940	530
		450	740	1 660
	20	650	940	1 080

	Ball screw lead	Stroke (mm)	Rail length L ₂ (mm)	Maximum speed (mm/s)	
		50 to 600	280 to 780	830	
		700	880	670	
		800	980	530	
	10	900	1 080	420	
		1 000	1 180	350	
		1 100	1 280	290	
MCH10		1 200	1 380	250	
Single slider		50 to 600	280 to 780	1 660	
		700 880		1 330	
	20	800	980	1 050	
	20	900	1 080	840	
		1 000	1 180	700	
		1 100	1 280	580	
		1 200	1 380	490	
	10	250 to 550	580 to 880	830	
		650	980	660	
MCH10		250 to 550	580 to 880	1 660	
Double slider		650	980	1 340	
Siluei	20	750	1 080	1 100	
		850	1 180	910	
		950	1 280	760	
		1 050	1 380	630	

Notes: 1) Please consult NSK before operating Monocarrier actuators near maximum speed.

- 2) Maximum rotational speed is (5000 min⁻¹). (For leads 5,10,12,15,20 & 30)
- 3) Refer to the above table for maximum speed for each stroke.

NSK

C-1-4. 4 Accuracy Grade

The accuracy grade of Monocarrier standard models is high grade (H), except for MCM02 and MCM03 with 1 or 2 mm leads.

When you require strokes longer than 1 200 mm, please consult NSK about the accuracy grade.

Table 4.4							Unit : µm
Accuracy		High grade (H)			Precis	ion (P)	
Stroke (mm)	Repeatability	Running Parallelism (vertical)	Backlash	Repeatability	Positioning accuracy	Running Parallelism (vertical)	Backlash
to 200		14			20	8	
to 400		16			25	10	
to 600	±10	20	20 or less	±3	30	12	3 or less
to 700		23			30	15	
to 1 000		23			35	15	
to 1 200		30			40	20	

C-1-4. 5 Stroke and Ball Screw Lead

(1) MCM Model Standard Combinations of Stroke and Ball Screw Lead

Table 4.5 Single slider

																				Ur	it:	mm
Model No.	MCI	V102			MCI	M03				MC	M05	,	М	CM	06		MCI	M08	3	М	CM	10
Lead	1	2	1	2	5	10	12	15	5	10	20	30	5	10	20	5	10	20	30	10	20	30
50	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1					
100	1	/	1	1	1	1	1	1	1	1	1		1	1	/	1	1	1		1	1	
150	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1		1	1	
200					1	1	1	1	1	1	1		1	1	✓	1	1	1		1	1	
250					1	1	1	1	1	1	1		1	1	1	1	1	1		1	1	
300									1	1	1	1	1	1	1	1	1	1		1	1	
400									1	1	1	1	1	1	1	1	1	1	1	1	1	
500									1	1	1	1	1	1	1	1	1	1	1	1	1	1
600									1	1	1	1	1	1	1	1	1	1	1	1	1	1
700													1	1	1	1	1	1	1	1	1	1
800													1	1	1	1	1	1		1	1	1
900																				1	1	
1 000																				1	1	

Table 4.6 Double slider

Table	lable 4.6 Double slider										
							U	nit :	mm		
Model No.	MCI	V105	N	ICM(06	MCM08 MCM1			M10		
Lead	10	20	5	10	20	10	20	10	20		
Stroke	10	20	5	10	20	10	20	10	20		
60	1										
70								1			
80						1					
110	1		1	1							
160	1										
_170								1	1		
180						1	1				
210	1	/	1	/	/						
270								1	1		
280						1	/				
310	1	/	1	1	1						
370								1	1		
380						1	1				
410	1	/	1	/	/						
470								1	1		
480						/	/				
510	1	/		1	1						
570								1	1		
580						1	1				
610				1	1						
670								1	1		
680						/	/				
710				1	1						
870								/	1		

Note: Please consult NSK about double sliders for MCM02 and MCM03.

(2) MCH Model Standard Combinations of Stroke and Ball Screw Lead

Table 4.7 Single slider

							Uni	t:mm	
Model No.	1	MCH06		1	MCH09			MCH10	
Lead Stroke	5	10	20	5	10	20	10	20	
50	1	1	1						
100	1	1	1	1	1	1	1	1	
200	1	1	1	1	1	1	1	1	
300	1	1	1	1	1	1	1	1	
400	1	1	1	1	1	1	1	1	
500	1	1	1	1	1	1	1	1	
600				1	1	1	1	1	
700				1	1	1	1	1	
800				1	1	1	1	1	
900							1	1	
1 000							1	1	
1 100							1	1	
1 200							1	1	

Table 4.8 Double slider

Unit : mm										
Model No.	N	MCH06			MCH09			MCH10		
Lead Stroke	5	10	20	5	10	20	10	20		
100	1	1								
150				1	1					
200	1	1								
250				1	1		1	1		
300	1	1								
350				1	1		1	1		
400		1	1							
450					1	1	1	1		
550							1	1		
650					1	1	1	1		
750								1		
850								1		
950								1		
1 050								1		

Table 4.9 Limitations

		Lead	Slider	Stroke
	Model No.	(mm)		(mm)
	MCM02	1,2	Single	150
	MCM03	1,2	Single	150
MCM model	IVICIVIUS	5,10,12,15	Single	350
	MCM05	5,10,20,30*	Single	900
	IVICIVIUS	3,10,20,30"	Double	810
	MCM06	5,10,20	Single	1 000
	IVICIVIOO	5,10,20	Double	910
	MCM08	5.10.20.30*	Single	1 000
	IVICIVIUS	5,10,20,30"	Double	880
	MCM10	10,20,30*	Single	1 750
	IVICIVITO	10,20,30	Double	1 600
	MCH06	5,10,20	Single	600
	IVICHUO	5,10,20	Double	500
	MCH09	E 10 20	Single	1 000
MCH model	IVICHU9	5,10,20	Double	850
	MCH10	10,20	Single	1 750
	IVICHIU	10,20	Double	1 600
	MCL06	5,10,20	Single	500

^{*)} Applicable only to single slider

ıocarrier™

C16

N)N

C-1-4. 6 Basic Load Rating

(1) MCM Model Basic Load Ratings

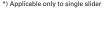
Table 4.10 Basic Load Ratings

	Lead	Shaft dia	Basi		oad ratings (Basic static loa	d ratings (N)	Support unit
Model No.	(mm)	<i>d</i> (mm)	Ball screw C_a	Linear guide C	Support unit C_a	Rated running distance $L_{ m a}({ m km})$	Ball screw C_{0a}	Linear guide C_0	Limit load (N)
MCM02	1	φ6	405(High grade) 480(Precision)	4 910	615	1	555(High grade) 615(Precision)	2 120	490
IVICIVIUZ	2	φθ	400(High grade) 475(Precision)	3 900	615	2	555(High grade) 610(Precision)	2 120	430
	1	φ6	870	10 900		1	1 230	4 900	
	2	φυ	865	8 650		2	1 220	4 900	
MCM03	5		2 090	7 850	2 670	5	2 830		1 040
IVICIVIUS	10	φ8	1 310	6 250	2 670	10	1 710	6 620	1 040
	12		1 320	5 880		12	1 730	0 020	
	15	φ 10	2 000	5 440		15	2 740		
	5		4 390	15 600		5	6 260		
MCM05	10	φ 12	2 740	12 400	4 400	10	3 820	10 900	1 450
IVICIVIUS	20	φιΖ	2 660	9 850		20	3 800	10 900	
	30		3 300	8 600	6 550	30	5 390		2 730
	5		8 300	25 200		5	12 700		
MCM06	10	<i>φ</i> 15	8 140	20 000	6 550	10	12 800	17 000	2 730
	20		5 080	15 900		20	7 460		
	5		8 300	30 800		5	12 700		
MCM08	10	φ 15	8 140	24 400	7 100	10	12 800	22 800	3 040
IVICIVIUO	20	φιο	5 080	19 400	7 100	20	7 460	22 000	3 040
	30		5 500	16 930		30	8 580		
	10		12 800	33 500		10	21 400		
MCM10	20	$\phi 20$	8 190	26 600	7 600	20	12 600	29 400	3 380
	30		13 200	23 200		30	22 900		

Notes: Basic dynamic and static load ratings indicate values for one slider. Basic load ratings for the linear guide are loads perpendicular to the axis that allow 90% of a group of the same Monocarriers to operate to the rated running distance in the table, that is equivalent to 1 million revolutions of ball screw and support unit under the same conditions without causing flaking by rolling contact fatigue. Basic dynamic load ratings for the ball screw are axial loads that allow 90% of ball screws of a group of the same Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue.

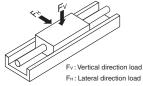
Basic dynamic load ratings for the support unit are constant axial loads that allow 90% of support units of the same group of Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue. Basic static load ratings are loads that result in combined permanent deformations at the contact point between a ball and the ball groove to 0.01% of the ball diameter.

Table 4.11 Basic static moment loads of linear guide


Model No.	Lead	Slider	Basic static moments (N · m)				
Model No.	(mm)	Silder	Rolling Mro	Pitching M _{PO}	Yawing Myo		
MCM02	1, 2		24	8	8		
MCM03	1, 2	Single	68	28	28		
WICIVIOS	5, 10, 12 ,15		92	51	51		
MCM05	5, 10, 20, 30*	Single	229	89	89		
WICIVIOS	3, 10, 20, 30	Double	455	765	765		
MCM06	5, 10, 20	Single	415	174	174		
IVICIVIOO	3, 10, 20	Double	825	1 220	1 220		
MCM08	5, 10, 20, 30*	Single	770	300	300		
IVICIVIOO	3, 10, 20, 30	Double	1 540	2 050	2 050		
MCM10	10, 20, 30*	Single	1 170	425	425		
IVICIVITO	10, 20, 30	Double	2 340	2 940	2 940		

Notes:

Basic static moments for double sliders are values when two sliders equipped with NSK K1 are butted against each other


Basic static moments are values when the rolling contact pressure of balls exceeds 4 000 N/mm².

If support for extremely heavy loads is required, please consult NSK for estimation of fatigue life.

My: Yawing moment

(2) MCH Model Basic Load Ratings

Table 4.12 Basic Load Ratings

	Lead	Shaft dia	Bas	sic dynamic	load ratings	(N)	Basic static lo	ad ratings (N)	Support unit Limit load
Model No.	l	d	Ball screw	Linear guide	Support unit	Rated running distance	Ball screw	Linear guide	
	(mm)	(mm)	Ca	C^{-}	C_{a}	$L_a(km)$	C_{0a}	C_0	(N)
MCH06	5		4 390	22 800		5	6 260		
(MCL06)	10	φ 12	2 740	18 100	4 400	10	3 820	16 300	1 450
(IVICEOD)	20]	2 660	14 400		20	3 800		
	5		8 300	40 600		5	12 700		
MCH09	10	φ 15	8 140	32 200	7 100	10	12 800	30 500	3 040
	20]	5 080	25 500		20	7 460		
MCH10	10	<i>φ</i> 20	12 800	44 600	7 600	10	21 400	42 000	3 380
IVICHIU	20	φ20	8 190	35 400	/ 600	20	12 600	42 000	3 300

Notes: Basic dynamic and static load ratings indicate values for one stider. Basic load ratings for the linear guide are loads perpendicular to the axis that allow 90% of a group of the same Monocarriers to operate to the rated running distance in the table, that is equivalent to 1 million revolutions of ball screw and support unit under the same conditions without causing flaking by rolling contact fatigue. Basic dynamic load ratings for the ball screw are axial loads that allow 90% of ball screws of a group of the same Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue.

Basic dynamic load ratings for the support unit are constant axial loads that allow 90% of support units of the same group of Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue. Basic static load ratings are loads that result in combined permanent deformations at the contact point between a ball and the ball groove to 0.01% of the ball dimmeter.

Table 4.13 Basic static moment loads of linear guide

Model No.	Slider	Basic static moments (N · m)					
woder no.	Silder	Rolling Mro	Pitching MPO	Yawing Myo			
MCH06	Single	335	133	133			
(MCL06)	Double	770	730	730			
MCH09	Single	890	385	385			
WICHOS	Double	1 780	2 070	2 070			
MCH10	Single	1 460	610	610			
WICITIO	Double	2 920	3 430	3 430			

Notes:
Basic static moments for double sliders are values when two sliders equipped with NSK K1 are butted against each other.

Basic static moments are values when the rolling contact pressure of balls exceeds 4 000 N/mm².

If support for extremely heavy loads is required, please consult NSK for estimation of fatigue life.

*) Applicable only to single slider

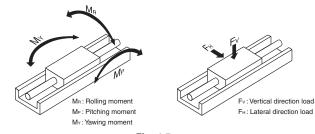


Fig. 4.5

lonocarrier™

(1) Life of Linear Guide

Study the load to be applied to the linear guide of Monocarrier (**Fig. 4.6**). Equivalent load F_{\circ} is determined by inputting the appropriate loads into the equations below. Use equation 1) for single sliders and equation 2) for double sliders.

For a single slider

For a double slider

$$F_{e} = \frac{Y_{H}F_{H}}{2} + \frac{Y_{V}F_{V}}{2} + Y_{R}E_{Rd}M_{R} + Y_{P}E_{Pd}M_{P} + Y_{Y}E_{Yd}M_{Y} \dots 2)$$

 $F_{\rm H}$: Lateral direction load acting on the slider (N)

F_v: Vertical direction load acting on the slider (N)

 $M_{\rm R}$: Rolling moment acting on the slider (N · m)

 $M_{\rm P}$: Pitching moment acting on the slider (N · m)

 $M_{\rm v}$: Yawing moment acting on the slider (N · m)

ER, ER

: Dynamic equivalent coefficient to rolling moment

E P, E Pd

: Dynamic equivalent coefficient to pitching moment

ε _ν, ε _{να}

: Dynamic equivalent coefficient to yawing moment Refer to **Table 4.14** about Dynamic equivalent coefficients.

 Y_{H} , Y_{V} , Y_{R} , Y_{P} , Y_{Y}

: 1.0 or 0.5

To obtain equivalent load $F_{\rm e}$ from equation 1) or 2), among $F_{\rm H}$, $F_{\rm V}$, $\mathcal{E}_{\rm F} M_{\rm P}$, $\mathcal{E}_{\rm R} M_{\rm R}$, $\mathcal{E}_{\rm V} M_{\rm V}$, the maximum load is assumed to be 1.0, and others to be 0.5.

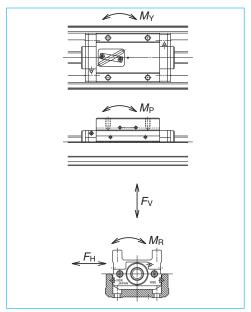


Fig. 4.6 Direction of load

Table 4.14 Dynamic equivalent coefficient

Model No.	MCM02	Lead 1, 2	MO3 Lead 5, 10, 12, 15	MCM05	MCM06	MCM08	MCM10	MCH06 MCL06	MCH09	MCH10
ε _R	95.2	79.4	79.4	52.6	45.5	32.5	27.8	48.3	34.5	28.6
ε,	174	113.9	84.2	81.3	65.1	48.8	45.2	75.1	47.9	41.0
$\epsilon_{_{\scriptscriptstyle Y}}$	174	113.9	84.2	81.3	65.1	48.8	45.2	75.1	47.9	41.0
$\epsilon_{_{Rd}}$	1	_	_	26.3	22.7	16.3	13.9	24.2	17.2	14.3
E Pd	1	_	_	10.4 (12.2)	9.7 (11.5)	7.6 (8.6)	7.1 (8.0)	11.4 (13.2)	8.11 (9.10)	6.98 (7.82)
E _{Yd}	_	_	_	10.4 (12.2)	9.7 (11.5)	7.6 (8.6)	7.1 (8.0)	11.4 (13.2)	8.11 (9.10)	6.98 (7.82)

Note: Parenthesized figures are dynamic equivalent coefficients for Monocarrier actuators without NSK K1.

In cases when the load acting on the slider may fluctuate (In general, $M_{\rm P}$, $M_{\rm Y}$ may fluctuate with the acceleration/deceleration of slider), the mean effective load is determined by Eq. 3).

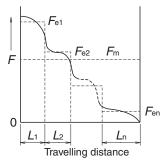


Fig. 4.7 Stepwise Fluctuating Load

Travelling distance under the equivalent load $F_{\rm e1}$: L_1 Travelling distance under the equivalent load $F_{\rm e2}$: L_2

Travelling distance under the equivalent load F_{en} : L_n

$$F_{\rm m} = \sqrt[3]{\frac{1}{L} \left(F_{\rm e1}^{3} L_{1} + F_{\rm e2}^{3} L_{2} + \cdots F_{\rm en}^{3} L_{\rm n} \right) \cdots 3}$$

 $F_{\rm m}$: Mean effective load of fluctuating loads

L: Total travelling distance

The life of linear guide is calculated by Eq. 4).

$$L = L_{a} \times \left(\frac{C}{f_{W} \cdot F_{m}}\right)^{3} - 4$$

L: Life of linear guide (km)

F_m: Mean effective load acting on the linear guide (N)

C: Basic dynamic load rating of the linear guide (N)

L_a: Travelling distance (km)

 f_{w} : Load factor (refer to **Table 4.15**)

When the estimated life does not clear the required life, the life of the linear guide is to be calculated again after the following measures are taken:

1. Change from a single slider to a double slider.

2. Use a larger size Monocarrier.

(2) Life of Ball Screw (Support unit)

The mean effective load is determined from axial loads.

For calculation of the mean effective load, use Eq. 3.

The life of ball screw is calculated by Eq. 5).

$$L = \ell \times \left(\frac{C_a}{f_W \cdot F_m}\right)^3 \times 10^6 \dots 5)$$

ℓ : Lead of ball screw (mm)

L: Life of ball screw (mm)

C_a: Basic dynamic load rating of the ball screw (N)

 F_m : Mean effective load acting on the ball screw (N)

 $f_{\rm w}$: Load factor (refer to **Table 4.15**)

The life of a support unit is calculated by Eq. 5). If the life of ball screw/support unit does not clear the required life, use a larger size Monocarrier.

After applying the calculations mentioned above,

selection of the Monocarrier is completed.

Table 4.15 Values of load factor f_w

Operating conditions	Load factor f _w
Smooth operation with no mechanical shock	1.0 – 1.2
Normal operation	1.2 – 1.5
Operation with mechanical shock and vibrations	1.5 – 3.0

JII OCATTI ET

C-1-4. 8 Example Life Estimation

This section offers an example how to estimate the life of Monocarrier based on the life of each component.

<<Example calculation-1>>

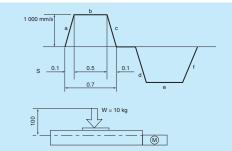


Fig. 4.8

1. Use condition

Stroke : 600 mm Maximum speed: 1000 mm/s Load mass : W = 10 kg $: a = 9.80 \text{ m/s}^2$ Acceleration Setting position: Horizontal Operating profile: See above figure

2. Selection of model (Interim Selection)

Firstly, select a greater ball screw lead as the maximum speed is 1000 mm/s. The interim selection is MCM06060H20K00, a single slider specification MCM06 that has 600 mm stroke, as the stroke is 600 mm.

- 3. Calculation
- 3-1. Linear quide
- 3-1-1. Fatique life:

Multiply the result of Eq. 1) by the dynamic equivalent coefficient (Table 4.14 single slider) to convert the load volume. From above operation profile.

- i) Constant speed $F_{e1} = Y_{v} \cdot F_{v} = Y_{v} \cdot W \cdot g$ $= 1 \cdot 10 \cdot 9.8 = 98 \text{ N}$
- ii) Accelerating $F_{e2} = Y_{V} \cdot F_{V} + Y_{P} \cdot \varepsilon_{P} \cdot M_{P}$ $= 0.5 \cdot 10 \cdot 9.8 + 1 \cdot 65.1 \cdot 0.1 \cdot 100$
 - = 700 N

 $F_{P3} = Y_V \cdot F_V + Y_P \cdot \mathcal{E}_P \cdot M_P$ iii) Decelerating $= 0.5 \cdot 10 \cdot 9.8 + 1 \cdot 65.1 \cdot 0.1 \cdot 100$

= 700 N

Mean effective load F...

$$F_{m} = \sqrt[3]{\frac{1}{L} \left(F_{e1}^{3} \cdot L_{1} + F_{e2}^{3} \cdot L_{2} + F_{e3}^{3} \cdot L_{3} \right)}$$

$$= \sqrt[3]{\frac{1}{600} \left(98^{3} \cdot 500 + 700^{3} \cdot 50 + 700^{3} \cdot 50 \right)}$$

$$= 387 \text{ N}$$

$$L = \left(\frac{C}{f_{w} \cdot F_{m}} \right)^{3} \times L_{a}$$

$$= \left(\frac{15900}{1.2 \cdot 387} \right)^{3} \times 20$$

$$= 8.02 \times 10^{5} \text{ km}$$

3-1-2. Static safety factor: Divide the basic static load rating by the maximum load.

$$F_{\rm S} = \frac{C_0}{F_{\rm e}} = \frac{C_0}{F_{\rm e2}} = \frac{17\ 000}{700} = 24.2$$

3-2. Ball screw

3-2-1. Fatique life: Obtain the axial load of each stage of operation referring to the operation profile, then calculate the mean load.

By the process above. i) Constant speed

 $F_{e1} = \mu \cdot W \cdot g = 0.01 \cdot 10 \cdot 9.8 = 0.98$

ii) Accelerating

 $F_{e^2} = F_{e^1} + W \cdot \alpha = 101 \text{ N}$

iii) Decelerating

$$F_{e3} = F_{e1} - W \cdot \alpha = 99 \text{ N}$$

Axial mean effective load F...

$$\begin{split} F_{m} &= \sqrt[3]{\frac{1}{L} \left(F_{e1}^{3} \cdot L_{1} + F_{e2}^{3} \cdot L_{2} + F_{e3}^{3} \cdot L_{3}\right)} \\ &= \sqrt[3]{\frac{1}{600} \left(0.98^{3} \cdot 500 + 101^{3} \cdot 50 + 99^{3} \cdot 50\right)} \\ &= 55 \text{ N} \\ L &= \left(\frac{C_{a}}{f_{w} \cdot F_{m}}\right)^{3} \times \ell \times 10^{6} \\ &= \left(\frac{5.080}{1.2 \cdot 55}\right)^{3} \times 20 \times 10^{6} \text{ (mm)} \\ &= 9.1 \times 10^{6} \text{ km} \end{split}$$

3-2-2. Static safety factor: Divide the basic static load rating by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{F_{\rm e}} = \frac{C_{\rm 0a}}{F_{\rm e2}} = \frac{7460}{101} = 73.8$$

3-2-3. Maximum rotational speed: According to the table of maximum speed on page C11, MCM06 with 20 mm lead and 600 mm stroke is possible to operate under the maximum speed

of 1 300 mm/s.

3-3. Support unit

3-3-1. Fatigue life: Use the axial load $F_m = 55 \text{ N}$, that is the result of above calculation 3-2-1.

$$L = \left(\frac{C_{\text{a}}}{f_{\text{w}} \cdot F_{\text{m}}}\right)^{3} \times \ell \times 10^{6} = \left(\frac{6550}{1.2 \times 55}\right)^{3} \times 20 \times 10^{6} \text{ (mm)}$$

3-3-2. Static safety factor: Divide the limit load by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{F_{\rm e}} = \frac{C_{\rm 0a}}{F_{\rm e2}} = \frac{2730}{101} = 27.0$$

3-4. Results

MCM06060H20K00	Linear guide	Ball screw	Support unit
F ()	8.02×	9.1×	1.95×
Fatigue life	10⁵ km	10 ⁶ km	10 ⁷ km
Static safety factor	24.2	73.8	27.0

In this case, the linear guide has the shortest fatique life of the components. Therefore, the linear guide fatigue life is used as the life of the Monocarrier. The interim selection of MCM06060H20K00, that is chosen based on the use conditions, satisfies the required life.

<<Example calculation-2>>

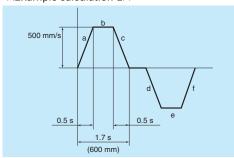


Fig. 4.9

1. Use condition

Stroke : 600 mm Maximum speed: 500 mm/s : W = 20 kgLoad mass Acceleration : 9.8 m/s² Setting position: Honizontal

Operating profile: See above figure

Fig. 4.10

2. Selection of model (Interim Selection) Select a 10 mm lead ball screw as the maximum speed is 500 mm/s.

The interim selection is MCM08068H10D00 as a double slider specification of MCM08 has 680 mm stroke, and the setting position is vertical.

3. Calculation

3-1. Linear guide

3-1-1. Fatigue life: Multiply the result of the Eq. 2) by the dynamic equivalent coefficient (Table 4.14. double slider) to convert the load volume. From operation profile (Fig. 4.9), the acceleration is 1 m/s².

- i) Constant speed $F_{e1} = Y_P \cdot \mathcal{E}_{Pd} \cdot M_P + Y_V \cdot \mathcal{E}_{Vd} \cdot M_V$ $= 1 \cdot 7.6 \cdot 20 \cdot 9.8 \cdot 0.15$ $+ 0.5 \cdot 7.6 \cdot 20 \cdot 9.8 \cdot 0.1$ = 298 N
- ii) Accelerating $F_{e^2} = Y_P \cdot \mathcal{E}_{Pd} \cdot M_P + Y_V \cdot \mathcal{E}_{Vd} \cdot M_V$ $= 1 \cdot 7.6 \cdot 20 \cdot (9.8 + 1.0)$ $0.15 + 0.5 \cdot 7.6 \cdot 20 \cdot (9.8)$ $+ 1.0) \cdot 0.1 = 329 \text{ N}$
- $F_{e3} = Y_P \cdot \varepsilon_{Pd} \cdot M_P + Y_V \cdot \varepsilon_{Vd} \cdot M_V$ iii) Decelerating $= 1 \cdot 7.6 \cdot 20 \cdot (9.8 - 1.0)$ $0.15 + 0.5 \cdot 7.6 \cdot 20 \cdot (9.8)$ -1.0) $\cdot 0.1 = 268$ N

Mean effective load F...

$$F_{\rm m} = \sqrt[3]{\frac{1}{L} \left(F_{\rm e1}^{\,3} \cdot L_{1} + F_{\rm e2}^{\,3} \cdot L_{2} + F_{\rm e3}^{\,3} \cdot L_{3} \right)}$$

$$= \sqrt[3]{\frac{1}{600} \left(298^{\,3} \cdot 350 + 329^{\,3} \cdot 125 + 268^{\,3} \cdot 125 \right)}$$

$$= 300 \text{ N}$$

$$L = L_a \times \left(\frac{C}{f_w \cdot F_m}\right)^3$$
$$= 10 \times \left(\frac{24400}{1.2 \cdot 300}\right)^3$$
$$= 3.11 \times 10^6 \text{ km}$$

3-1-2. Static safety factor: Divide the basic static load rating by the maximum load.

$$F_{\rm S} = \frac{C_{\rm o}}{F_{\rm o}} = \frac{C_{\rm o}}{F_{\rm o2}} = \frac{22\,800}{329} = 69.3$$

3-2. Ball screw

3-2-1. Fatique life: Obtain the axial load of each stage of operation referring to the operation profile, then calculate the mean load.

i) Constant speed

 $F_{c1} = W \cdot g = 20 \cdot 9.8 = 196 \text{ N}$

ii) Accelerating

 $F_{e2} = F_{e1} + W \cdot \alpha = 196 + 20 \cdot 1 = 216 \text{ N}$

iii) Decelerating

 $F_{e3} = F_{e1} - W \cdot \alpha = 196 - 20 \cdot 1 = 176 \text{ N}$

Axial mean effective load $F_{\rm m}$

$$F_{m} = \sqrt[3]{\frac{1}{L} \left(F_{e1}^{3} \cdot L_{1} + F_{e2}^{3} \cdot L_{2} + F_{e3}^{3} \cdot L_{3} \right)}$$

$$= \sqrt[3]{\frac{1}{600} \left(196^{3} \cdot 350 + 216^{3} \cdot 125 + 176^{3} \cdot 125 \right)}$$

$$= 197 \text{ N}$$

$$L = \ell \times \left(\frac{C_{a}}{f_{w} \cdot F_{m}} \right)^{3} \times 10^{6}$$

$$= 10 \times \left(\frac{8140}{1 \cdot 2 \cdot 197} \right)^{3} \times 10^{6} \text{ (mm)}$$

$$= 4.08 \times 10^{5} \text{ km}$$

3-2-2. Static safety factor: Divide the basic static load rating by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{F_{\rm e}} = \frac{C_{\rm 0a}}{F_{\rm e2}} = \frac{12\,800}{216} = 59.2$$

3-3. Support unit

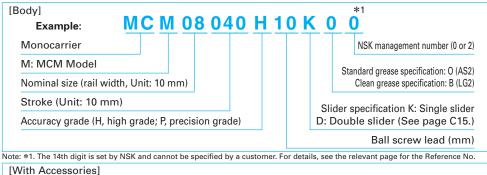
3-3-1. Fatigue life: Use the axial load $F_m = 197 \text{ N}$, that is the result of above calculation 3-2-1.

$$L = \ell \times \left(\frac{C_a}{f_w \cdot F_m}\right)^3 \times 10^6 = 10 \times \left(\frac{7 \cdot 100}{1.2 \times 197}\right)^3 \times 10^6 \text{ (mm)}$$
$$= 2.70 \times 10^5 \text{ km}$$

3-3-2. Static safety factor: Divide the limit load by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{F_{\rm e}} = \frac{C_{\rm 0a}}{F_{\rm e2}} = \frac{3\,040}{216} = 14.0$$

3-4. Results


MCM08068H10D00	Linear guide	Ball screw	Support unit	
Cations life	3.11×	4.08 ×	2.70 ×	
Fatigue life	10 ⁶ km	10⁵ km	10⁵ km	
Static safety factor	69.3	59.2	14.0	

C-1-5 MCM Model	
1 MCM Model Reference Number	r C27
Coding	
2 MCM Model Dimension Tables	for
Standard Products	
MCM02	C28
MCM03	C29
MCM05	C33
MCM06	C37
MCM08	C41
MCM10	C45
3 MCM Model Accessories	
3. 1 Sensor Unit	C49
3. 2 Cover Unit	C53
3. 3 Motor Bracket	C55

MCM Model

C-1-5.1 MCM Model Reference Number Coding

MC E 08 040 H 10 K 0 0 K 0 0 0 Example:

E: With MCM Accessories

NSK management number

Sensor unit Cover unit

Note: Accessories are available separately.

Motor bracket

Table 1 Sensor unit (See page C49.)

Reference No. code	Specification	Reference No.
0	N/A	_
1	Proximity switch (normally close contact 3 pieces)	MC – SRxx – 10
2	Proximity switch (normally open contact 3 pieces)	MC – SRxx – 11
3	Proximity switch (normally open contact 1 piece, normally close contact 2 pieces)	MC – SRxx – 12
4	Photo sensor 3 pieces	MC – SRxx – 13

2) Sensor rails are not included with sensor units. If you require a rail, please specify this when ordering. (See page C50 to C52.)

Table 2 Cover unit (See pages C53 to C54.)

Reference No. code	Specification	Reference No.
0	N/A	_
1	With top cover	MC - CVxxxxx - 01 (02) *
_	Full cover	MC – CVxxxxx – 00

Note 1) xxxxx: Reference number and stroke number 2)*: "-02" is only used for Monocarrier MCM03.

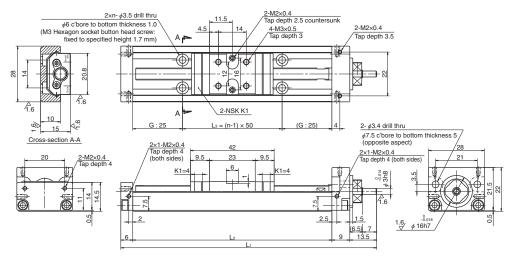

3) When a sensor unit is used, full cover units cannot be used

Table 3 Motor bracket (See pages C55 to C71.)

		- 1 3	,							
Reference	Reference No.									
No. code	MCM03	MCM05	MCM06	MCM08	MCM10					
0	N/A	N/A	N/A	N/A	N/A					
1	MC-BK03-146-00	MC-BK05-145-00	MC-BK06-145-00	MC-BK08-145-00	MC-BK10-170-00					
2	MC-BK03-148-01	MC-BK05-146-00	MC-BK06-146-00	MC-BK08-146-00	MC-BK10-170-01					
3	MC-BK03-231-00	MC-BK05-148-00	MC-BK06-148-00	MC-BK08-160-00	MC-BK10-190-00					
4	_	MC-BK05-160-00	MC-BK06-160-00	MC-BK08-170-00	MC-BK10-270-00					
5	_	MC-BK05-250-00	MC-BK06-170-00	MC-BK08-170-01	_					
6	_	_	MC-BK06-170-01	MC-BK08-190-00	_					
7	_	_	MC-BK06-250-00	MC-BK08-250-00	_					
8	_	_	_	MC-BK08-270-00	_					
					N/A: Not applica					

C-1-5.2 MCM Model Dimension Tables for Standard Products

MCM02

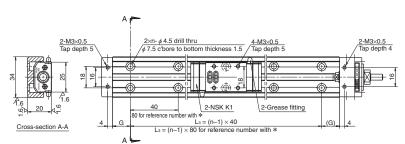
Dimensions of MCM02 (Single slider)

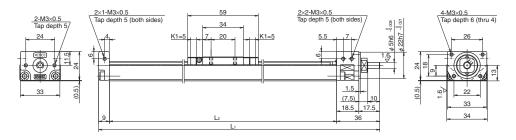
Reference No.	Nominal stroke (mm)	Stroke limit (mm)	Ball screw lead		y length (r		No. of mounting holes	Inertia × 10 ⁻⁷ (kg·m²)	Mass (kg)
	(111111)	(111111)	(111111)	L ₁	L ₂	L ₃	n	× 10 (kg·111)	(Ng)
MCM02005H01K			1						
MCM02005P01K	50	58	'	128.5	100	00 50	2	0.93	0.26
MCM02005H02K	50	56	2	120.5	100		2	0.93	
MCM02005P02K			2						
MCM02010H01K		108	1	178.5			3	1.36	0.32
MCM02010P01K	100				170 5 150	150 100			
MCM02010H02K	100			170.5	3.5 150	100			
MCM02010P02K			2						
MCM02015H01K			1						0.00
MCM02015P01K	150	158		228.5	200	450	4	1.01	
MCM02015H02K		158	0	226.5	200	150		1.81	0.39
MCM02015P02K			2						

Monocarrier dynamic torque specification (N · cm)

		High grade	Precision
Ball screw lead	1	0.1 1.2	0.2 – 1.6
(mm)	2	0.1 – 1.3	0.2 - 1.6

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table. 2. Grease is packed into ball screws, linear guide parts, and support units
- 3. Consult NSK for life estimates under large moment loads.
- 4. There is no LG2 specification for MCM02.


Basic load ratings


Lea	ad	Shaft dia		Basic dynamic	load ratings (N)	Basic static loa	ad ratings (N)		
l		d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mn	n)	(mm)	C_{a}	С	$C_{\rm a}$ $L_{\rm a}$ (km)		C_{0a}	C_0	load IIITIIL (IV)
1			405 (High grade)	4.040		1	555 (High grade)		
			480 (Precision)	4 910		I I	615 (Precision)		
2	2	φ 6	400 (High grade)	2.000	615	2	555 (High grade)	2 120	490
2			475 (Precision)	3 900		2	610 (Precision)		

Basic static moment loads of linear guide

Ol. I	Basic sta	atic moment load	s (N·m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	24	8	8

C27 N/A: Not applicable

Dimensions of MCM03 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)		В	ody len	gth (mn	٦)	No. of mounting holes		Mass
	(mm)	(without K1)	(mm)	L ₁	L ₂	G	Lз	n	× 10 ⁻⁵ (kg · m ²)	(kg)
*MCM03005P01K00	F0	56	1	160	115	17.5	80		0.015	0.6
*MCM03005P02K00	50	(66)	2	160	115	17.5	00		0.016	0.0
MCM03010P01K00	100	131	1	235	190	15	160	-	0.021	0.7
MCM03010P02K00	100	(141)	2	235	190	15	160	5	0.022	0.7
MCM03015P01K00	150	181	1	285	240	20	200	6	0.025	0.8
MCM03015P02K00	100	(191)	2	200	240	20	200	O	0.026	0.8

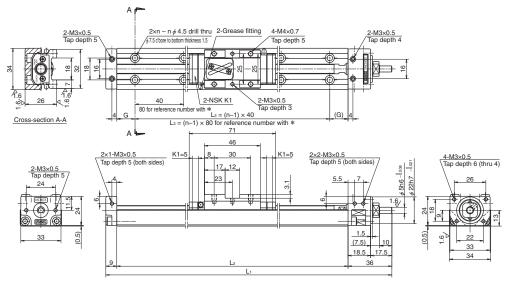
Note: Bolt hole pitch L_3 on items marked with * is 80 mm.

Monocarrier dynamic to	orque specif	ication (N · cm)
Rall screw lead	1	

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screws, linear guide parts and support units.
- 3. Consult NSK for life estimates under large moment loads.
- A spacer plate is required when using a cover unit or sensor unit for MCM03 with a lead of 1 or 2 mm. (See page C53.)

Basic load ratings


Lead	Shaft dia		Basic dynamic	load ratings (N)	Basic static loa				
l	d	Ball screw	Linear guides Support unit		Rated running distance	Ball screw	Linear guides	Support unit	
(mm)	(mm)	C_{a}	С	$C_{\rm a}$	$L_{\rm a}$ (km)	C_{0a}	C_0	load limit (N)	
1		870	10 900	0.070	1	1 230			
2	φ6	865	8 650	2 670	2	1 220	4 900	1 040	

Basic static moment loads of linear guide

01.1	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Single	68	28	28				

Accuracy grade: High grade (H)

Ball screw leads 5, 10 and 12

Dimensions of MCM03 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	В	ody len	gth (mn	۱)	No. of mounting holes	Inertia	Mass	
neterence No.	(mm)	(without K1)	(mm)	L ₁	L ₂	G	Lз	n	$\times 10^{-5} (kg \cdot m^2)$	(kg)	
*MCM03005H05K00		69	5						0.057		
*MCM03005H10K00	50		10	185	140	30	0 80	2	0.080	0.6	
*MCM03005H12K00		(79)	12						0.097		
MCM03010H05K00		119	5				15 160		0.073		
MCM03010H10K00	100	(129)	10	235	190	190 15		160 5	0.092	0.7	
MCM03010H12K00		(129)	12						0.109		
MCM03015H05K00		169 (179)	5	285	240				0.089		
MCM03015H10K00	150		10			10 20	20 200	00 6	0.105	0.8	
MCM03015H12K00		(173)	12						0.122		
MCM03020H05K00		219	5						0.104		
MCM03020H10K00	200		10	335	290	25	240	7	0.118	0.9	
MCM03020H12K00		(229)	12						0.135		
MCM03025H05K00		250 269 (279)	5						0.120		
MCM03025H10K00	250		10	385	340	0 30	30 280	8	0.131	1.0	
MCM03025H12K00		(279)	12						0.147		

Note: Bolt hole pitch L_3 on items marked with * is 80 mm.

Monocarrier dynamic torque specification (N · cm) Ball screw Accuracy grade Ligh grade Accuracy Brogision 1. I

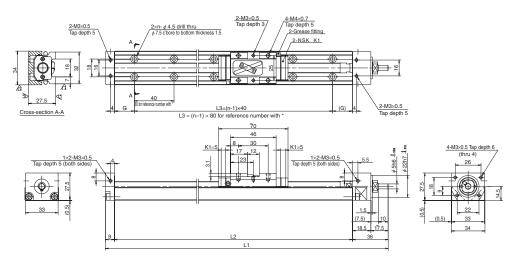
Ball screw	Accuracy grade						
lead(mm)	High grade	Precision					
5	0.2 - 2.5	0.6 - 4.4					
10	0.3 - 3.0	0.7 – 4.9					
12	0.5 - 5.0	0.7 - 4.9					

1. Frictional resistance of NSK K1 is included in dynamic torque in table.

2. Grease is packed into ball screws, linear guide parts and support units.
 3. Consult NSK for life estimates under large moment loads.

Basic load ratings

Lead	Shaft dia		Basic dynamic lo	ad ratings (N)	Basic static loa	d ratings (N)		
l	d	Ball screw	Linear guides	Support unit	Support unit Rated running distance		Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	L_{a} (km)	C_{0a}	C ₀	ioau iiiTilt (IN)
5		2 090	7 850		5	2 830		
10	φ8	1 310	6 250	2 670	10	1 710	6 620	1 040
12		1 320	5 880		12	1 730		


Basic static moment loads of linear guide

Baoio otatio	momont road	o or illiour gare						
Clister	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Single	92	51	51					

MCM03

Accuracy grade: High grade (H)

Ball screw lead 15

Dimensions of MCM03 (Single slider)

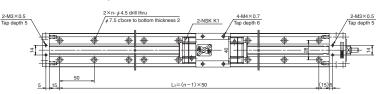
		Reference No.	Nominal stroke	Stroke limit	Ball screw lead	Ball screw lead Ball screw diameter Body length (mm) No. of mounting holes In		Inertia	Mass				
		neierence no.	(mm)	(without K1)	(mm)	(mm)	<i>L</i> 1	L2	G	Lз	n	×10 ⁻⁴ (kg·m²)	(kg)
	*	MCM03005H15K00	50	70 (80)			185	140	30	80	2	0.183	0.67
		MCM03010H15K00	100	120(130)			235	190	15	160	5	0.222	0.77
		MCM03015H15K00	150	170(180)	15	ø 10	285	240	20	200	6	0.260	0.87
-		MCM03020H15K00	200	220(230)			335	290	25	240	7	0.298	0.97
		MCM03025H15K00	250	270(280)			385	340	30	280	8	0.336	1.07

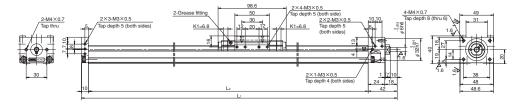
Note: Bolt hole pitch L_3 on items marked with * is 80 mm.

Monocarrier dynamic torque	e specification (N · cm)				
Ball screw lead (mm)	15	0.3 - 5.6			

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in tables.
- 2. Grease is packed into ball screws, linear guide parts and support units.
- 3. Consult NSK for life estimates under large moment loads.
- 4. When a cover unit is added, an optional spacer plate is required. (See page C53.)
- 5. There is no P grade (precision grade) for Lead 15.


Basic load ratings


d S	Shaft dia		Basic dynamic	load ratings (N)	Basic static ic	Support unit			
	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guide	load limit (N)	
1)	(mm)	C_{a}	C	C_{a}	L_a (km)	C_{0a}	C_0	load IIIIII (IV)	
	φ10	2 000	5 440	2 670	15	2 740	6 620	1 040	
		d (mm)	d Ball screw (mm) $C_{\rm a}$	d Ball screw Linear guides (mm) $C_{\rm a}$ C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d Ball screw Linear guides Support unit Rated running distance (mm) C_a C C_a L_a (km)	d Ball screw Linear guides Support unit Rated running distance Ball screw (mm) C_a C C_a L_a (km) C_{0a}		

Basic static loads of linear guide

Slider	Basic static moment load (N · m)								
Siluei	Rolling M _{RQ}	Pitching M _{PO}	Yawing M _{YO}						
Single	92	51	51						

Monocarri

Dimensions of MCM05 (Single slider)

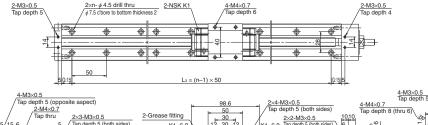
Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Boo L ₁	y length (r L ₂	nm) L ₃	No. of mounting holes	Inertia × 10 ⁻⁴ (kg · m ²)	Mass (kg)
MCM05005H05K00 MCM05005H10K00	50	0 81 (95)	5 10	232	180	150	4	0.025 0.035	1.4
MCM05005H20K00 MCM05010H05K00			20 5					0.073	
MCM05010H10K00 MCM05010H20K00	100	(145)	10	282	230	200	5	0.040 0.078	1.6
MCM05015H05K00 MCM05015H10K00	150	181 (195)	5	332	280	250 300	6	0.036	1.8
MCM05015H20K00	150		20				0	0.084	1.0
MCM05020H05K00 MCM05020H10K00	200	231 (245)	5 10	382	330		7	0.042 0.051	2.0
MCM05020H20K00 MCM05025H05K00		281	20 5					0.089 0.047	2.2
MCM05025H10K00 MCM05025H20K00	250	(295)	10 20	432	380	350	8	0.057 0.095	

Į	N	lonocarrier	dyn	amic	torqu	ue s	pecit	ficatio	on (Ν	٠	cm

Ball screw	Accurac	cy grade
lead(mm)	High grade	Precision
5	1.0 - 4.8	1.9 - 7.7
10	1.1 - 5.8	2.1 - 8.7
20	1.6 - 7.9	2.5 – 10.7
30	18-131	_

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screws, linear guide parts and support units.
- 3. Consult NSK for life estimates under large moment loads.


Basic load ratings

Lead	Shaft dia		Basic dynamic lo	ad ratings (N)	Basic static loa	d ratings (N)			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit	
(mm)	(mm)	C_{a}	С	C_{a}	$L_{a}\left(km\right)$	C_{0a}	C_0	load limit (N)	
5		4 390	15 600	4 400	5	6 260			
10	/ 12	2 740	12 400		10	3 820	10 900	1 450	
20	φ12	2 660	9 850		20	3 800	10 900		
30		3 300	8 600	6 550	30	5 390		2 730	

Basic static moment loads of linear guide

Clister	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Single	229	89	89					

Ball screw lead 30

Tap depth 5 (opposite aspect)	98.6	. 2×4-M3×0.5	lap depth 5 (opposite aspect)/
2-M4×0.7		Tap depth 5 (both sides)	4-M4×0.7
	50		Tap depth 8 (thru 6) 49 /
/ Tap thru 2×3-M3×0.5	2-Grease fitting 30	2×2-M3×0.5 10.10	\wo\31
_6_15/15_6_ / _5_ / Tap depth 5 (both sides)	K1=6.8 12, 20, 12,	2×2-M3×0.5 10.10 K1=6.8 Tap depth 5 (both sides) 6	82 5 6 15 15 6 /
- - - - - - - - - - - - - 	K1=0.0 V - 12 12 12 14 14	1 K1=0.8 Intraction (continue)	99 1.6 15 15 6
	1 N H-H-H-H-H /	11 - M I	1
/	 	—h.] ∽fl1(l+	
		79	
	"	"2×1-M3×0.5	7.6 0
_ 30 _		Tap depth 4 (both sides) 25	
- U		· · · · · · · · · · · · · · · · · · ·	40
_10	L ₂		
1 '	L ₁		48.6
-			

Dimensions of MCM05 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting holes	Inertia	Mass
hererice No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	× 10 ⁻⁴ (kg · m ²)	(kg)
MCM05030H05K00			5					0.053	
MCM05030H10K00	300	331	10	482	430	400	9	0.063	2.3
MCM05030H20K00	000	(345)	20		100	400		0.101	2.0
MCM05030H30K00			30	488				0.164	
MCM05040H05K00		400 431 55 582 530 500 445) 20 588		0.064					
MCM05040H10K00	400		10	582	530	500	11	0.074	2.7
MCM05040H20K00	400		20		000			0.112	
MCM05040H30K00			30	588				0.175	2.8
MCM05050H05K00			5			630 600		0.076	
MCM05050H10K00	500	531	10	682	630		13	0.085	3.1
MCM05050H20K00	000	(545)	20		000	000		0.123	
MCM05050H30K00			30	688				0.186	3.2
MCM05060H05K00			5					0.087	
MCM05060H10K00	600	631	10	782	730	700	15	0.096	3.5
MCM05060H20K00		(645)	20		, 50		'5	0.134	
MCM05060H30K00			30	788				0.198	3.6

Notes:

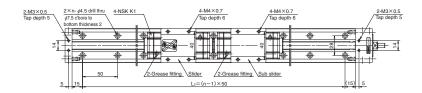
- Frictional resistance of NSK K1 is included in dynamic torque in table.
 Grease is packed into ball screws, linear guide parts and support units.
- 3. Consult NSK for life estimates under large moment loads.

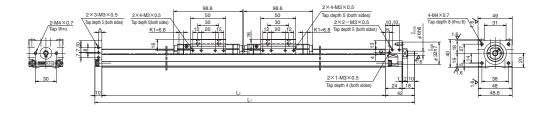
Basic load ratings

Lead	Shaft dia		Basic dynamic lo	ad ratings (N)		Basic static loa	Comment on it		
l	d	Ball screw	Linear guides	Support unit	Support unit Rated running distance Ball screv		Linear guides	Support unit load limit (N)	
(mm)	(mm)	C_{a}	C	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	ioau iirriit (IV)	
5		4 390	15 600		5	6 260			
10	, 10	2 740	12 400	4 400	10	3 820	10.000	1 450	
20	φ12	2 660	9 850		20	3 800	10 900		
30		3 300	8 600	6 550	30	5 390		2 730	

Basic static moment loads of linear guide

Slider	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Single	229	89	89				


MCM05


NSK

Accuracy grade: High grade (H)

MCM05 (Double slider)

Accuracy grade: High grade (H)

Dimensions of MCM05 (Double slider)

D.C. N	Nominal stroke Stroke limit (mm)		Ball screw lead	Bod	ly length (r	nm)	No. of mounting holes	Inertia	Mass
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	× 10 ⁻⁴ (kg · m ²)	(kg)
MCM05006H10D00	60	82 (110)	10	332	280	250	6	0.058	2.3
MCM05011H10D00	110	132 (160)	10	382	330	300	7	0.064	2.5
MCM05016H10D00	160	182 (210)	10	432	380	350	8	0.070	2.7
MCM05021H10D00	210	232	10	482	430	400	0	0.075	2.8
MCM05021H20D00	210	(260)	20	402	430	400	9	0.151	2.0

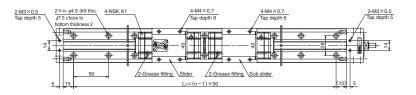
Notes:

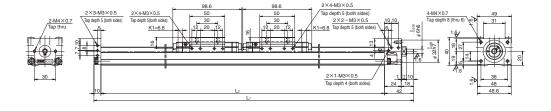
Ball screw	Accurac	racy grade			
lead(mm)	High grade	Precision			
10	1.5 - 7.6	2.4 – 10.6			
20	2.3 - 11.8	3.2 - 14.8			

Monocarrier dynamic torque specification (N · cm)

1. Frictional resistance of NSK K1 is included in dynamic torque in table.

- Consider a series of the - 3. Consult NSK for life estimates under large moment loads.


Basic load ratings


Lead	Shaft dia		Basic dynamic lo	oad ratings (N)	Basic static loa			
L (mm)	d (mm)	Ball screw $C_{ m a}$	Linear guides C	Support unit	Rated running distance $L_{\rm a}$ (km)	Ball screw C_{0a}	Linear guides C ₀	Support unit load limit (N)
5		4 390	15 600		5	6 260		
10	φ 12	2 740	12 400	4 400	10	3 820	10 900	1 450
20		2 660	9 850		20	3 800		

Basic static moment loads of linear guide

Clister	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Double	455	765	765					

MCM05 (Double slider)

Dimensions of MCM05 (Double slider)

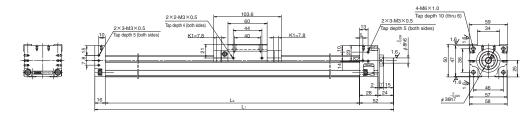
D.f. N	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting holes	Inertia	Mass
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	× 10 ⁻⁴ (kg · m ²)	(kg)
MCM05031H10D00	310	332	10	582	530	500	11	0.086	3.2
MCM05031H20D00	310	(360)	20					0.162	
MCM05041H10D00	410	432	10	000	630	600	13	0.098	3.6
MCM05041H20D00	410	(460)	20	682				0.174	
MCM05051H10D00	510	532	10	782	730	700	15	0.109	4.2
MCM05051H20D00	510	(560)	20	702	/30	700	15	0.185	4.2
WCW0505 THZ0D00		(500)	20					0.165	

Monocarrier dynamic torque specification (N · cm)

Ball screw	Accuracy grade				
lead(mm)	High grade	Precision			
10	1.5 - 7.6	2.4 - 10.6			
20	2.3 – 11.8	3.2 – 14.8			

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screws, linear guide parts and support units.
- 3. Consult NSK for life estimates under large moment loads.


Basic load ratings

Lead	Shaft dia		Basic dynamic Id	ad ratings (N)		Basic static loa	Commont on it		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)	
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0		
5		4 390	15 600		5	6 260			
10	φ 12	2 740	12 400	4 400	10	3 820	10 900	1 450	
20		2 660	9 850		20	3 800			

Basic static moment loads of linear guide

Clister	Basic st	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Double	455	765	765					

Accuracy grade: High grade (H)

Dimensions of MCM06 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Boo	y length (r	nm)	No. of mounting holes	Inertia	Mass	
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	\times 10 ⁻⁴ (kg \cdot m ²)	(kg)	
◇MCM06005H05K02		86	5					0.066		
◇MCM06005H10K00	50	(102)	10	258	190	100	2	0.077	2.7	
		(102)	20					0.122		
MCM06010H05K02		136	5					0.080		
MCM06010H10K00	100	(152)	10	308	240	200	3	0.092	3.0	
MCM06010H20K00		(102)	20					0.137		
		0 186 (202)	5	358 290				0.095		
	150		10		290	200	3	0.106	3.5	
		(202)	20					0.152		
MCM06020H05K02		236	5					0.110		
MCM06020H10K00	200	200	200 (252)	10	408	340	300	4	0.121	3.8
MCM06020H20K00		(202)	20					0.167		
		286	5					0.125		
	250	(302)	10	458	390	300	4	0.136	4.2	
		(552)	20					0.181		
MCM06030H05K02		336	5					0.139		
MCM06030H10K00	300	(352)	10	508	440	400	5	0.150	4.5	
MCM06030H20K00		(552)	20					0.196		

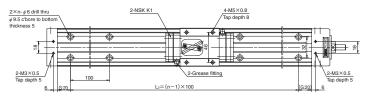
Notes: 1. Dimension G is 45 for items marked with \diamondsuit .

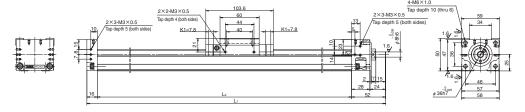
2. Reference numbers above are for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	Lead	High-grade, precision-grade
Standard	5	02
Stariuaru	10, 20	00
I G2	5	B2
LGZ	10, 20	B0

Monocarrier dynamic torque specification (N \cdot c									
Ball screw	Accuracy grade								
lead(mm)	High grade	Precision							
5	1.9 - 7.4	3.4 - 12.3							
10	2.2 - 8.6	3.6 - 14.0							
20	28_110	12 _ 16 5							


- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screws, linear guide parts and support units.
- 3. Consult NSK for life estimates under large moment loads.


Basic load ratings

Lead	Shaft dia		Basic dynamic lo	ad ratings (N)		Basic static loa	d ratings (N)	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit
(mm)	(mm)	C_{a}	С	C_{a}	$L_{a}\left(km\right)$	C_{0a}	C_0	load limit (N)
5		8 300	25 200		5	12 700		
10	φ 15	8 140	20 000	6 550	10	12 800	17 000	2 730
20		5 080	15 900		20	7 460		

Basic static moment loads of linear guide

Clister	Basic st	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Single	415	174	174					

Dimensions of MCM06 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting holes	Inertia	Mass					
nererence no.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	$\times 10^{-4} (kg \cdot m^2)$	(kg)					
MCM06040H05K02		436	5					0.169						
MCM06040H10K00	400	(452)	10	608	540	500	6	0.180	5.2					
MCM06040H20K00		(402)	20					0.225						
MCM06050H05K02		536	5					0.198						
MCM06050H10K00	500	(552)	10	708	640	640 600	00 7	0.209	6.0					
MCM06050H20K00		(002)	20					0.255						
MCM06060H05K02	600	600	600				636	5					0.228	
MCM06060H10K00				(652)	10	808	740	700	8	0.239	6.7			
MCM06060H20K00		(032)	20					0.284						
MCM06070H05K02		736	5					0.257						
MCM06070H10K00	700	(752)	10	908	840	800	9	0.268	7.4					
MCM06070H20K00		(732)	20					0.314						
MCM06080H05K02		836	5					0.286						
MCM06080H10K00	800	(852)	10	1 008	940	900	10	0.298	8.1					
MCM06080H20K00		(002)	20					0.343						

Note: Reference numbers above are for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	Lead	High-grade, precision-gra
Standard	5	02
Stariuaru	10, 20	00
LG2	5	B2
LGZ	10, 20	B0

ivionocarrier dynamic torque specification (iv - c								
Ball screw	Accuracy grade							
lead(mm)	High grade	Precision						
5	1.9 - 7.4	3.4 - 12.3						
10	2.2 - 8.6	3.6 - 14.0						
20	2.8 - 11.0	4.2 - 16.5						

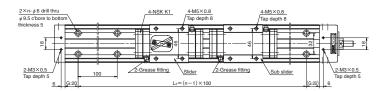
- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screws, linear guide parts and support units.
- 3. Consult NSK for life estimates under large moment loads.

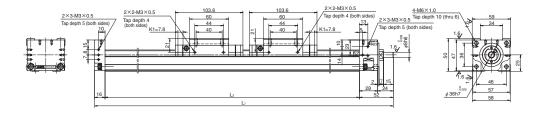
Basic load ratings

Lead	Shaft dia		Basic dynamic lo	ad ratings (N)		Basic static loa	Community consists	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	$L_{a}(km)$	C_{0a}	C_0	ioad iimit (N)
5		8 300	25 200		5	12 700		
10	φ 15	8 140	20 000	6 550	10	12 800	17 000	2 730
20		5 080	15 900		20	7 460		

Basic static moment loads of linear guide

Clister	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	415	174	174


C37


MCM06

Accuracy grade: High grade (H)

MCM06 (Double slider)

Accuracy grade: High grade (H)

Dimensions of MCM06 (Double slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting holes	Inertia	Mass
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	\times 10 ⁻⁴ (kg \cdot m ²)	(kg)
MCM06011H05D02	110	132 (164)	5	400	408 340	300	4	0.114	4.4
MCM06011H10D00	110		10	400			4	0.136	4.4
MCM06021H05D02		232 (264)	5		508 440	400	5	0.143	5.1
MCM06021H10D00	210		10	508				0.166	
MCM06021H20D00		(204)	20					0.257	
MCM06031H05D02		310 332 (364)	5	608			6	0.173	
MCM06031H10D00	310		10		540	500		0.195	5.8
MCM06031H20D00			20					0.286	

Note: Reference numbers above are for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

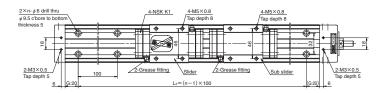
Coding for columns 13 and 14

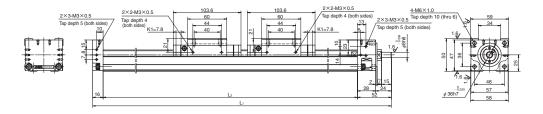
Grease	Lead	High-grade, precision-grade
Standard	5	02
Stanuaru	10, 20	00
1.00	5	B2
LGZ	10, 20	B0

ivionocarrier dyn	amic torque spec	cification (IN - cm				
Ball screw	Accuracy grade					
lead(mm)	High grade	Precision				
5	2.3 - 8.5	3.7 – 13.5				
10	2.7 - 10.9	4.2 - 16.4				
20	40 - 150	55 - 213				

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screws, linear guide parts and support units.
- 3. Consult NSK for life estimates under large moment loads.


Basic load ratings


	Lead	Shaft dia		Basic dynamic lo	ad ratings (N)	Basic static loa			
	L (mm)	d (mm)	Ball screw $C_{ m a}$	Linear guides C	Support unit $C_{\rm a}$	Rated running distance $L_{\rm a}$ (km)	Ball screw C_{0a}	Linear guides C ₀	Support unit load limit (N)
	5		8 300	25 200		5	12 700		
	10	φ 15	8 140	20 000	6 550	10	12 800	17 000	2 730
-	20		5 080	15 900		20	7 460		

Basic static moment loads of linear guide

Slider	Basic static moment load (N · m)					
	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}			
Double	825	1 220	1 220			

MCM06 (Double slider)

Dimensions of MCM06 (Double slider)

Reference No.	Nominal stroke		Ball screw lead	Bod	y length (r		No. of mounting holes		Mass
	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	× 10 ⁻⁴ (kg · m ²)	(kg)
MCM06041H05D02		432	5					0.202	
MCM06041H10D00	410	(464)	10	708	640	600	7	0.224	6.6
MCM06041H20D00		(464)	20					0.316	
MCM06051H10D00	510	532	10	808	740	700	8	0.254	7.3
MCM06051H20D00	510	(564)	20	000	740	700	·	0.345	7.3
MCM06061H10D00	610	632	10	908	840	800	9	0.283	8.0
MCM06061H20D00	610	(664)	20	906	840	000	9	0.375	0.0
MCM06071H10D00	710	732	10	1 008	940	900	10	0.313	8.7
MCM06071H20D00	(764)	20	1 000	340	300	10	0.404	8.7	

Note: Reference numbers above are for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

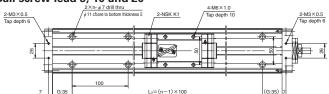
Coding for columns 13 and 14

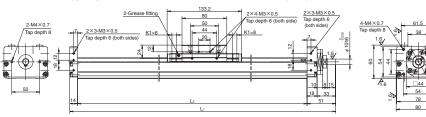
Grease	Lead	High-grade, precision-grade
Standard	5	02
	10, 20	00
LG2	5	B2
	10, 20	В0

ivioriocarrier dyri	iaitiic torque spec	SILICATIOLI (IA - CITI			
Ball screw	Accuracy grade				
lead(mm)	High grade	Precision			
5	2.3 - 8.5	3.7 - 13.5			
10	2.7 - 10.9	4.2 - 16.4			
20	10 150	F F 010			

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screws, linear guide parts and support units.
- 3. Consult NSK for life estimates under large moment loads.


Basic load ratings


Lead	Shaft dia		Basic dynamic lo	ad ratings (N)		Basic static loa			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit	
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load limit (N)	
5		8 300	25 200		5	12 700			
10	φ 15	8 140	20 000	6 550	10	12 800	17 000	2 730	
20		5 080	15 900		20	7 460			

Basic static moment loads of linear guide

Clister.	Basic static moment load (N · m)				
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}		
Double	825	1 220	1 220		

C39 C40

Dimensions of MCM08 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting holes	Inertia	Mass
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	\times 10 ⁻⁴ (kg \cdot m ²)	(kg)
◇MCM08005H05K02	50	86	5	285	220	100	2	0.082	4.1
◇MCM08005H10K00	30	(102)	10	200	220	100		0.100	7.1
MCM08010H05K02		136	5					0.097	
MCM08010H10K00	100	(152)	10	335	270	200	3	0.114	4.6
MCM08010H20K00		(102)	20					0.190	
		186	5					0.111	
	150	150 (202)	10	385	320	200	3	0.129	5.1
			20					0.205	
MCM08020H05K02		236	5					0.126	
MCM08020H10K00	200	(252)	10	435	370	300	4	0.144	5.5
MCM08020H20K00		(202)	20					0.220	
		286	5					0.141	
	250	(302)	10	485	420	300	4	0.159	6.0
		(002)	20					0.235	
MCM08030H05K02		336	5					0.156	
MCM08030H10K00	300	(352)	10	535	470	400	5	0.173	6.5
MCM08030H20K00		(= 32)	20					0.249	

Notes: 1. Dimension G is 60 for items marked with \diamondsuit .

2. Reference numbers above are for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

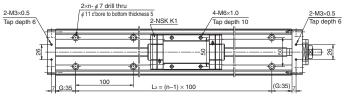
Coding for columns 13 and 14

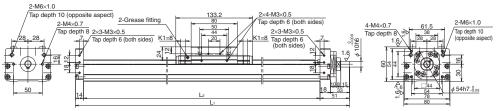
Lead	High-grade, precision-grade
5	02
10, 20	00
5	B2
10, 20	B0
	5 10, 20 5

Monocarrier dyn	cification (N · cm)	1	
Ball screw		cy grade	
lead(mm)	High grade	Precision	
5	1.0 - 5.9	3.1 – 11.5	:
10	2.0 - 7.8	3.2 - 13.3	
20	2.5 - 10.8	4.0 - 16.4	:
30	2.8 - 12.0	_	

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table
- 2. Grease is packed into ball screws, linear guide parts and support units.
- 3. Consult NSK for life estimates under large moment loads.

Basic load ratings


Lead	Shaft dia		Basic dynamic lo	oad ratings (N)		Basic static loa	d ratings (N)	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit
(mm)	(mm)	C_{a}	С	Ca	$L_{a}\left(km\right)$	C_{0a}	C_0	load limit (N)
5		8 300	30 800		5	12 700		
10	φ15	8 140	24 400	7 100	10	12 800	22 800	3 040
20	φιο	5 080	19 400	7 100	20	7 460	22 800	3 040
30		5 500	16 930		30	8 580		


Basic static moment loads of linear guide

CIII	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	770	300	300

Accuracy grade: High grade (H)

Ball screw lead 30

Dimensions of MCM08 (Single slider)

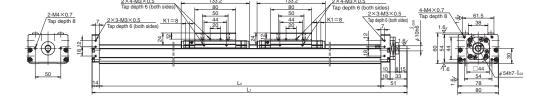
Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting holes	Inertia	Mass
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	$ imes$ 10 ⁻⁴ (kg \cdot m ²)	(kg)
MCM08040H05K02			5					0.185	
MCM08040H10K00	400	436	10	635	570	500	6	0.203	7.4
MCM08040H20K00	400	(452)	20	033			0	0.279	7.4
MCM08040H30K00			30					0.405	
MCM08050H05K02			5					0.214	
MCM08050H10K00	500	536	10	735	670	600	600 7	0.232	8.4
MCM08050H20K00	300	(552)	20	/33	070 000	/ [0.308	0.4	
MCM08050H30K00			30					0.435	
MCM08060H05K02		0 636 (652)	5	835	770	700	8	0.244	9.3
MCM08060H10K00	600		10					0.262	
MCM08060H20K00	600		20					0.338	
MCM08060H30K00			30					0.464	
MCM08070H05K02			5					0.273	
MCM08070H10K00	700	736	10	935	870	800	9	0.291	10.5
MCM08070H20K00	700	(752)	20	333	070	000		0.367	10.5
MCM08070H30K00			30					0.494	
MCM08080H05K02		836	5					0.303	
MCM08080H10K00	800	800 (852)	10	1 035	970	900	10	0.320	11.2
MCM08080H20K00		(032)	20					0.396	
Nata Dafanana annahan									

Note: Reference numbers above are for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Basic load ratings

Grease	Lead	High-grade, precision-gra
Standard	5	02
Staridard	10, 20	00
LG2	5	B2
LGZ	10, 20	B0


Monocarrier dynamic torque specification (N · cm)						
Accurac	cy grade					
High grade	Precision					
1.0 - 5.9	3.1 – 11.5					
2.0 - 7.8	3.2 - 13.3					
2.5 - 10.8	4.0 - 16.4					
2.8 - 12.0	_					
	Accurace High grade 1.0 - 5.9 2.0 - 7.8 2.5 - 10.8					

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screws, linear guide parts and support units.
- 3. Consult NSK for life estimates under large moment loads.

	Lead	Shaft dia		Basic dynamic load ratings (N)			Basic static loa		
	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit
	(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load limit (N)
	5		8 300	30 800		5	12 700		
	10	, 15	8 140	24 400	7 100	10	12 800	22 800	3 040
	20	φ 15	5 080	19 400	7 100	20	7 460	22 800	3 040
Ī	30		5 500	16 930		30	8 580		

Basic static moment loads of linear guide

		U				
Clister	Basic static moment load (N · m)					
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}			
Single	770	300	300			

Dimensions of MCM08 (Double slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r L ₂	mm) <i>L</i> 3	No. of mounting holes	Inertia × 10 ⁻⁴ (kg · m ²)	Mass (kg)
*MCM08008H10D00	80	103 (135)	10	435	370	300	3	0.169	6.5
MCM08018H10D00	180	203	10	535	470	400	-	0.199	7.5
MCM08018H20D00	100	(235)	20	555	470	400	5	0.351	7.5
MCM08028H10D00	280	303	10	635	570	500	6	0.228	8.4
MCM08028H20D00	200	(335)	20	030	570	500	0	0.380	0.4
MCM08038H10D00	380	403	10	735	670	600	7	0.257	9.4
MCM08038H20D00	360	(435)	20	735	/35 0/0	370 000	/	0.409	9.4

Notes: 1. Bolt hole pitch L3 on item marked with * is 150 mm.

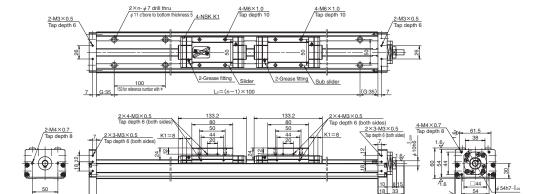
2. Reference numbers above are for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	Lead	High-grade, precision-grade
Standard	10, 20	00
LG2	10, 20	B0

Monocarrier dynamic torque specification (N · cr						
	Ball screw	Accuracy grade				
	lead(mm)	High grade	Precision			
	10	2.5 – 10.8	3.9 – 16.2			
	20	4.0 - 17.2	5.4 - 22.6			

Notes:


- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screws, linear guide parts and support units.
- Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dynamic load ratings (N)			Basic static loa		
L (mm)	d (mm)	Ball screw C _a	Linear guides	Support unit	Rated running distance L_{a} (km)	Ball screw C_{0a}	Linear guides	Support unit load limit (N)
10	ø 15	8 140	24 400	7 100	10	12 800	22 800	3 040
20	φ15	5 080	19 400	7 100	20	7 460	22 800	3 040

Basic static moment loads of linear guide

Clister	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Double	1 540	2 050	2 050

Dimensions of MCM08 (Double slider)

	Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r L2	mm) <i>L</i> 3	No. of mounting holes	Inertia × 10 ⁻⁴ (kg·m ²)	Mass (kg)
	MCM08048H10D00	480	503	10	835	770	700	8	0.287	10.3
-	MCM08048H20D00 MCM08058H10D00	580	(535) 603	20 10	935	870	800	0	0.439 0.316	11.5
Ξ	MCM08058H20D00 MCM08068H10D00	580	(635) 703	20 10	935	870	800	9	0.468 0.346	11.5
	MCM08068H10D00	680	(735)	20	1 035	970	900	10	0.346	12.2

Note: Reference numbers above are for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

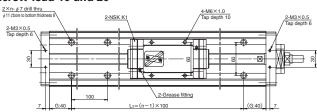
Grease	Lead	High-grade, precision-grade		
Standard	10, 20	00		
LG2	10, 20	В0		

ivioriocarrier dyn	iamic torque specification (N - cri					
Ball screw	Accuracy grade					
lead(mm)	High grade	Precision				
10	2.5 – 10.8	3.9 – 16.2				
20	4.0 - 17.2	5.4 - 22.6				

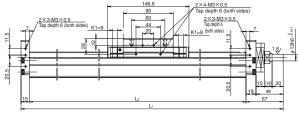
Notes:

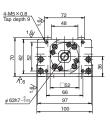
- Frictional resistance of NSK K1 is included in dynamic torque in table.
 Grease is packed into ball screws, linear guide parts and support units.
- 2. Greate NCK for life antiqueter and an lower parts and support u
- Consult NSK for life estimates under large moment loads.

Basic load ratings


	Lead	Shaft dia		Basic dynamic lo	ad ratings (N)		Basic static loa	Commont omit	
	l	d Ball screw Linear guides Support unit Rated running distance		Ball screw	Linear guides	Support unit			
	(mm)	(mm)	C_{a}	С	Ca	$L_{a}(km)$	C_{0a}	C_0	load limit (N)
1	10	/ 15	8 140	24 400	7 100	10	12 800	22 800	3 040
Ī	20 ¢ 15		5 080	19 400	/ 100	20	7 460	1 22 800	3 040

Basic static moment loads of linear guide


OI: I	Basic static moment load (N · m)					
Slider	Rolling M _{RO}	, , , , , , , , , , , , , , , , , , , ,				
Double	1 540	2 050	2 050			
	Slider Double	Slider Rolling M _{RO}	Slider Rolling M _{RO} Pitching M _{PO}			


Accuracy grade: High grade (H)

Ball screw lead 10 and 20

Dimensions of MCM10 (Single slider)

Reference No.	Nominal stroke		Ball screw lead	Bod	y length (r		No. of mounting holes		Mass		
	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	$\times 10^{-4} (kg \cdot m^2)$	(kg)		
MCM10010H10K00	100	133	10	262	362 280 2	200	200 2*	0.332	7.8		
MCM10010H20K00	100	(151)	20	302		200		0.446	7.0		
◇MCM10015H10K00	150	183	10	412	330	300	4	0.378	8.7		
◇MCM10015H20K00	150	(201)	20	412 330	330	300	4	0.492] 0.7		
MCM10020H10K00	200	233	10	462	380	300	4	0.425	9.5		
MCM10020H20K00	200	(251)	20	402 300	300	300	4	0.539	0.0		
◇MCM10025H10K00	250	283	10	512 4	430	400	5	0.472	10.4		
◇MCM10025H20K00	250	(301)	20					0.586	10.4		
MCM10030H10K00	300	333	10	562	480	400	5	0.519	11.2		
MCM10030H20K00	300	(351)	20	302	400	400	5	0.633	11.2		
MCM10040H10K00	400	433	10	662	580	500	6	0.612	13.0		
MCM10040H20K00	400	(451)	20	002	500	300	0	0.726	13.0		
MCM10050H10K00		533	10					0.706			
MCM10050H20K00	500		20	762	680	600	7	0.820	14.6		
MCM10050H30K00		230		(551)	30					1.010	

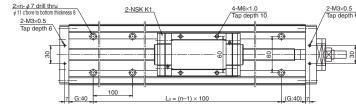
Notes: 1) Dimension G is 15 for items marked with \diamondsuit .

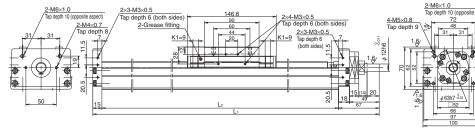
2) *: Use mounting holes on each end of the rail.

Monocarrier dynamic torque specification (N · cm								
Ball screw	Accuracy grade							
lead(mm)	High grade	Precision						
10	2.7 - 10.8	4.7 – 19.7						
20	3.1 – 12.7	5.2 - 21.6						
30	51 - 180	_						

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screws, linear guide parts and support units.
- 3. Consult NSK for life estimates under large moment loads.

Basic load ratings


	Lead	Shaft dia		Basic dynamic lo	ad ratings (N)		Basic static loa	d ratings (N)	
	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit
	(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load limit (N)
	10		12 800	33 500		10	21 400		
	20	φ20	8 190	26 600	7 600	20	12 600	29 400	3 380
-	30		13 200	23 200		30	22 900]	


Basic static moment loads of linear guide

Clister	Basic static moment loads (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Single	1 170	425	425				

MCM10

Ball screw lead 30

Dimensions of MCM10 (Single slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r L ₂	nm) L ₃	No. of mounting holes	Inertia ×10 ⁻⁴ (kg·m²)	Mass (kg)
MCM10060H10K00 MCM10060H20K00 MCM10060H30K00	600	633 (651)	10 20 30	862	780	700	8	0.800 0.914 1.104	16.3
MCM10070H10K00 MCM10070H20K00 MCM10070H30K00	700	733 (751)	10 20 30	962	880	800	9	0.893 1.007 1.197	18.0
MCM10080H10K00 MCM10080H20K00 MCM10080H30K00	800	833 (851)	10 20 30	1 062	980	900	10	0.987 1.101 1.291	19.7
MCM10090H10K00 MCM10090H20K00	900	933 (951)	10 20	1 162	1 080	1 000	11	1.081 1.195	21.4
	1 000	1 033 (1 051)	10 20	1 262	1 180	1 000	11	1.174 1.288	23.1

Note: Dimension G is 90 for items marked with \diamondsuit .

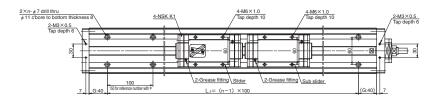
Monocarrier dynamic torque specification (N · cm) Ball screw Accuracy grade lead(mm) High grade 2.7 - 10.8 4.7 - 19.7 10 20 3.1 – 12.7 5.2 - 21.6 5.1 - 18.0

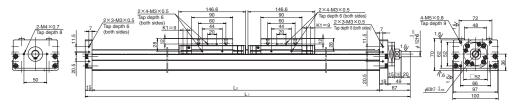
- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screws, linear guide parts and support units.
- 3. Consult NSK for life estimates under large moment loads.

Basic load ratings

30

Lead	Shaft dia		Basic dynamic lo	ad ratings (N)		Basic static loa	d ratings (N)	Cupport unit
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit
(mm)	(mm)	C_{a}	С	C_{a}	$L_{a}(km)$	C_{0a}	C_0	load limit (N)
10		12 800	33 500		10	21 400		
20	φ 20	8 190	26 600	7 600	20	12 600	29 400	3 380
30		13 200	23 200		30	22 900		

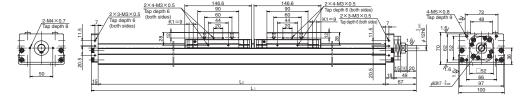

Basic static moment loads of linear guide


	Basic static moment loads (N⋅m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Single	1 170	425	425				

MCM10 (Double slider)

Accuracy grade: High grade (H)

MCM10 (Double slider)



Dimensions of MCM10 (Double slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r L ₂	mm) <i>L</i> 3	No. of mounting holes	Inertia $\times 10^{-4}$ (kg · m ²)	Mass (kg)
*MCM10007H10D00	70	86 (122)	10	462	380	300	3	0.463	11.0
MCM10017H10D00	170	186	10	562	480	400	5	0.557	12.7
MCM10017H20D00	170	(222)	20	302	460	400	5	0.785	12.7
MCM10027H10D00	270	286	10	662	580	500	6	0.650	13.4
MCM10027H20D00	270	(322)	20	002	300	300	0	0.878	15.4
MCM10037H10D00	370	386	10	762	680	600	7	0.744	15.1
MCM10037H20D00	370	(422)	20	702	000	000		0.972	15.1
MCM10047H10D00	470	486	10	862	780	700	8	0.838	17.8
MCM10047H20D00	470	(522)	20	002	700	700	°	1.066	17.0

Note: Bolt hole pitch L_3 on item marked with * is 150 mm.

2×n- φ 7 drill thru φ 11 c'bore to bottom thickness 8 2-M3×0.5	4-NSK K1	4-M6×1.0 Tap depth 10	4-M6×1.0 Tap depth 10	2-M3×0.5 Tap depth 6
Tap depth 6		-8	-8	8 - 8
	,	itting Slider 2-Grease fi	tting Sub slider	(G:40) 7

Dimensions of MCM10 (Double slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r L ₂	nm) <i>L</i> ₃	No. of mounting holes	Inertia ×10 ⁻⁴ (kg·m²)	Mass (kg)
MCM10057H10D00 MCM10057H20D00	570	586 (622)	10 20	962	880	800	9	0.931 1.159	19.5
MCM10067H10D00 MCM10067H20D00	670	686 (722)	10	1 062	980	900	10	1.025 1.253	21.2
	870	886 (922)	10 20	1 262	1 180	1 000	11	1.212 1.440	23.6

Note: Dimension G is 90 for items marked with \diamondsuit .

Monocarrier dynamic torque specification (N · cm)						
Ball screw	Accurac	y grade				
lead(mm)	High grade	Precision				
10	4.2 - 15.6	6.1 – 24.5				
20	5.0 - 19.6	7.0 – 28.5				

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screws, linear guide parts and support units.
- 3. Consult NSK for life estimates under large moment loads.

Basic load ratings

	Lead	Shaft dia		Basic dynamic lo	ad ratings (N)		Basic static loa	d ratings (N)	
	L (mm)	d (mm)	Ball screw	Linear guides	Support unit $C_{\rm a}$	Rated running distance $L_{ m a}$ (km)	Ball screw C_{0a}	Linear guides	Support unit load limit (N)
	10	φ20	12 800	33 500	7 600	10	21 400	29 400	3 380
-	20	φ 20	8 190	26 600	/ 600	20	12 600	29 400	3 380

Basic static moment loads of linear guide

Ol: I	Basic static moment load (N · m)				
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}		
Double	2 340	2 940	2 940		

Monocarrier dynamic torque specification (N · cm)

Ball screw	Accuracy grade				
lead(mm)	High grade	Precision			
10	4.2 – 15.6	6.1 – 24.5			
20	5.0 - 19.6	7.0 – 28.5			

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screws, linear guide parts and support units.
- 3. Consult NSK for life estimates under large moment loads.

Basic load ratings

Lead	Shaft dia		Basic dynamic load ratings (N)			Basic static load ratings (N)		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit
(mm)	(mm)	C_{a}	С	Ca	$L_{a}(km)$	C_{0a}	C ₀	load limit (N)
10	ø 20	12 800	33 500	7 600	10	21 400	29 400	3 380
20	φ 20	8 190	26 600	7 600	20	12 600	29 400	3 300

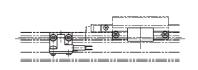
Basic static moment loads of linear guide

011-1	Basic static moment load (N · m)				
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}		
Double	2 340	2 940	2 940		

Proximity switch

(Example assembly)

	Model No.	F	Reference No.			B (mm)	Body width W (mm)
	MCM02	MC-SR02-00	MC-SR02-01	MC-SR02-02	17	2	28
	MCM03	MC-SR03-10	MC-SR03-11	MC-SR03-12	17	3	34
	MCM05	MC-SR05-10	MC-SR05-11	MC-SR05-12	17	15	48.6
	MCM06	MC-SR06-10	MC-SR06-11	MC-SR06-12	17	19	58
	MCM08	MC-SR08-10	MC-SR08-11	MC-SR08-12	16	27	80
	MCM10	MC-SR10-10	MC-SR10-11	MC-SR10-12	16	35	100
Quantity	Proximity switch (normally open contact)	_	3	1	E2S-W1	3 (OMRO	N Corp.)
Qualitity	Proximity switch (normally close contact)	3	_	2	E2S-W1	4 (OMRO	N Corp.)


Notes: 1. See page C137 for proximity switch specifications.

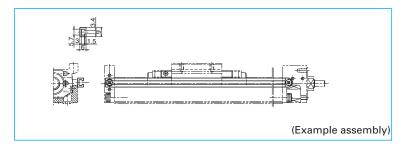
A sensor unit consists of sensors, a sensor dog, and sensor mounting parts.
 Sensor units for MCM02 contain two sensor dogs.

4. A spacer plate is required when using a cover unit or sensor unit for MCM03 with a lead of 1 or 2 mm. (Refer to page C53.)

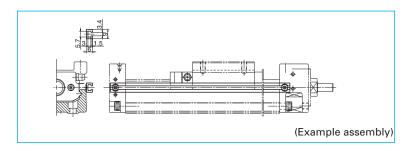
Photo sensor

(Example assembly)

I	Model No.	Reference No.	C (mm)	D (mm)	Body width W (mm)	Remarks
	MCM03	MC-SR03-13	24	0.5	34	
	MCM05	MC-SR05-13	24	5	48.6	EE-SX674 (OMRON Corp.)
	MCM06	MC-SR06-13	24	9	58	3 sets
	MCM08	MC-SR08-13	23	17	80	(EE-1001 connector attachment)
	MCM10	MC-SR10-13	22	24	100	


Notes: 1. See page C138 for photo sensor specifications.
2. A sensor unit consists of sensors, a sensor dog, and sensor mounting parts.
3. A spacer plate is required when using a cover unit or sensor unit for MCM03 with a lead of 1 or 2 mm. (Refer to page C53.)

(1) Sensor Rail


Sensor rail for MCM03: MC-SRL3- * * * *

Sensor rail for MCM05: MC-SRL5- * * * *

Sensor rail for MCM02: MC-SRL2- * * * * Sensor rail for MCM06: MC-SRL6- * * * * Sensor rail for MCM08: MC-SRL8- * * * * Sensor rail for MCM10: MC-SRL1- * * * *

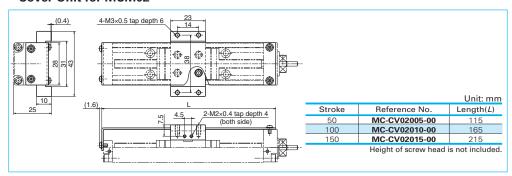
Notes: 1. * * * * is the same as rail dimension L_2 .

- 2. Please assemble the attached seat between the sensor rail and the support unit for MCM03, MCM05, MCM06 and MCM08.
- 3. For combinations of sensors and rails, see pages C51 to C52.

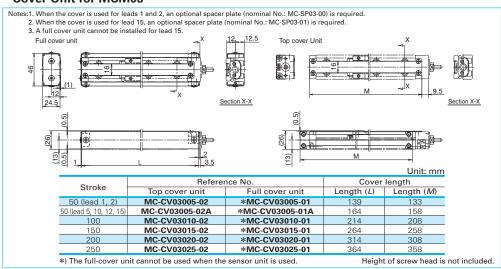
MCM Model Sensor Rail Combinations

Table 4	Body length L2	Deference No	Concer rollf
Model No.	(mm)	Reference No.	Sensor rail reference No
	100	MCM02005H01K MCM02005P01K MCM02005H02K MCM02005P02K	MC-SRL2-0100 ^{**}
MCM02	150	MCM02010H01K MCM02010P01K MCM02010H02K MCM02010P02K	MC-SRL2-0150
	200	MCM02015H01K MCM02015P01K MCM02015H02K MCM02015P02K	MC-SRL2-0200
	115	MCM03005P01K00 MCM03005P02K00	MC-SRL3-0115
	140	MCM03005H05K00 MCM03005H10K00 MCM03005H12K00 MCM03005H15K00	MC-SRL3-0140
	190	MCM03010P01K00 MCM03010P02K00 MCM03010H05K00 MCM03010H10K00 MCM03010H12K00 MCM03010H15K00	MC-SRL3-0190
MCM03	240	MCM03015P01K00 MCM03015P02K00 MCM03015H05K00 MCM03015H10K00 MCM03015H12K00 MCM03015H15K00	MC-SRL3-0240
	290	MCM03020H05K00 MCM03020H10K00 MCM03020H12K00 MCM03020H15K00	MC-SRL3-0290
	340	MCM03025H05K00 MCM03025H10K00 MCM03025H12K00 MCM03025H15K00	MC-SRL3-0340
	180	MCM05005H05K00 MCM05005H10K00 MCM05005H20K00	MC-SRL5-0180
	230	MCM05010H05K00 MCM05010H10K00 MCM05010H20K00	MC-SRL5-0230
	280	MCM05015H05K00 MCM05015H10K00 MCM05015H20K00 MCM05006H10D00	MC-SRL5-0280
	330	MCM05020H05K00 MCM05020H10K00 MCM05020H20K00 MCM05011H10D00	MC-SRL5-0330
MCM05	380	MCM05025H05K00 MCM05025H10K00 MCM05025H20K00 MCM05016H10D00	MC-SRL5-0380
	430	MCM05030H05K00 MCM05030H10K00 MCM05030H20K00 MCM05030H30K00 MCM05021H10D00 MCM05021H20D00	MC-SRL5-0430
	530	MCM05040H05K00 MCM05040H10K00 MCM05040H20K00 MCM05040H30K00 MCM05031H10D00	MC-SRL5-0530

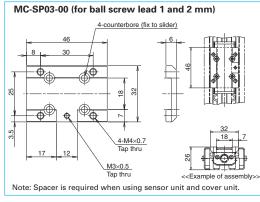
Model No.	Body length L ₂ (mm)	Reference No.	Sensor rail reference No.				
	530	MCM05031H20D00	MC-SRL5-0530				
	630	MCM05050H05K00 MCM05050H10K00 MCM05050H20K00 MCM05050H30K00 MCM05041H10D00 MCM05041H20D00	MC-SRL5-0630				
MCM05	730	MCM05060H05K00 MCM05060H10K00 MCM05060H20K00 MCM05060H30K00 MCM05051H10D00 MCM05051H20D00	MC-SRL5-0730				
	190	MCM06005H05K02 MCM06005H10K00 MCM06005H20K00	MC-SRL6-0190				
	240	MCM06010H05K02 MCM06010H10K00 MCM06010H20K00	MC-SRL6-0240				
	290	MCM06015H05K02 290 MCM06015H10K00 M MCM06015H20K00					
	340	MCM06020H05K02 MCM06020H10K00 MCM06020H20K00 MCM06011H05D02 MCM06011H10D00	MC-SRL6-0340				
	390	MCM06025H05K02 MCM06025H10K00 MCM06025H20K00	MC-SRL6-0390				
	440	MCM06030H05K02 MCM06030H10K00 MCM06030H20K00 MCM06021H05D02 MCM06021H10D00 MCM06021H20D00	MC-SRL6-0440				
MCM06	540	MCM06040H05K02 MCM06040H10K00 MCM06040H20K00 MCM06031H05D02 MCM06031H10D00 MCM06031H20D00	MC-SRL6-0540				
	640	MCM06050H05K02 MCM06050H10K00 MCM06050H20K00 MCM06041H05D02 MCM06041H10D00 MCM06041H20D00	MC-SRL6-0640				
	740	MCM06060H05K02 MCM06060H10K00 MCM06060H20K00 MCM06051H10D00 MCM06051H20D00	MC-SRL6-0740				
	840	MCM06070H05K02 MCM06070H10K00 MCM06070H20K00 MCM06061H10D00 MCM06061H20D00	MC-SRL6-0840				
	940	MCM06080H05K02 MCM06080H10K00 MCM06080H20K00 MCM06071H10D00 MCM06071H20D00	MC-SRL6-0940				

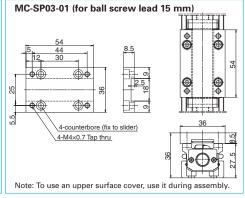

*) When using NSK standard sensors, prepare two sensor
rails. Two sensor rails will also be required for other
Monocarriers depending on signal points of sensors. Contact
NSK for details

Model No.	Body length L ₂ (mm)	Reference No.	Sensor rail reference No.
	220	MCM08005H05K02 MCM08005H10K00	MC-SRL8-0220
	270	MCM08010H05K02 MCM08010H10K00 MCM08010H20K00	MC-SRL8-0270
	320	MCM08015H05K02 MCM08015H10K00 MCM08015H20K00	MC-SRL8-0320
	370	MCM08020H05K02 MCM08020H10K00 MCM08020H20K00 MCM08008H10D00	MC-SRL8-0370
	420	MCM08025H05K02 MCM08025H10K00 MCM08025H20K00	MC-SRL8-0420
мсмов	470	MCM08030H05K02 MCM08030H10K00 MCM08030H20K00 MCM08018H10D00 MCM08018H20D00	MC-SRL8-0470
	570	MCM08040H05K02 MCM08040H10K00 MCM08040H20K00 MCM08040H30K00 MCM08028H10D00 MCM08028H20D00	MC-SRL8-0570
	670	MCM08050H05K02 MCM08050H10K00 MCM08050H20K00 MCM08050H30K00 MCM08038H10D00 MCM08038H20D00	MC-SRL8-0670
	770	MCM08060H05K02 MCM08060H10K00 MCM08060H20K00 MCM08060H30K00 MCM08048H10D00 MCM08048H20D00	MC-SRL8-0770
	870	MCM08070H05K02 MCM08070H10K00 MCM08070H20K00 MCM08070H30K00 MCM08058H10D00 MCM08058H20D00	MC-SRL8-0870
	970	MCM08080H05K02 MCM08080H10K00 MCM08080H20K00 MCM08080H30K00 MCM08068H10D00 MCM08068H20D00	MC-SRL8-0970

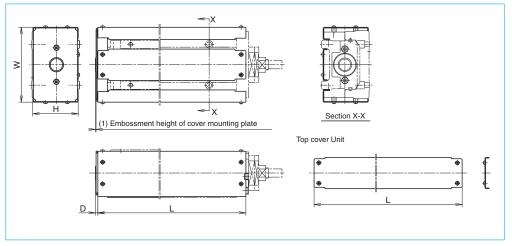

Model No.	Body length L ₂ (mm)	Reference No.	Sensor rail reference No.
	280	MCM10010H10K00 MCM10010H20K00	MC-SRL1-0280
	330	MCM10015H10K00 MCM10015H20K00	MC-SRL1-0330
	380	MCM10020H10K00 MCM10020H20K00 MCM10007H10D00	MC-SRL1-0380
	430	MCM10025H10K00 MCM10025H20K00	MC-SRL1-0430
	480	MCM10030H10K00 MCM10030H20K00 MCM10017H10D00 MCM10017H20D00	MC-SRL1-0480
	580	MCM10040H10K00 MCM10040H20K00 MCM10027H10D00 MCM10027H20D00	MC-SRL1-0580
MCM10	680	MCM10050H10K00 MCM10050H20K00 MCM10050H30K00 MCM10037H10D00 MCM10037H20D00	MC-SRL1-0680
	780	MCM10060H10K00 MCM10060H20K00 MCM10060H30K00 MCM10047H10D00 MCM10047H20D00	MC-SRL1-0780
	880	MCM10070H10K00 MCM10070H20K00 MCM10070H30K00 MCM10057H10D00 MCM10057H20D00	MC-SRL1-0880
	980	MCM10080H10K00 MCM10080H20K00 MCM10080H30K00 MCM10067H10D00 MCM10067H20D00	MC-SRL1-0980
	1 080	MCM10090H10K00 MCM10090H20K00	MC-SRL1-1080
	1 180	MCM10100H10K00 MCM10100H20K00 MCM10087H10D00 MCM10087H20D00	MC-SRL1-1180

C-1-5. 3. 2 Cover Unit


Cover Unit for MCM02



Cover Unit for MCM03

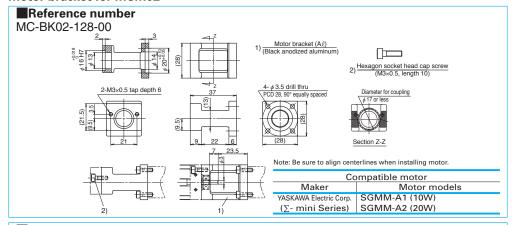


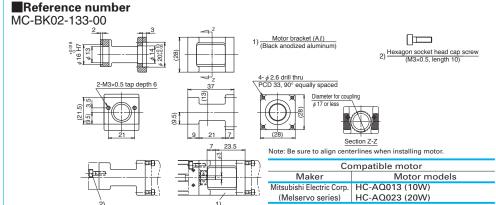
Spacer for MCM03 (Optional)

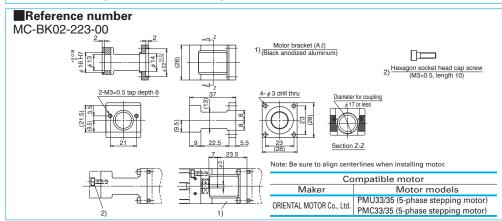
Cover unit for MCM05, 06, 08, and 10

Unit: mm

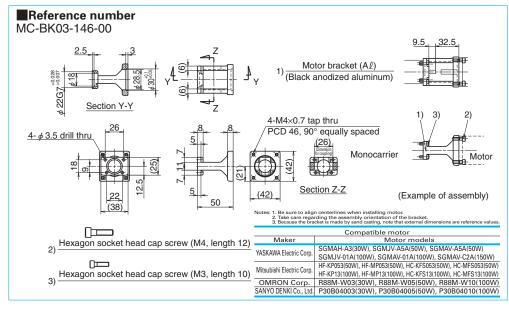
Model No.	Sti	roke	Cover unit r	eference No.	1	Cover	length	
iviodei ivo.	Single slider	Double slider	Top cover Unit	Full cover Unit*1	Length (L)	Height (H)	Width (W)	End part (D
	50	_	MC-CV05005-01	MC-CV05005-00	200			
	100	_	MC-CV05010-01	MC-CV05010-00	250			
	150	60	MC-CV05015-01	MC-CV05015-00	300			
	200	110	MC-CV05020-01	MC-CV05020-00	350			
MCM05	250	160	MC-CV05025-01	MC-CV05025-00	400	38.5	65	2.6
	300	210	MC-CV05030-01	MC-CV05030-00	450			
	400	310	MC-CV05040-01	MC-CV05040-00	550			
	500	410	MC-CV05050-01	MC-CV05050-00	650			
	600	510	MC-CV05060-01	MC-CV05060-00	750			
	50	_	MC-CV06005-01	MC-CV06005-00	225			
	100	_	MC-CV06010-01	MC-CV06010-00	275	1		
	150	_	MC-CV06015-01	MC-CV06015-00	325	1		
Г	200	110	MC-CV06020-01	MC-CV06020-00	375	1		
	250	_	MC-CV06025-01	MC-CV06025-00	425	1		*
MCM06	300	210	MC-CV06030-01	MC-CV06030-00	475	48.5	75	_
	400	310	MC-CV06040-01	MC-CV06040-00	575			
	500	410	MC-CV06050-01	MC-CV06050-00	675			
	600	510	MC-CV06060-01	MC-CV06060-00	775			
	700	610	MC-CV06070-01	MC-CV06070-00	875	1		
	800	710	MC-CV06080-01	MC-CV06080-00	975	1		
	50	_	MC-CV08005-01	MC-CV08005-00	248			
	100	_	MC-CV08010-01	MC-CV08010-00	298			
	150	_	MC-CV08015-01	MC-CV08015-00	348			
	200	80	MC-CV08020-01	MC-CV08020-00	398			
	250	_	MC-CV08025-01	MC-CV08025-00	448			
MCM08	300	180	MC-CV08030-01	MC-CV08030-00	498	56.5	90	2.6
	400	280	MC-CV08040-01	MC-CV08040-00	598			
	500	380	MC-CV08050-01	MC-CV08050-00	698			
	600	480	MC-CV08060-01	MC-CV08060-00	798			
	700	580	MC-CV08070-01	MC-CV08070-00	898			
	800	680	MC-CV08080-01	MC-CV08080-00	998			
L	100	_	MC-CV10010-01	MC-CV10010-00	308			
L	150	_	MC-CV10015-01	MC-CV10015-00	358			
L	200	70	MC-CV10020-01	MC-CV10020-00	408			
	250	_	MC-CV10025-01	MC-CV10025-00	458			
L	300	170	MC-CV10030-01	MC-CV10030-00	508			
MCM10	400	270	MC-CV10040-01	MC-CV10040-00	608	66.5	110	3.6
IVICIVITO	500	370	MC-CV10050-01	MC-CV10050-00	708	00.5	'''	3.0
	600	470	MC-CV10060-01	MC-CV10060-00	808			
	700	570	MC-CV10070-01	MC-CV10070-00	908			
	800	670	MC-CV10080-01	MC-CV10080-00	1008			
	900	_	MC-CV10090-01	MC-CV10090-00	1108			
	1000	870	MC-CV10100-01	MC-CV10100-00	1208			

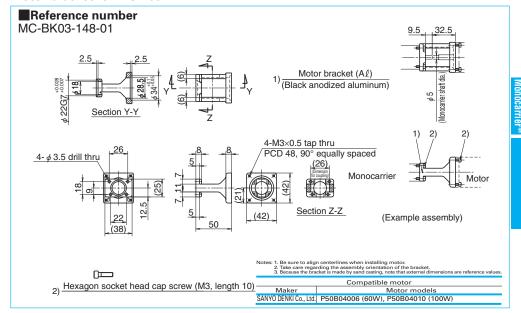

Note: The dimensions of covers shown above do not include the head height of fixing machine screws. Add the head of machine screws of approximately 2.5 mm to the outer measurement of a cover unit. Set a margin for mechanical interference with surrounding components.

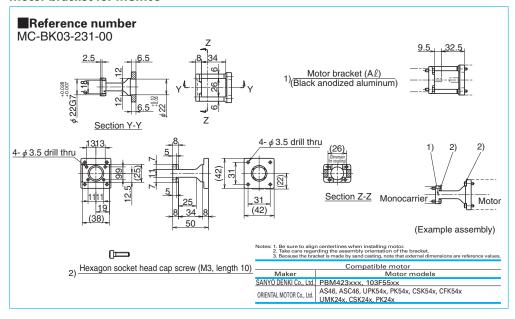

- *1) When using sensor units, full-cover units cannot be used.
- *2) A cover mounting plate is not used with MCM06.


C-1-5. 3. 3 Motor Bracket

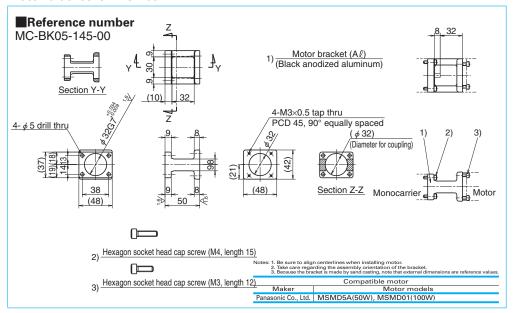
Motor models are subject to change at motor manufacturers. For details, please contact the manufacturer.

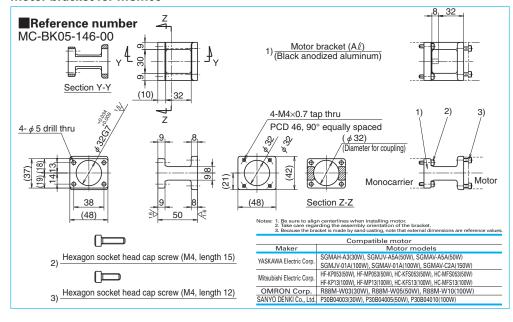

Motor bracket for MCM02

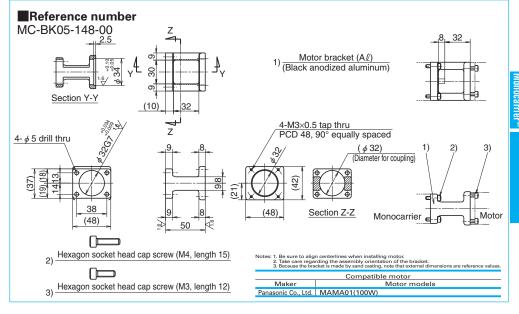




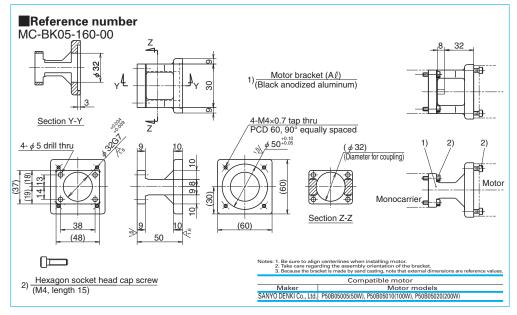
Motor bracket for MCM03

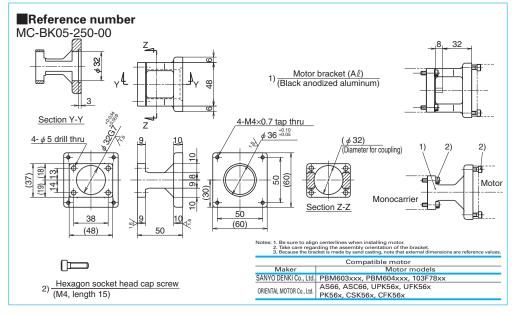



Motor bracket for MCM03

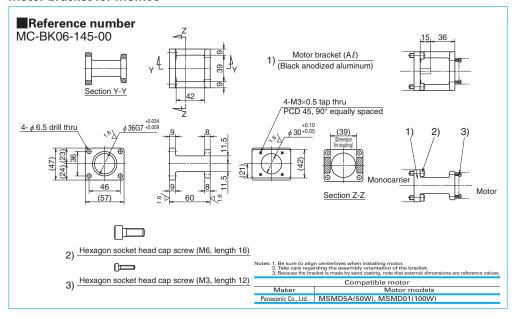


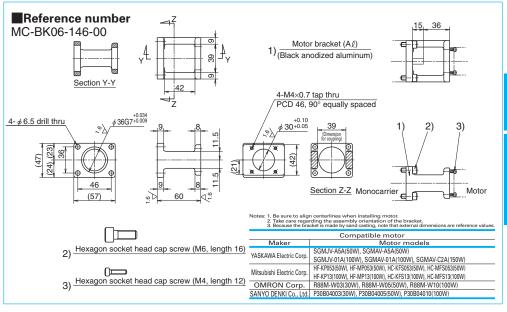
Motor bracket for MCM05


Motor bracket for MCM05

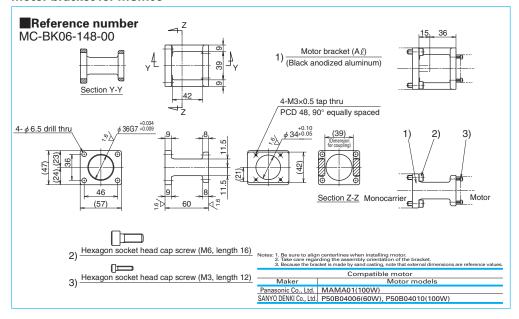


NSK

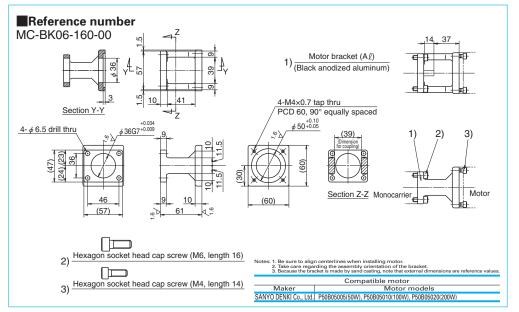

Motor bracket for MCM05

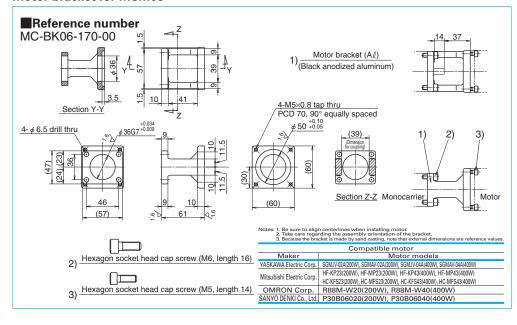


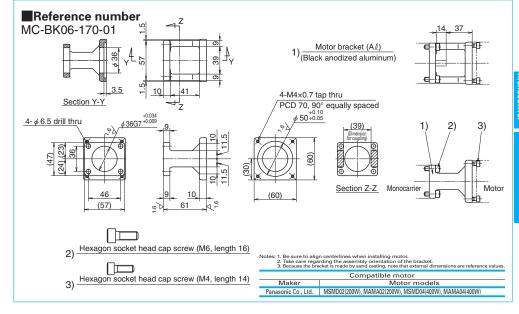
Motor bracket for MCM05



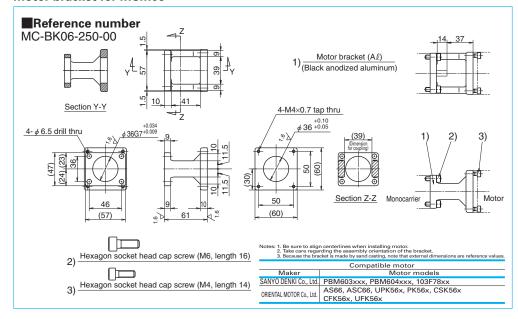
Motor bracket for MCM06



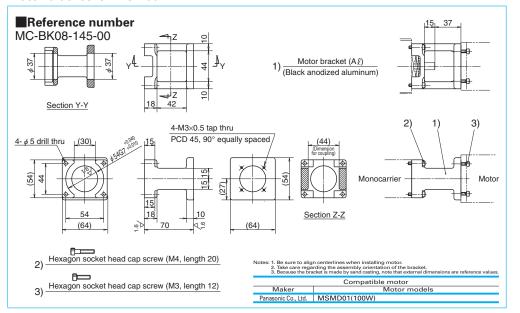

Motor bracket for MCM06

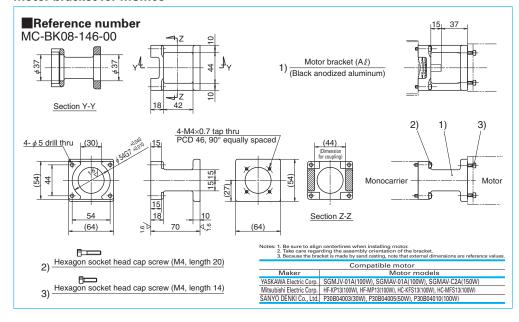


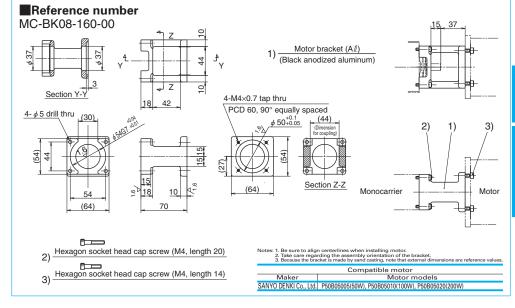
Motor bracket for MCM06



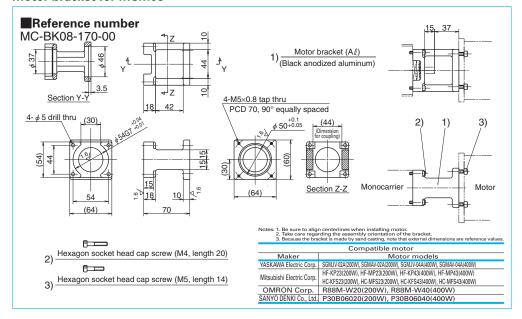
Motor bracket for MCM06



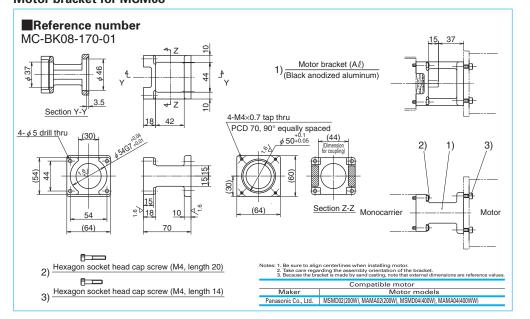

Motor bracket for MCM06

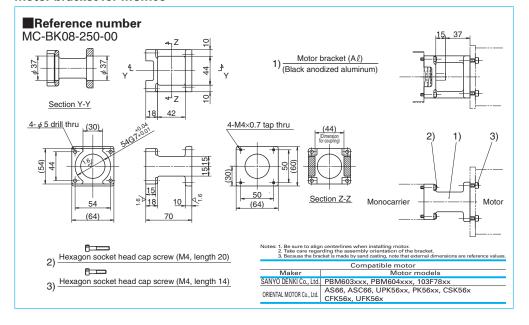


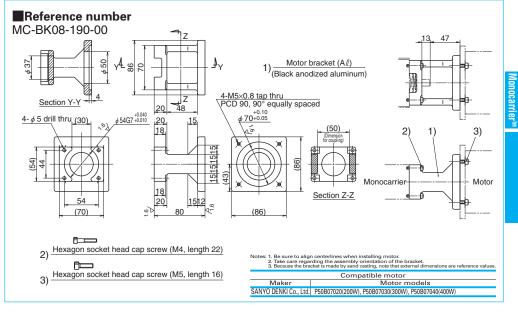
Motor bracket for MCM08



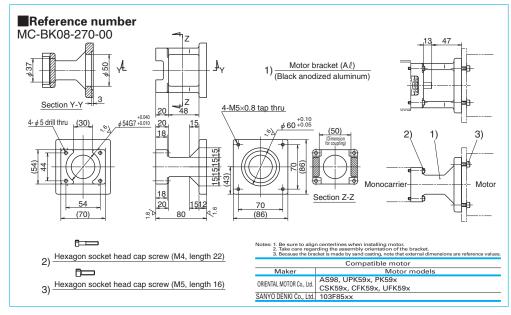
Motor bracket for MCM08



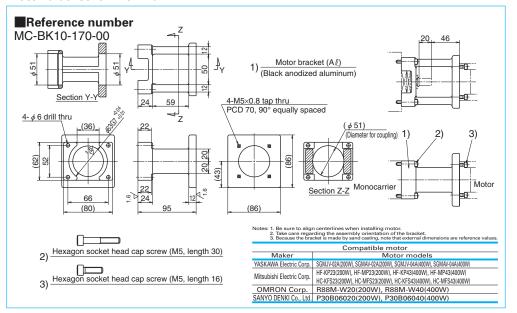

Motor bracket for MCM08

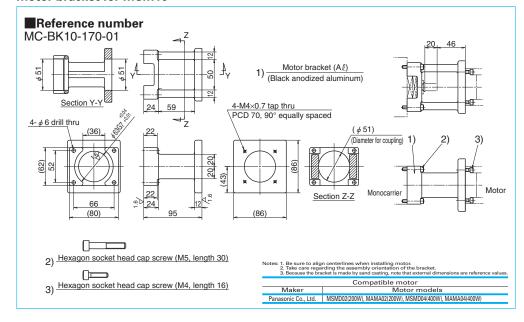


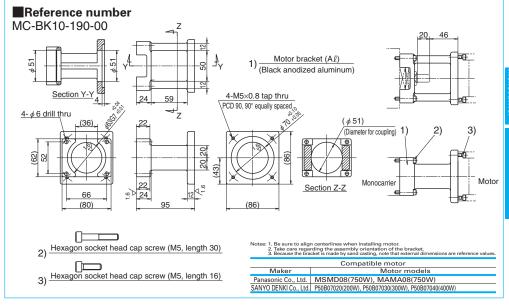
Motor bracket for MCM08



Motor bracket for MCM08




Motor bracket for MCM08



Motor bracket for MCM10

Motor bracket for MCM10

Accessories

Motor bracket for MCM10

MCM Model Motor Bracket Compatibility Table 5

Reference No. code 1 2 3	Motor bracket reference No. MC-BK02-128-00 MC-BK02-133-00 MC-BK02-223-00	Motor manufacturer YASKAWA Electric Corp. Mitsubishi Electric Corp.	Stepping motor model No.	10	20	30			e of AC serve												
3	MC-BK02-128-00 MC-BK02-133-00	YASKAWA Electric Corp.	model No.	10	20	- 00															
3	MC-BK02-133-00					30	50	60	100	150	200	300	400	750							
3		Mitsubishi Electric Corp.		SGMM-A1	SGMM-A2																
	MC-BK02-223-00			HC-AQ013	HC-AQ023																
		ORIENTAL MOTOR Co., Ltd.	PMU33/35 (5-phase)																		
1			PMC33/35 (5-phase)																		
1		YASKAWA Electric Corp.				SGMAH-A3	SGMJV-A5A		SGMJV-01A	SGMAV-C2A											
1							SGMAV-A5A		SGMAV-01A												
1							HF-KP053		HF-KP13												
	MC-BK03-146-00	Mitsubishi Electric Corp.					HF-MP053		HF-MP13												
							HC-KFS053		HC-KFS13												
							HC-MFS053		HC-MFS13												
		OMRON Corp.				R88M-W03	R88M-W05		R88M-W10												
		SANYO DENKI Co., Ltd.				P30B04003	P30B04005		P30B04010												
2	MC-BK03-148-01	SANYO DENKI Co., Ltd.						P50B04006	P50B04010												
		SANYO DENKI Co., Ltd.	PBM423xxx																		
		SANYO DENKI Co., Ltd.	103F55xx																		
			AS46, ASC46																		
3	MC-BK03-231-00	ORIENTAL MOTOR Co., Ltd.	UPK54x, PK54x CSK54x, CFK54x																		
		OHIENTAL MOTOR Co., Ltd.	UMK24x, CFK54x																		
1	MC DVOE 145 00	December Co. 111	PK24X				AACA ADE A		AACAADC4												
- 1	IVIC-BRU5-145-00					-															
		YASKAWA Electric Corp.				SGMAH-A3				SGMAV-C2A											
2 MC-BK0																					
	MC-BK05-146-00																				
		MC-BK05-146-00	MC-BK05-146-00	MC-BK05-146-00	MC-BK05-146-00	MC-BK05-146-00	MC-BK05-146-00	Mitsubishi Electric Corp.													
		OMBON C				DOOM A VAVOOR															
	140 DV05 440 00					P30B04003	P30B04005														
							DEADAFAAF				DEADAFAAA										
4	IMC-BK05-160-00		DD1 4000				PEUBUEUUUS		P50B05010		P50B05020										
5 M	MC-BK05-250-00	SANYO DENKI Co., Ltd.																			
		CANNO DENIVI C- 144																			
		SAINTO DEINKI CO., LIU.																			
		JRIENTAL MOTOR Co., Ltd.	ORIENTAL MOTOR Co., Ltd.	ORIENTAL MOTOR Co., Ltd.	ORIENTAL MOTOR Co., Ltd.																
-1	MC DV06 145 00	Panagonia Co. Ltd.	CIRDOX				MCMDEA		MCMD01												
- '	MC-BK06-145-00																				
		YASKAWA Electric Corp.								SGMAV-C2A											
2	MC-BK06-146-00	MC-BK06-146-00	MC-BK06-146-00	MC-BK06-146-00	MC-BK06-146-00	MC-BK06-146-00	Mitsubishi Electric Corp.														
		OMBON C				D008414400															
						F30B04003	F30B04005														
3	MC-BK06-148-00							1 30004000													
							DEADAGAAG				DEODOEOGO										
4	MC-BK06-160-00	SAINTO DEINKI CO., LIU.					FOUDUSUUS		FOUDUOUTU		F5UBU5U2U										
											SGM IV-02A		SGM IV.O.A								
			YASKAWA Electric Corp.																		
5	MC-BK06-170-00	Mitsubishi Electric Corp.																			
		OMBON Corn																			
						-															
6	MC-BK06-170-01	Panasonic Co., Ltd.									MAMA02										
			PBM603xxx																		
		SANYO DENKI Co., Ltd.																			
		SANYO DENKI Co. 1 tel																			
7	MC-BK06-250-00																				
						l			1	1											
		ORIENTAL MOTOR Co., Ltd.				l			1	1											
	3 4 5 5 6 6	2 MC-BK05-146-00 3 MC-BK05-148-00 4 MC-BK05-160-00 5 MC-BK06-146-00 2 MC-BK06-146-00 4 MC-BK06-146-00 5 MC-BK06-170-00 6 MC-BK06-170-01	2 MC-BK05-146-00 Mitsubishi Electric Corp. 3 MC-BK05-148-00 Penasonic Co., Ltd. 4 MC-BK05-180-00 SANYO DENKI Co., Ltd. 5 MC-BK05-180-00 SANYO DENKI Co., Ltd. 5 MC-BK05-180-00 SANYO DENKI Co., Ltd. 5 MC-BK05-180-00 ORIENTAL MOTOR Co., Ltd. 1 MC-BK06-145-00 Penasonic Co., Ltd. 1 MC-BK06-146-00 Mitsubishi Electric Corp. 2 MC-BK06-146-00 Mitsubishi Electric Corp. 3 MC-BK06-180-00 Mitsubishi Electric Corp. 4 MC-BK06-180-00 Mitsubishi Electric Corp. 5 MC-BK06-170-00 Mitsubishi Electric Corp. 6 MC-BK06-170-00 Mitsubishi Electric Corp. 7 MC-BK06-170-00 Mitsubishi Electric Corp. 8 MC-BK06-170-00 Mitsubishi Electric Corp. 1 MC-BK06-170-00 Mitsubishi Electric Corp. 1 MC-BK06-170-00 Mitsubishi Electric Corp. 1 MC-BK06-170-00 Mitsubishi Electric Corp. 2 MC-BK06-170-01 Mitsubishi Electric Corp. 3 MC-BK06-170-01 Mitsubishi Electric Corp. 4 MC-BK06-170-01 Mitsubishi Electric Corp. 5 MC-BK06-170-01 Mitsubishi Electric Corp. 5 MC-BK06-170-01 Mitsubishi Electric Corp.	1 MC-BK05-145-00 Panasonic Co., Ltd. 2 MC-BK05-146-00 Mitsubishi Electric Corp. 2 MC-BK05-146-00 Mitsubishi Electric Corp. 3 MC-BK05-148-00 Panasonic Co., Ltd. 3 MC-BK05-189-00 Panasonic Co., Ltd. 4 MC-BK05-189-00 Panasonic Co., Ltd. 5 MC-BK05-250-00 ORIENTA MOTOR Co., Ltd. 5 MC-BK05-250-00 ORIENTA MOTOR Co., Ltd. 6 MC-BK06-148-00 Mitsubishi Electric Corp. 2 MC-BK06-148-00 Mitsubishi Electric Corp. 3 MC-BK06-189-00 Mitsubishi Electric Corp. 4 MC-BK06-189-00 Mitsubishi Electric Corp. 5 MC-BK06-189-00 Mitsubishi Electric Corp. 6 MC-BK06-190-00 Mitsubishi Electric Corp. 6 MC-BK06-170-00 Mitsubishi Electric Corp. 6 MC-BK06-170-00 Mitsubishi Electric Corp. 7 MC-BK06-170-01 Panasonic Co., Ltd. 8 ANYO DENKI Co., Ltd. 9 Panasonic Co., Ltd. 8 ANYO DENKI Co., Ltd. 9 Panasonic Co., Ltd. 1 PBM803-0xx,	1 MC-BK05-145-00 Panasonic Co., Ltd. 2 MC-BK05-146-00 Mitsubish Electric Corp. OMRON Corp. SANYO DENKI Co., Ltd. 3 MC-BK05-189-00 SANYO DENKI Co., Ltd. 4 MC-BK05-189-00 SANYO DENKI Co., Ltd. SANYO DENKI Co., Ltd. 5 MC-BK05-259-00 ORIENTAL MOTOR Co., Ltd. WASKAWA Electric Corp. 2 MC-BK06-145-00 Panasonic Co., Ltd. WASKAWA Electric Corp. OMRON Corp. SANYO DENKI Co., Ltd. ASSB, ASCBB UPKSBx, UFKSBx CFKSBx CFKSB	1 MC-BK05-145-00 Panasonic Co., Ltd. 2 MC-BK05-146-00 Mitsubish Electric Corp. OMRON Corp. SANYO DENKI Co., Ltd. 3 MC-BK05-186-00 SANYO DENKI Co., Ltd. 4 MC-BK05-186-00 Panasonic Co., Ltd. SANYO DENKI Co., Ltd. 5 MC-BK05-250-00 ORIENTAL MOTOR Co., Ltd. 1 MC-BK06-145-00 Panasonic Co., Ltd. 1 MC-BK06-145-00 Panasonic Co., Ltd. 2 MC-BK06-146-00 Mitsubish Electric Corp. OMRON Corp. SANYO DENKI Co., Ltd. 2 MC-BK06-146-00 Mitsubish Electric Corp. OMRON Corp. SANYO DENKI Co., Ltd. 3 MC-BK06-146-00 Mitsubish Electric Corp. OMRON Corp. SANYO DENKI Co., Ltd. 4 MC-BK06-146-00 Mitsubish Electric Corp. OMRON Corp. SANYO DENKI Co., Ltd. 7 MC-BK06-170-00 Mitsubish Electric Corp. OMRON Corp. SANYO DENKI Co., Ltd. Panasonic Co., Ltd. AC-BK06-170-00 Panasonic Co., Ltd. Panasonic Co., Ltd. Panasonic Co., Ltd. AC-BK06-170-01 Panasonic Co., Ltd. Panasonic Co., Ltd. AC-BK06-170-01 Panasonic Co., Ltd. AC-BK06-170-01 Panasonic Co., Ltd. Panasonic Co., Ltd. Panasonic Co., Ltd. SANYO DENKI Co., Ltd. Panasonic Co., Ltd. SANYO DENKI Co., Ltd. Panasonic Co., Lt	1 MC-BK06-146-00 Panasonic Co., Ltd. 2 MC-BK06-146-00 Mitsubish Electric Corp. OMRON Corp. SANYO DENKI Co., Ltd. 4 MC-BK06-148-00 Panasonic Co., Ltd. 5 MC-BK06-148-00 Panasonic Co., Ltd. 5 MC-BK06-148-00 Panasonic Co., Ltd. 6 MC-BK06-148-00 Mitsubish Electric Corp. OMRON Corp. SANYO DENKI Co., Ltd. PBM603-xx PBM603-xx PBM604-xx SANYO DENKI Co., Ltd. PBM603-xx PBM603-xx PBM604-xx SANYO DENKI Co., Ltd. PSSS, CSK56x, CFK56x CFK56x PK56x, CSK56x, CFK56x	MC-BK06-146-00 Panasonic Co., Ltd. NSMDEA SGMA-ASA SGMA-	MC-BK05-146-00 Panasonic CoLtd. Panasonic C	MC-BK05-145-00 Panasonic Co., Ltd.	1 MC-BK05-145-00 Panasonic Co., Ltd. VASKAWA Electric Corp. SGMA-H-AS SGMAV-ASA SGMAV-C2A SGMAV-ASA SGMAV-C2A SGMAV-	1 MC-8K05-145-00 Parasonic Co., Ltd.	NC-8K05-145-00 Parasonic Co., Ltd. NSMOSA NSMOST	1 MC-8K05-146-00 Penasonic Co., Ltd. VASKAWA Berinc Corp. MISULabah Electric Corp. MISULabah							

C69 C70

NSK

(Table 5 cont.)

Vlodel No.	Reference No.	Motor bracket	Motor manufacturer	Stepping motor												
nodel IVO.	code	reference No.		model No.	10	20	30	50	60	100	150	200	300	400	750	
	1	MC-BK08-145-00	Panasonic Co., Ltd.							MSMD01						
			YASKAWA Electric Corp.							SGMJV-01A	SGMAV-C2A					
										SGMAV-01A					_	
	2	MC-BK08-146-00								HF-KP13 HF-MP13						
		IVIC-BK06-146-00	Mitsubishi Electric Corp.							HC-KFS13						
										HC-MFS13						
			SANYO DENKI Co., Ltd.				P30B04003	P30B04005		P30B04010						
	3	MC-BK08-160-00	SANYO DENKI Co., Ltd.					P50B05005		P50B05010		P50B05020				
												SGMJV-02A		SGMJV-04A		
			YASKAWA Electric Corp.									SGMAV-02A		SGMAV-04A		
												HF-KP23		HF-KP43		
	4	MC-BK08-170-00	Mitsubishi Electric Corp.									HF-MP23		HF-MP43		
	4	IVIC-BK06-170-00	Witsubishi Electric Corp.									HC-KFS23		HC-KFS43		
												HC-MFS23		HC-MFS43		
MCM08			OMRON Corp.									R88M-W20		R88M-W40		
			SANYO DENKI Co., Ltd.									P30B06020		P30B06040		
	5	MC-BK08-170-01	Panasonic Co., Ltd.									MSMD02		MSMD04		
			· ·									MAMA02		MAMA04		
	- 6	MC-BK08-190-00	SANYO DENKI Co., Ltd.									P50B07020	P50B07030	P50B07040		
	7	MC-BK08-250-00	SANYO DENKI Co., Ltd.	PBM603xxx,												
			SANYO DENKI Co., Ltd.	PBM604xxx 103F78xx												
			SANTO DEINKI CO., Etc.	AS66, ASC66												
			ORIENTAL MOTOR Co., Ltd.	UPK56x, PK56x												
				CSK56x, CFK56x												
				UFK56x												
		MC-BK08-270-00	SANYO DENKI Co., Ltd.	103F85xx												
				AS98												
	8		ORIENTAL MOTOR Co., Ltd.	UPK59x, PK59x												
				CSK59x, CFK59x												
				UFK59x												
			YASKAWA Electric Corp.									SGMJV-02A		SGMJV-04A		
		MC-BK10-170-00											SGMAV-02A		SGMAV-04A	
												HF-KP23		HF-KP43		
	1		Mitsubishi Electric Corp.									HF-MP23 HC-KFS23		HF-MP43 HC-KFS43		
												HC-MFS23		HC-MFS43		
			OMRON Corp.									R88M-W20		R88M-W40		
			SANYO DENKI Co., Ltd.									P30B06020		P30B06040		
												MSMD02		MSMD04		
MCM10	2	MC-BK10-170-01	Panasonic Co., Ltd.									MAMA02		MAMA04		
															MSMD0	
	3	MC-BK10-190-00	Panasonic Co., Ltd.												MAMAO	
			SANYO DENKI Co., Ltd.									P50B07020	P50B07030	P50B07040		
			SANYO DENKI Co., Ltd.	103F85xx												
			·	AS98												
	4	MC-BK10-270-00	ORIENTAL MOTOR Co., Ltd.	UPK59x, PK59x												
			22.11A2.WOTOTOO., Etc.	CSK59x, CFK59x												
				UFK59x		1	1	1		1	I			1		

Er III

C-1-6 MCH Model	
1. MCH Model Reference Number	C 75
Coding	
2. MCH Model Dimension Tables for	
Standard Products	
MCL06	C 76
MCH06	C77
MCH09	C 79
MCH10	C81
3. MCH Model Accessories	
3.1 Sensor Unit	C83
3.2 Cover Unit	C85
3.3 Intermediate Plate for Motor	C89

MCH Model

C73

C-1-6. 1 MCH Model Reference Number Coding

The 14th digit is set by NSK and cannot be specified by a customer.

For details, see the relevant page for the Reference No.

[With Accessories]

Example:

MCS 06 040 H 10 K 0 2 K 0 0 0

S: With MCH Accessories

R: With MCL Accessories

NSK management number

Sensor unit

Cover unit

Note: Option parts are available separately.

Intermediate plate for motor

Table 1 Sensor unit (See page C83.)

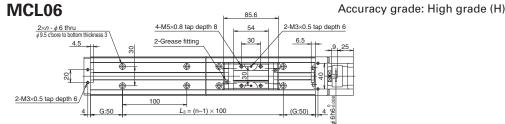
Reference No. code	Specification	Reference No.
0	N/A	_
1	Proximity switch (Normally close contact 3 pieces)	MC—SRHxx—10
2	Proximity switch (Normally open contact 3 pieces)	MC—SRHxx—11
3	Proximity switch (Normally open contact 1 piece, Normally close contact 2 pieces)	MC—SRHxx—12
4	Photo sensor 3 pieces	MC—SRHxx—13

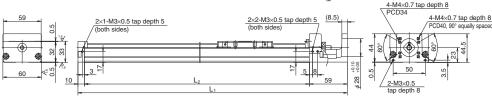
Notes: 1) xx: Nominal size

2) Sensor rails are not included with sensor units. If you require a rail, please specify this when ordering. (See page C83 to C84.)

Table 2 Cover unit (See page C85 to C87.)

Reference No. code	Specification	Reference No.
0	N/A	_
1	For single slider	MC—HVxxxxx—00
I	For double slider	MC—HVxxxxxD00


Note: xxxxx; Nominal size and stroke number


Table 3 Intermediate plate for motor (See page C89 to C92.)

Reference	-	Model No.		
No. code	MCH06 (MCL06)	MCH09	MCH10	
0	N/A N/A		N/A	
1	MC-BKH06-145-00	MC-BKH09-145-00	MC-BKH10-170-00	
2	MC-BKH06-146-00	MC-BKH09-146-00	MC-BKH10-170-01	
3	MC-BKH06-231-00	MC-BKH09-170-00	MC-BKH10-190-00	
4	MC-BKH06-250-00	MC-BKH09-170-01	MC-BKH10-190-01	
5	_	MC-BKH09-231-00	MC-BKH10-250-00	
6	_	MC-BKH09-250-00	MC-BKH10-270-00	

N/A: Not applicable

C-1-6. 2 MCH Model Dimension Tables for Standard Products

- Rail for MCL 06 is made lighter than that for MCH 06 by lowering rail height. Weight ratio between MCH 06 and MCL 06 is 5 to 4.
- Double slider specification is also available for MCL 06.
- Combinations of stroke and ball screw lead for MCL 06 are the same as those for MCH 06.

Dimensions of MCL06 (Single slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	L ₁	Bod L ₂	y length (r <i>L</i> 3	nm)	Inertia × 10 ⁻⁶ (kg · m²)	Mass (kg)
	- 50	53 (65)	5 10	219	150	100	2	2.38 3.45	1.0
MCL06010H05K02 MCL06010H10K02	100	103 (115)	5 10	269	200	100	2	3.17 4.12	1.3
MCL06020H05K02 MCL06020H10K02	200	203 (215)	5 10	369	300	200	3	4.51 5.46	1.9
MCL06030H10K02 MCL06030H20K02	300	303 (315)	10 20	469	400	300	4	6.80 10.6	2.6
MCL06040H10K02 MCL06040H20K02	400	403 (415)	10 20	569	500	400	5	8.13 11.9	3.2
MCL06050H10K02 MCL06050H20K02	500	503 (515)	10 20	669	600	500	6	9.47 13.3	3.9

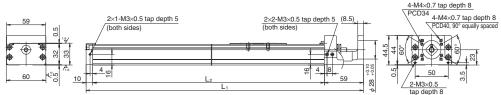
Notes: 1. Dimension G is 25 for items marked with \diamondsuit .

2. Reference numbers above are high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	High-grade	Precision-grade	Monocarrier dyr	onocarrier dynamic torque specificat				
Standard	02	(None)	Ball screw	Accurac	cy grade			
LG2	B2	В0	lead(mm)	High grade	Precisio			
LUZ	52	Во	5	1.0 - 4.8	1.9 - 7			
			10	1.1 – 5.8	2.1 - 8			
			20	1.0 7.0	2 5 10			

1 Frictional resistance of NSK K1 is included in dynamic


- 2. Grease is packed into the ball screw, linear guide parts and
- 3. Consult NSK for life estimates under large moment loads.

Basic load ratings

Lead	Shaft dia		Basic dynamic load ratings (N)				Basic static load ratings (N)		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit	
(mm)	(mm)	C_{a}	С	C_{a}	$L_{a}(km)$	C_{0a}	C_0	load limit (N)	
5		4 390	22 800		5	6 260			
10	φ 12	2 740	18 100	4 400	10	3 820	16 300	1 450	
20		2 660	14 400		20	3 800			

Basic static moment loads of linear guide

01.1	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	335	133	133

Dimensions of MCH06 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead		Вос	ly length (r	nm)	Inertia	Mass				
nererence No.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	× 10 ⁻⁶ (kg · m ²)	(kg)				
◇MCH06005H05K02		53	5					2.38					
◇MCH06005H10K02	50	(65)	10	219	150	100	2	3.45	1.8				
		(00)	20					7.25					
MCH06010H05K02		103	5					3.17					
MCH06010H10K02	100	(115)	10	269	200	100	2	4.12	2.2				
MCH06010H20K02		(115)	20					7,92					
MCH06020H05K02		203	5			300 200	3	4.51					
MCH06020H10K02	200	(215)	10	369	300			5.46	3.0				
MCH06020H20K02		(215)	20					9.26					
MCH06030H05K02		303	5					5.85					
MCH06030H10K02	300	300	300	300	300	300 (315)	10	469	400	300	4	6.80	3.7
MCH06030H20K02		(313)	20					10.6					
MCH06040H05K02		403	5					7.18					
MCH06040H10K02	400	(415)	10	569	500	400	5	8.13	4.5				
MCH06040H20K02		(410)	20					11.9					
MCH06050H05K02		503	5					8.52					
MCH06050H10K02	500	(515)	10	669	600	500	6	9.47	5.2				
MCH06050H20K02		(515)	20					13.3					

Notes: 1. Dimension G is 25 for items marked with \diamondsuit .

2. Reference numbers above are for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

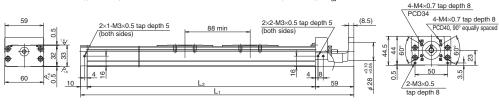
Coding for columns 13 and 14

Grease	High-grade	Precision-grade	Mono
Standard	02	(None)	Ball
LG2	B2	B0	lea

Monocarrier dynamic torque specification (N · cm)									
Ball screw	Accurac	cy grade							
lead(mm)	High grade	Precision							
5	1.0 - 4.8	1.9 - 7.6							
10	1.1 - 5.8	2.1 - 8.9							
20	16-79	25 - 106							

Notes:


- Frictional resistance of NSK K1 is included in dynamic torque in table.
- Grease is packed into the ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load ratings

Lead	Shaft dia Basic dynamic load ratings (N)			Basic static loa	d ratings (N)			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit
(mm)	(mm)	C_{a}	С	C_{a}	$L_{a}\left(km\right)$	C_{0a}	C_0	load limit (N)
5		4 390	22 800		5	6 260		
10	φ 12	2 740	18 100	4 400	10	3 820	16 300	1 450
20		2 660	14 400		20	3 800]	

Basic static moment loads of linear guide

CI:-I	Basic st	atic moment load	d (N·m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	335	133	133

Dimensions of MCH06 (Double slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	<i>L</i> 1	Bod L2	y length (r <i>L</i> 3	nm)	Inertia × 10-6(kg · m2)	Mass (kg)
MCH06010H05D02	400	115	5	369	300	00 200	3	4.82	3.5
MCH06010H10D02	100	(139)	10	309	300	200	ى ا	6.72	3.5
MCH06020H05D02	200	215	5	469	400	300	4	6.16	4.2
MCH06020H10D02	200	(239)	10	469	400	300	4	8.06	4.2
MCH06030H05D02	300	315	5	569	500	400	5	7.50	5.0
MCH06030H10D02	300	(339)	10	569	500	400	5	9.40	5.0
MCH06040H10D02	400	415	10	669	600	500	6	10.7	5.7
MCH06040H20D02	400	(439)	20	669	600	500	0	18.3	5.7

Note: Reference numbers above are for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	High-grade	Precision-grade
Standard	02	(None)
LG2	B2	В0
	1	

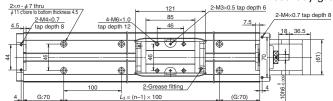
Monocarrier dynamic torque specification (N · cm)							
Ball screw	Accurac	Accuracy grade					
lead(mm)	High grade	Precision					
5	1.2 - 5.2	2.1 - 8.5					
10	1.5 - 9.6	2.5 - 10.7					
20	2.3 – 11.8	3.4 – 14.1					

Notes:

- Frictional resistance of NSK K1 is included in dynamic torque in table.
 Grease is packed into the ball screw, linear guide parts and
- support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load ratings

Lead	Shaft dia		Basic dynamic lo	oad ratings (N)	Basic static loa	d ratings (N)		
l	d	Ball screw Linear guides Support unit Rated running dista			Rated running distance	Ball screw	Linear guides	Support unit
(mm)	(mm)	C_{a}	С	Ca	$L_{a}(km)$	C_{0a}	C_0	load limit (N)
5		4 390	22 800		5	6 260		
10	φ 12	2 740	18 100	4 400	10	3 820	16 300	1 450
20	1	2 660	14 400]	20	3 800		


Basic static moment loads of linear guide

Cli-l	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Double	770	730	730

C77

Accuracy grade: High grade (H)

Accuracy grade: High grade (H)

Dimension of MCH09 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)			Bod	y length (r	nm)	Inertia	Mass
	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	× 10 ⁻⁶ (kg · m ²)	(kg)
MCH09010H05K02		107	5					9.2	
MCH09010H10K02	100	(121)	10	339.5	240	100	2	10.7	5.0
MCH09010H20K02		(121)	20					16.8	
MCH09020H05K02		207	5					12.4	
MCH09020H10K02 MCH09020H20K02	200	(221)	10	439.5	340	200	3	13.9	6.5
MCH09020H20K02			20 5					20.0 15.6	
MCH09030H10K02	300	307	10	539.5	440	300	4	17.1	8.1
MCH09030H20K02	- 555	(321)	20	000.0	440	440 300	·	23.2	0.1
MCH09040H05K02			5					18.8	
MCH09040H10K02	400	407 (421)	10	639.5	540	400	5	20.3	9.7
MCH09040H20K02		(421)	20					26.4	
MCH09050H05K02		507	5					22.0	
MCH09050H10K02	500	(521)	10	739.5	640	500	6	23.5	11
MCH09050H20K02 MCH09060H05K02		(== -/	20 5					29.6 25.2	
MCH09060H10K02	600	607	10	839.5	740	600	7	26.7	13
MCH09060H20K02	- 000	(621)	20	000.0	740	000	,	32.8	15
MCH09070H05K02			5					28.4	
MCH09070H10K02	700	707	10	939.5	840	700	8	30.0	14.5
MCH09070H20K02		(721)	20					36.0	
MCH09080H05K02		807	5					31.6	
MCH09080H10K02	800	(821)	10	1 039.5	940	800	9	33.2	16
MCH09080H20K02		(021)	20					39.2	

Note: Reference numbers above are for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

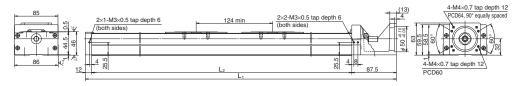
Coding for columns 13 and 14

Grease	High-grade	Precision-grade	Monocarrier dyn	amic torque spe	cification (N · cr
Standard	02	(None)	Ball screw	Accurac	y grade
LG2	B2	B0	lead(mm)	High grade	Precision
LUZ	52	Во	5	1.0 - 5.9	2.5 - 11.0
			10	2.0 - 7.8	2.8 - 13.4
			20	2.0 - 10.8	3.4 - 16.1

Notes:

- Frictional resistance of NSK K1 is included in dynamic torque in table.
- Grease is packed into ball screws, linear guide parts and support units.
- 3. Consult NSK for life estimates under large moment loads.


Basic load ratings


Lead	Shaft dia		Basic dynamic lo	ad ratings (N)	Basic static loa	d ratings (N)		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C _a	C	C _a	L _a (km)	C_{0a}	C_0	
5		8 300	40 600		5	12 700		
10	φ 15	8 140	32 200	7 100	10	12 800	30 500	3 040
20		5 080	25 500		20	7 460		

Basic static moment loads of linear guide

Clister	Basic sta	atic moment load	s (N·m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	890	385	385

MCH09 (Double slider)

Dimensions of MCH09 (Double slider)

Reference No.	Nominal stroke	minal stroke Stroke limit (mm) Ball screw lead			Body length (mm)				Mass
nererence No.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	× 10 ⁻⁶ (kg · m ²)	(kg)
MCH09015H05D02	150	183	5	539.5	440	300	4	16.1	8.9
MCH09015H10D02	150	(211)	10	559.5	440	300	4	19.2	0.9
MCH09025H05D02	250	283	5	639.5	540	400	5	19.3	11
MCH09025H10D02	250	(311)	10	039.5	540	400	5	22.4	11
MCH09035H05D02	350	383	5	739.5	640	500	6	22.5	12
MCH09035H10D02	350	(411)	10	739.5	640	500	0	25.6	12
MCH09045H10D02	450	483	10	839.5	740	600	7	28.8	14
MCH09045H20D02	450	(511)	20	039.5	740	600	/	40.9	14
MCH09065H10D02	650	683	10	1 039.5	940	800	9	35.2	17
MCH09065H20D02	050	(711)	20	1 039.5	340	800	9	47.3	17

Note: Reference numbers above are for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

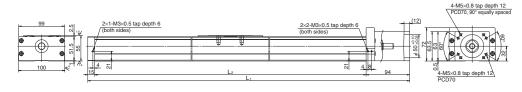
Grease	High-grade	Precision-grade
Standard	02	(None)
LG2	B2	В0

Monocarrier dynamic torque specification (N - cm							
Ball screw	Accuracy grade						
lead(mm)	High grade	Precision					
5	1.5 - 7.0	2.8 - 12.4					
10	2.5 - 10.8	3.4 - 16.2					
20	4.0 – 17.2	4.5 – 21.7					

Notes:

- Frictional resistance of NSK K1 is included in dynamic torque in table.
 Grease is packed into ball screws, linear guide parts and
- support units.
- 3. Consult NSK for life estimates under large moment loads.

Basic load ratings


Lead	Shaft dia		Basic dynamic Id	ad ratings (N)	Basic static loa	C		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load limit (N)
5		8 300	40 600		5	12 700		
10	φ 15	8 140	32 200	7 100	10	12 800	30 500	3 040
20		5 080	25 500		20	7 460		

Basic static moment loads of linear guide

Clister	Basic static moment loads (N · m)					
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}			
Double	1 780	2 070	2 070			

C79

Accuracy grade: High grade (H)

Dimensions of MCH10 (Single slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	<i>L</i> ₁	Bod L ₂	y leng	th (mm) L ₃	n	Inertia × 10 ⁻⁶ (kg · m²)	Mass (kg)
MCH10010H10K02 MCH10010H20K02	100	126 (142)	10 20	389	280	65	150	2	33.2 41.1	7.3
MCH10020H10K02 MCH10020H20K02	200	226 (242)	10 20	489	380	40	300	3	43.4 51.3	9.5
MCH10030H10K02 MCH10030H20K02	300	326 (342)	10 20	589	480	15	450	4	53.7 61.6	12
MCH10040H10K02 MCH10040H20K02	400	426 (442)	10 20	689	580	65	450	4	62.4 71.8	14
MCH10050H10K02 MCH10050H20K02	500	526 (542)	10 20	789	680	40	600	5	74.7 82.3	16
MCH10060H10K02 MCH10060H20K02	600	626 (642)	10 20	889	780	15	750	6	84.9 92.5	19
MCH10070H10K02 MCH10070H20K02	700	726 (742)	10 20	989	880	65	750	6	95.1 103	21
MCH10080H10K02 MCH10080H20K02	800	826 (842)	10 20	1 089	980	40	900	7	105 113	23
MCH10090H10K02 MCH10090H20K02	900	926 (942)	10 20	1 189	1 080	15	1 050	8	116 123	25
MCH10100H10K02 MCH10100H20K02	1 000	1 026 (1 042)	10 20	1 289	1 180	65	1 050	8	126 133	27
MCH10110H10K02 MCH10110H20K02	1 100	1 126 (1 142)	10 20	1 389	1 280	40	1 200	9	136 143	29
MCH10120H10K02 MCH10120H20K02	1 200	1 226 (1 242)	10 20	1 489	1 380	15	1 350	10	146 154	32

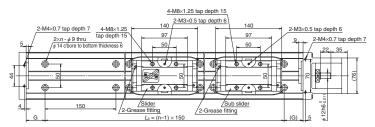
Note: Reference numbers above are for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

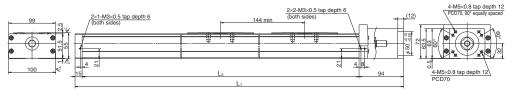
Coding for columns 13 and 14

Grease	High-grade	Precision-grade	Monocarrier dynamic torque specification (N				
Standard	02	(None) Ball screw lead(mm)			y grade		
LG2	B2			High grade	Precision		
LUZ	10		10	2.7 - 10.8	3.3 - 17.5		
			20	31 _ 127	3.8 _ 20.4		

ication (N · cm)

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table. Precision
 - 2. Grease is packed into ball screws, linear guide parts and support units.
 - 3. Consult NSK for life estimates under large moment loads.


Basic load ratings


Lead	Shaft dia		Basic dynamic load ratings (N)				Basic static load ratings (N)		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)	
(mm)	(mm)	C_{a}	С	C_{a}	$L_{a}\left(km\right)$	C_{0a}	C_0	load liffiit (N)	
10	ø 20	12 800	44 600	7 600	10	21 400	42 000	3 380	
20	φ 20	8 190	35 400	7 600	20	12 600	42 000	3 300	

Basic static moment loads of linear guide

CII-I	Basic static moment loads (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Single	1 460	610	610				

MCH10 (Double slider)

Dimensions of MCH10 (Double slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead		Body length (mm)				Inertia	Mass
neterence No.	(mm)	(without K1)	(mm)	L ₁	L ₂	G	Lз	n	× 10 ⁻⁶ (kg · m ²)	(kg)
MCH10025H10D02	250	282	10	689	580	65 450	4	67.1	15	
MCH10025H20D02		(314)	20	003 500	05	450	4	82.4	15	
MCH10035H10D02	350	382	10	700	789 680 40	600	5	77.3	17	
MCH10035H20D02	350	(414)	20	769		40	000	5	92.5	1/
MCH10045H10D02	450	482	10	889	780	15	15 750	6	87.5	- 20
MCH10045H20D02	450	(514)	20	009 700	760	15		6	103	
MCH10055H10D02	550	582	10	989	880	65	750	6	97.7	22
MCH10055H20D02	550	(614)	20	989					113	
MCH10065H10D02	650	682	10	1 089	980	40	900	7	108	24
MCH10065H20D02	650	(714)	20	1 009	960	40	900		123	24
MCH10075H20D02	750	782 (814)	20	1 189	1 080	15	1 050	8	133	26
MCH10085H20D02	850	882 (914)	20	1 289	1 180	65	1 050	8	143	28
MCH10095H20D02	950	982 (1 014)	20	1 389	1 280	40	1 200	9	154	30
MCH10105H20D02	1 050	1 082 (1 114)	20	1 489	1 380	15	1 350	10	164	33

Note: Reference numbers above are for high-grade grease specifications. In the case of other specifications, see the following table for the 13th and 14th digits.

Coding for columns 13 and 14

Grease	High-grade	Precision-grade	Monocarrier dyn	amic torque spec	cification (N · cm)		
Standard	02	(None)	Ball screw				
LG2	B2	B0	lead(mm)	High grade	Precision		
202		50	10	4.2 - 15.6	4.4 – 21.6		

Ball screw	Accuracy grade					
lead(mm)	High grade	Precision				
10	4.2 - 15.6	4.4 - 21.6				
20	5.0 - 19.6	5.6 - 27.4				

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table. 2. Grease is packed into ball screws, linear guide parts and
- support units.
- Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	ad Shaft dia Basic dynamic load ratings (N)					Basic static loa	C		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit	
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load limit (N)	
10	ø 20	12 800	44 600	7 600	10	21 400	42 000	3 380	
20	φ 20	8 190	35 400	7 600	20	12 600	42 000	3 380	

Basic static moment loads of linear guide

	9							
Slider	Basic static moment loads (N · m)							
Silder	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Double	2 920	3 430	3 430					

NSK

C-1-6. 3 MCH Model Accessories

C-1-6. 3. 1 Sensor Unit

Proximity switch

Sensor rails are not included with sensor units

(Example assembly)

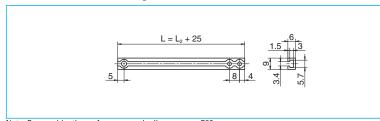
	Model No.	Reference No.			A (mm)	B (mm)	Body width W (mm)
MCH06		MC-SRH06-10	MC-SRH06-11	MC-SRH06-12	17	10	60
MCH09		MC-SRH09-10	MC-SRH09-11	MC-SRH09-12	16	21	86
MCH10		MC-SRH10-10	MC-SRH10-11	MC-SRH10-12	16	16	100
Quantity	Proximity switch (normally open contact)	_	3	1	E2S-W1	3 (OMRO	N Corp.)
Quantity	Proximity switch (normally close contact)	3	_	2	E2S-W1	4 (OMRO	N Corp.)

Notes: 1. See page C137 for proximity switch specifications. 2. A sensor unit consists of sensors, a sensor dog and sensor mounting parts.

Photo sensor

Sensor rails are not included with sensor units

(Example assembly)


Model No.	Reference No.	C (mm)	D (mm)	E (mm)	Body width W (mm)	Remarks
MCH06	MC-SRH06-13	24	2	11	60	EE-SX674 (OMRON Corp.)
MCH09	MC-SRH09-13	23	12	21	86	3 sets
MCH10	MC-SRH10-13	23	29	16	100	(EE-1001 connector attachment)

Notes: 1. See page C138 for proximity switch specifications. 2. A sensor unit consists of sensors, a sensor dog and sensor mounting parts.

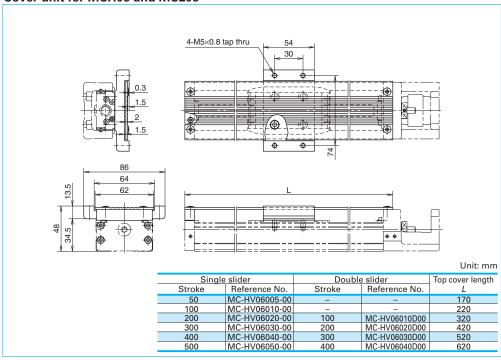
(1) Sensor rail

Reference number: MC-SRL- * * * *

 \bullet * * * * is the same as rail dimension L_2 .

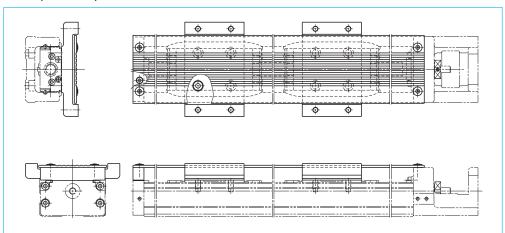
Note: For combinations of sensors and rails, see page C82.

MCH Model Sensor Rail Combinations

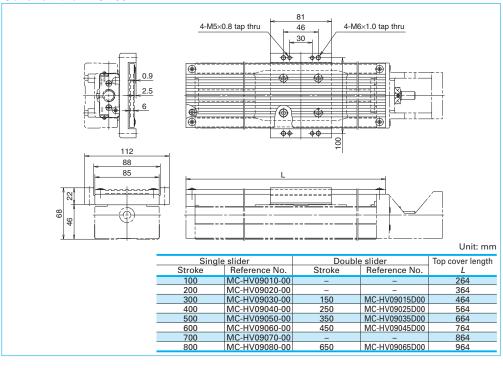

Table 4

Model No.	Body length L ₂ (mm)	Reference No.	Sensor rail reference No.
	` '	MCH06005H05K02	
	150	MCH06005H10K02	MC-SRL-0150
		MCH06005H20K02	
		MCH06010H05K02	
	200	MCH06010H10K02	MC-SRL-0200
		MCH06010H20K02	
		MCH06020H05K02	
		MCH06020H10K02	
	300	MCH06020H20K02	MC-SRL-0300
		MCH06010H05D02	
		MCH06010H10D02	
		MCH06030H05K02	
		MCH06030H10K02	
MCH06	400	MCH06030H20K02	MC-SRL-0400
		MCH06020H05D02	
		MCH06020H10D02	
		MCH06040H05K02	
		MCH06040H10K02	
	500	MCH06040H20K02	MC-SRL-0500
	300	MCH06030H05D02	IVIC-SITE-0300
		MCH06030H10D02	
		MCH06050H05K02	
		MCH06050H05K02	
	000		MC CDL 0000
	600	MCH06050H20K02	MC-SRL-0600
		MCH06040H10D02	
		MCH06040H20D02	
	150	MCL06005H05K02	MC-SRL-0150
		MCL06005H10K02	
	200	MCL06010H05K02	MC-SRL-0200
		MCL06010H10K02	
	300	MCL06020H05K02	MC-SRL-0300
MCL06		MCL06020H10K02	
	400 500	MCL06030H10K02	MC-SRL-0400
		MCL06030H20K02	IVIO ONE 0400
		MCL06040H10K02	MC-SRL-0500
	500	MCL06040H20K02	IVIC-311E-0300
	600	MCL06050H10K02	MC-SRL-0600
	000	MCL06050H20K02	IVIC-311L-0000
		MCH09010H05K02	
	240	MCH09010H10K02	MC-SRL-0240
		MCH09010H20K02	
		MCH09020H05K02	
	340	MCH09020H10K02	MC-SRL-0340
		MCH09020H20K02	
		MCH09030H05K02	
		MCH09030H10K02	
	440	MCH09030H20K02	MC-SRL-0440
		MCH09015H05D02	
		MCH09015H10D02	
		MCH09040H05K02	
		MCH09040H10K02	
MCH09	540	MCH09040H10K02	MC-SRL-0540
	540	MCH09040H20K02	IVIO-3/1L=0340
		MCH09025H05D02	
		MCH09050H05K02	
		MCH09050H10K02	
	640	MCH09050H20K02	MC-SRL-0640
		MCH09035H05D02	
		MCH09035H10D02	
		MCH09060H05K02	
		MCH09060H10K02	
	740	MCH09060H20K02	MC-SRL-0740
		MCH09045H10D02	
		MCH09045H20D02	I .

Model No.	Body length L_2 (mm)	Reference No.	Sensor rail reference No.
		MCH09070H05K02	
	840	MCH09070H10K02	MC-SRL-0840
		MCH09070H20K02	
MCH09		MCH09080H05K02	
IVICI IOO		MCH09080H10K02	
	940	MCH09080H20K02	MC-SRL-0940
		MCH09065H10D02	
		MCH09065H20D02	
	280	MCH10010H10K02	MC-SRL-0280
	280	MCH10010H20K02	NIC-5HL-0280
	380	MCH10020H10K02	MC-SRL-0380
	300	MCH10020H20K02	IVIC-SHL-USOU
	400	MCH10030H10K02	MC CDL 0400
	480	MCH10030H20K02	MC-SRL-0480
	500	MCH10040H10K02	MO ODL OFOO
	580	MCH10025H10D02	MC-SRL-0580
		MCH10050H10K02	
	200	MCH10050H20K02	110 001 0000
	680	MCH10035H10D02	MC-SRL-0680
	l I	MCH10035H20D02	
		MCH10060H10K02	
	<u> </u>	MCH10060H10K02	
	780	MCH10005H20R02	MC-SRL-0780
		MCH10045H20D02	
		MCH10043H20B02	
		MCH10070H10K02	
	880	MCH10075H10D02	MC-SRL-0880
MCH10		MCH10055H20D02	
		MCH10033H20B02	
		MCH10080H20K02	
	980	MCH10065H10D02	MC-SRL-0980
	l I	MCH10065H10D02	
		MCH10090H10K02	+
	1 080	MCH10090H10K02	MC-SRL-1080
	1 000	MCH100301120R02	IVIO OTIL 1000
		MCH10075H20D02	
	1 180	MCH10100H10K02 MCH10100H20K02	MC-SRL-1180
	1 100	MCH10100H20K02 MCH10085H20D02	IVIC=311E-1100
	<u> </u>	MCH10085H20D02	
	1 280	MCH10110H10K02 MCH10110H20K02	MC-SRL-1280
	1 200	MCH10110H20K02 MCH10095H20D02	IVIC-STL-1200
		MCH10095H20D02 MCH10120H10K02	
	1 200		MC CDL 1200
	1 380	MCH10120H20K02	MC-SRL-1380
	l i	MCH10105H20D02	

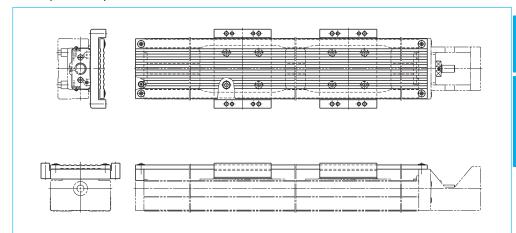

locarrier

Cover unit for MCH06 and MCL06

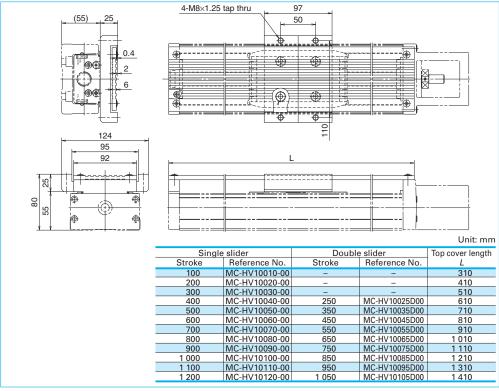


Cover unit for double sliders

Two spacers are provided for double sliders.

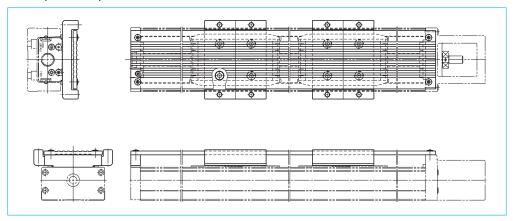


Cover unit for MCH09

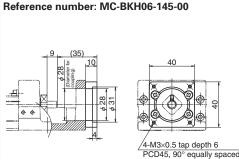


Cover unit for double sliders

Two spacers are provided for double sliders.



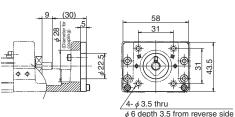
Cover unit for MCH10


Cover unit for double sliders

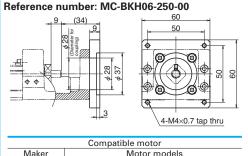
Two spacers are provided for double sliders.

- Please ask NSK about motors not listed in the compatible motor list.
- If using a parallel motor mount, please consult with NSK.
 Be sure to align centerlines when installing motor.
- Motor models are subject to change at motor manufacturers. For details, please contact the manufacturer.

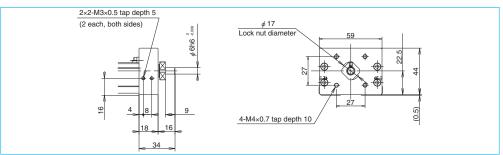
Motor Bracket for MCH06 and MCL06



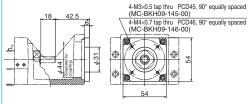
tap depth 6	9 (35) 10 (10) 10 (10)	40 4-M4×0.7 tap depth 10 PCD46, 90° equally spaced
10° canally appead	Compatible	e motor


Reference number: MC-BKH06-146-00

spaced	Compatible motor				
spaceu	Maker	Motor models			
	VACKAWA FILLES CO.	SGMAH-A3(30W), SGMJV-A5A(50W), SGMAV-A5A(50W)			
	YASKAWA Electric Corp.	SGMJV-01A(100W), SGMAV-01A(100W)			
		HF-KP053(50W), HF-MP053(50W), HC-KFS053(50W)			
	Mitsubishi Electric Corp.	HC-MFS053(50W), HF-KP13(100W), HF-MP13(100W)			
	·	HC-KFS13(100W), HC-MFS13(100W)			
	OMRON Corp.	R88M-W03(30W), R88M-W05(50W), R88M-W10(100W)			
	SANYO DENKI Co., Ltd.	P30B04xxx P Series			



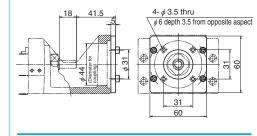
Compatible motor		
Maker Motor models		
ORIENTAL MOTOR	AS46, ASC46, UPK54x, PK54x,	
Co., Ltd.	CSK54x, CFK54x, UMK24x, CSK24x, PK24x	
SANYO DENKI Co., Ltd.	PBM423xxx, 103F55xx	


	Compatible motor		
Maker	Motor models		
ORIENTAL MOTOR	AS66, ASC66, UPK56x, UFK56x,		
Co., Ltd.	PK56x, CSK56x, CFK56x		
OMRON Corp.	MUMS02(200W), MUMS04(400W)		
SANYO DENKI Co., Ltd.	PBM603xx, PBM604xx, 103F78xx		

Diameter of ball screw shaft end to install a pulley for parallel motor mount of MCH06

Motor Bracket for MCH09

Reference number: MC-BKH09-145-00 MC-BKH09-146-00

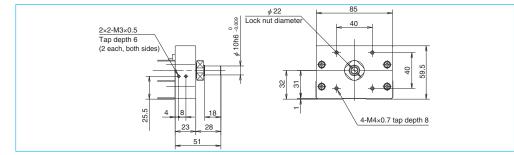


Reference No.	Compatible motor		
neiererice No.	Maker	Motor models	
MC-BKH09-145-00	Panasonic Co., Ltd.	MSMD5A(50W), MSMD01(100W)	
MC-BKH09-146-00	YASKAWA Electric Corp.	SGMJV-A5A(50W), SGMAV-A5A(50W) SGMJV-01A(100W), SGMAV-01A(100W)	
	Mitsubishi Electric Corp.	HF-KP053(50W), HF-MP05(50W), HC-KFS053(50W) HC-MFS053(50W), HF-KP13(100W), HF-MP13(100W) HC-KFS13(100W), HC-MFS13(100W)	
	OMRON Corp. SANYO DENKI Co., Ltd.	R88M-W05(50W), R88M-W10(100W) P30B04xxx P Series	

Reference number: MC-BKH09-170-00 MC-BKH09-170-01 4-M5:08 tap depth 10 PCD70, 90° equally spaced (MC-BKH09-170-00) 4-M4:07 tap depth 8 PCD70, 90° equally spaced (MC-BKH99-170-01)

Reference No.	Compatible motor			
neierence ivo.	Maker	Motor models		
	VACKAMA FILELIA CO.	SGMJV-02A(200W), SGMAV-02A(200W)		
	YASKAWA Electric Corp.	SGMJV-04A(400W), SGMAV-04A(400W)		
		HF-KP23(200W), HF-MP23(200W), HF-KP43(400W)		
MC-BKH09-170-00	Mitsubishi Electric Corp.	HF-MP43(400W), HC-KFS23(200W), HC-MFS23(200W)		
		HC-KFS43(400W), HC-MFS43(400W)		
	OMRON Corp.	R88M-W20(200W), R88M-W40(400W)		
	SANYO DENKI Co., Ltd.	P30B06xxx P Series		
MC DVII00 170 01	Panasonic Co., Ltd.	MSMD02(200W), MSMA02(200W)		
MC-BKH09-170-01		MSMA04(400W), MSMD04(400W)		

Reference number: MC-BKH09-231-00


	Compatible motor		
Maker Motor models			
SANYO DENKI Co., Ltd.	PBM423xxx, 103F55xx		
ORIENTAL MOTOR	AS46, ASC46, UPK54x, PK54x, CSK54x, CFK54x		
Co., Ltd.	UMK24x, CSK24x, PK24x		

Reference number: MC-BKH09-250-00

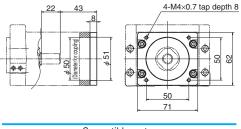
Compatible motor			
Maker	Motor models		
SANYO DENKI Co., Ltd.	PBM603xx, PBM604xx, 103F78xx		
ORIENTAL MOTOR	AS66, ASC66, UPK56x, UFK56x, PK56x		
Co., Ltd.	CSK56x, CFK56x		

Diameter of ball screw shaft end to install a pulley for parallel motor mount of MCH09

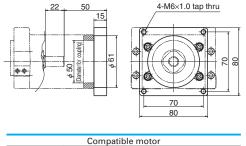
oe Accessories

NSK

Motor Bracket for MCH10

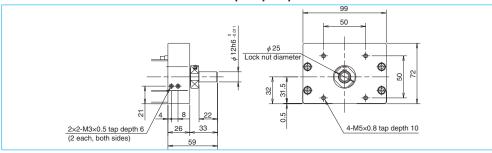

Reference No.	Compatible motor					
neierence No.	Maker	Motor models				
	YASKAWA Electric Corp.	SGMJV-02A(200W), SGMAV-02A(200W)				
	TASKAWA Electric Corp.	SGMJV-04A(400W), SGMAV-04A(400W)				
		HF-KP23(200W), HF-MP23(200W), HF-KP43(400W)				
MC-BKH10-170-00	Mitsubishi Electric Corp.	HF-MP43(400W), HC-KFS23(200W), HC-MFS23(200W)				
		HC-KFS43(400W), HC-MFS43(400W)				
	OMRON Corp.	R88M-W20(200W), R88M-W40(400W)				
	SANYO DENKI Co., Ltd.	P30B06xxx P Series				
MC-BKH10-170-01	Panasonic Co., Ltd.	MSMD02(200W), MSMA02(200W)				
IVIC-DNT 10-1/0-01	r anasonic Co., Ltd.	MSMD04(400W), MSMA04(400W)				

Reference number: MC-BKH10-190-00 MC-BKH10-190-01 4-M6x1.0 tap depth 12 PCD90, 90° equally spaced (MC-BKH10-190-00) 4-M5x0.8 tap depth 10 PCD90, 90° equally spaced (MC-BKH10-190-01)


Reference No.	Compatible motor					
neierence ivo.	Maker	Motor models				
MC-BKH10-190-00	Mitsubishi Electric Corp.	HC-KFS73(750W), HC-MFS73(750W) HF-KP73(750W), HF-MP73(750W)				
MC-BKH10-190-01	SANYO DENKI Co., Ltd.	P50B07xxx P Series				

Reference number: MC-BKH10-270-00

Reference number: MC-BKH10-250-00



Compatible motor						
Maker Motor models						
SANYO DENKI Co., Ltd. PBM603xx, PBM604xx, 103F78xx						
ORIENTAL MOTOR AS66, ASC66, UPK56x, PK56x, CSK56x, CFK56x						
Co., Ltd.	UMK56x, UFK56X					

	Compatible motor						
Maker	Motor models						
ORIENTAL MOTOR	AS98, ASC98, UPK59x, PK59x, CSK59x, CFK59x						
Co., Ltd.	UMK59x, UFK59x						

Diameter of ball screw shaft end to install a pulley for parallel motor mount of MCH10

Compatible Motors for Intermediate Plates of the MCM Model Table 5

Model No.	Reference No.	Motor bracket	Motor manufactures	Stepping motor				C servo motor		
	code	reference No.	Motor manufacturer	model No.	30	50	100	200	400	750
	1	MC-BKH06-145-00	Panasonic Co., Ltd.			MSMD5A	MSMD01			
			YASKAWA Electric Corp.		SGMAH-A3					
					-					
	2	MC-BKH06-146-00	Mitsubishi Electric Corp.							
				model No. 30 50 100 200 400 750 MSMD5A MSMD01 SGMMVASA SGMMV01A						
			OMRON Corp.		R88M-W03	R88M-W05	R88M-W10			
			SANYO DENKI Co., Ltd.	P30B04xxx (P Series)						
			SANYO DENKI Co., Ltd.							
MCH06			0/ 1111 0 DE1111 00., Etd.	103F55xx						
MCL06	3	MC-BKH06-231-00		AS46, ASC46						
	3	IVIC-DNHU0-231-00	ORIENTAL MOTOR Co., Ltd.	CSKEAV CEKEAV						
			OTHERVIAL MOTOR CO., Etc.	UMK24x CSK24x						
				PBM603xx						
			SANYO DENKI Co., Ltd.							
				103F78xx						
	4	MC-BKH06-250-00								
			ORIENTAL MOTOR Co., Ltd.	UPK56x , UFK56x						
			OMRON Corp.	CI KOOX	t			MUMS02	MUMS04	
	1	MC-BKH09-145-00	Panasonic Co., Ltd.			MSMD5A	MSMD01			
			YASKAWA Electric Corp.			SGMJV-A5A	SGMJV-01A			
			TASKAVVA Electric Corp.			SGMAV-A5A				
	2	MC-BKH09-146-00	Mitsubishi Electric Corp.							
			OMRON Corp.		-	B88VTVVVE	RSSM-M/10			-
			SANYO DENKI Co., Ltd.	P30B04xxx (P Series)		1100101-1100	1100101-0010			
				. 2320 1/0/1 (1 001163)				SGMJV-02A	SGMJV-04A	
			YASKAWA Electric Corp.					SGMAV-02A	SGMAV-04A	
	3	MC-BKH09-170-00	Mitsubishi Electric Corp.							
		100 210100 170 00	TVIILOGDIOTII ETOOTTIO GOTP.						3 HC-MFS43	
			OMBON C					HC-MFS23		
			OMRON Corp. SANYO DENKI Co., Ltd.	P30B06xxx (P Series)				H88IVI-VV20		
MCH09				PSUBUOXXX (P Selles)	1			MSMD02	MSMD04	
	4	MC-BKH09-170-01	Panasonic Co., Ltd.					MSMA02	MSMA04	
			SANYO DENKI Co., Ltd.	PBM423xxx						
			SANYO DENKI Co., Ltd.	103F55xx						
				AS46, ASC46						
	5	MC-BKH09-231-00		UPK54x , PK54x						
			ORIENTAL MOTOR Co., Ltd.	CSK54x , CFK54x						
				UMK24x , CSK24x PK24x						
				PBM603xx						
			SANYO DENKI Co., Ltd.	PBM604xx						
				103F78xx						
	6	MC-BKH09-250-00		AS66 , ASC66						
			ORIENTAL MOTOR Co., Ltd.	UPK56x, UFK56x						
			22.1712.1710.1011.00., Etu.	PK56x, CSK56x						
				CFK56x				CCM IV OCA	CCM IV/O44	
			YASKAWA Electric Corp.					SGMJV-02A SGMAV-02A	SGMJV-04A SGMAV-04A	
								HF-KP23	HF-KP43	
		MO DIVINO 170 C	Manufacture Co. 1 Co.					HF-MP23	HF-MP43	
	1	MC-BKH10-170-00	Mitsubishi Electric Corp.					HC-KFS23	HC-KFS43	
								HC-MFS23	HC-MFS43	
			OMRON Corp.					R88M-W20	R88M-W40	
			SANYO DENKI Co., Ltd.	P30B06xxx (P Series)	-			A ICA IDCC	MCMD0:	
	2	MC-BKH10-170-01	Panasonic Co., Ltd.					MSMD02	MSMD04	
								MSMA02	MSMA04	HC-KFS
			l							HC-MFS
14011110	3	MC-BKH10-190-00	Mitsubishi Electric Corp.							HF-KP7
VICH10										HF-MP7
	4	MC-BKH10-190-01	SANYO DENKI Co., Ltd.	P50B07xxx (P Series)						
				PBM603xx				_		
			SANYO DENKI Co., Ltd.	PBM604xx						
	-	MC BKI I O OFO CO		103F78xx	-					-
	5	MC-BKH10-250-00		AS66, ASC66						
			ORIENTAL MOTOR Co., Ltd.	UPK56x, PK56x CSK56x, CFK56x						
				UMK56x . UFK56x						
				AS98 , ASC98						
		MC BKU10 270 00	ODIENTAL MOTOR Co. 144	UPK59x , PK59x						
	6	MC-BKH10-270-00	ORIENTAL MOTOR Co., Ltd.	CSK59x, CFK59x						
	1		1	UMK59x , UFK59x	1	1	I	1		

C91 C92

NSK

C-2 Toughcarrier™

1.	Features	C 95
2.	Classification and Models	C 95
3.	Accessories	C 97
4.	Selection of Toughcarrier	C 98
	4.1 Selection Procedures	C 98
	4.2 Stroke and Lead	C99
	4.3 Reference Number Coding and Accuracy Grade	C100
	4.4 Maximum Speed	C101
	4.5 Rigidity	C103
	4.6 Basic Load Rating	C104
	4.7 Estimation of Life Expectancy	C105
	4.8 Example Life Estimation	C107
5.	TCH Model Dimension Tables for Standard Products	C111
	5.1 TCH06 Model	C111
	5.2 TCH09 Model	C113
	5.3 TCH10 Model	C115
6.	Accessories	C117
	6.1 Sensor Unit	C117
	6.2 Cover Unit	C118
	6.3 Motor Bracket	C121
7.	Motor Bracket Compatibility	C130
8.	Sensor Rail and Top Cover Unit Combinations	C131
q	Toughcarrier High-Thrust Model	C134

C-2 Toughcarrier™

C93

NSK

C-2 Toughcarrier[™]

C-2-1 Features

Greatly improved load capacity due to switching of rolling elements to rollers.

Mounting dimensions are compatible with those of the MCH Model, allowing substitution.

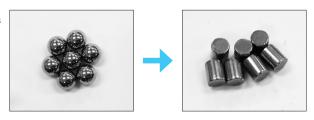
Lightweight and compact design

Taking into account part composition and rigidity, the cross sections of the rail and slider are the same as the MCH model.

Superb rust-preventive ability

Low-temperature chrome plating comes standard.

All-in-one structure

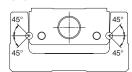

- 1) The all-in-one structure integrates a ball screw, a linear guide, and a support unit into a single structure to significantly reduce design time.
- 2) The bottom and one side of the rail are datum surfaces to facilitate highly accurate installation. Models with pin holes are also available as standard.
- 3) Immediate operation after installation and run-in is possible due to pre-packed grease.
- 4) A wide selection of ball screw leads are available.

Long-term maintenance-free operation

Use of NSK K1 lubrication unit and grease maintains smooth lubricating performance for long periods.

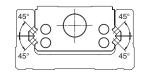
Updated rolling elements

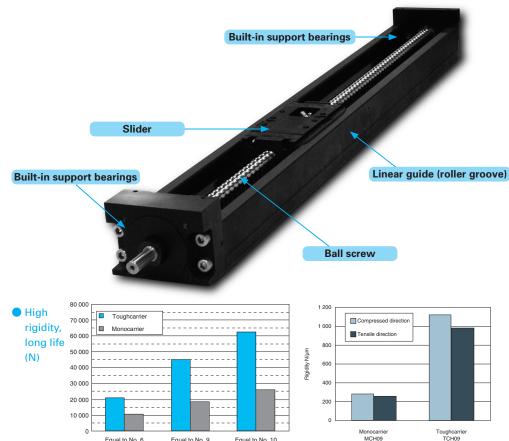
Rollers are installed as rolling elements for the first time anywhere.

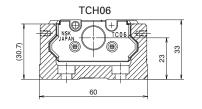


C-2-2 Classification and Models

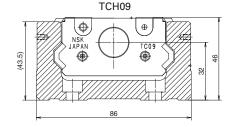
Structure

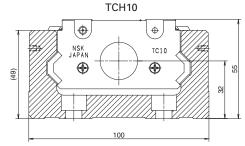

Rolling elements: Balls


MCH Model


Rolling elements: Rollers

TCH Model

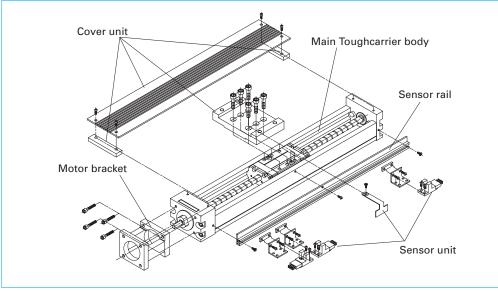



Cross-sections of TCH Models

Twice the dynamic load rating and

nine-times longer life compared to Monocarrier actuators

Four-times higher rigidity than

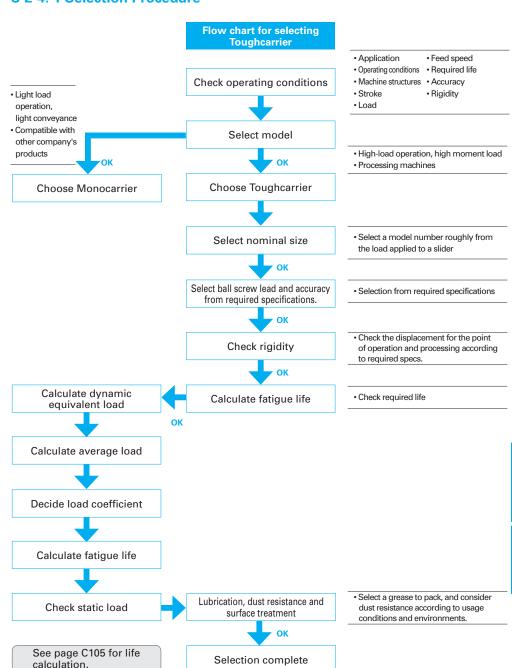

Monocarrier actuators

Selection

NSK

C-2-3 Accessories

Accessories for Toughcarrier


Assembly Example

Sensor units, cover units, motor brackets and sensor rails are available as options for Toughcarrier actuators.

Contact NSK for specifications other than those of NSK standard accessories.

- 1. Sensor unit:
 - ●Photo sensor...Use both OMRON EE-SX674 and EE-1001
- Proximity switch...Use OMRON E2S-W13, E2S-W14
 Available in a unit including sensor fitting clamps.
- Sensor rail : This rail holds the sensor. Please order the appropriate rail according to the stroke.
- 3. Cover unit : This unit consists of a top cover and spacer plate.
- 4. Motor bracket: Brackets are available for a variety of models from different motor manufacturers. Please consult NSK when mounting dimensions differ.

C-2-4 Selection of Toughcarrier C-2-4. 1 Selection Procedure

C-2-4, 2 Stroke and Lead

◆ Combinations of rail length and lead

● TCH06

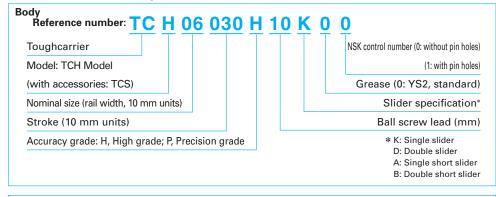
Slider type	Standard slider						Short slider					
Silder type	Si	ngle slid	er	Do	ouble slic	der	Si	ngle slid	er	Do	ouble slic	der
Lead (mm) Rail length (mm)	5	10	20	5	10	20	5	10	20	5	10	20
150	1	1	1				1	1				
200	1	1	1				1	1				
300	✓	✓	✓	✓	1		1	1		✓	1	
400	/	/	/	1	1		1	1		1	1	
500	✓	1	1	1	1		1	1		1	1	
600	✓	✓	✓		✓	✓	✓	1			1	

^{*20} mm lead for short sliders not available.

■ TCH09

Clidar type		Standard slider						Short slider				
Slider type	Si	ngle slid	er	Do	ouble slid	der	Si	ngle slid	er	Do	ouble slic	der
Lead (mm)	5	10	20	5	10	20	5	10	20	5	10	20
240	1	1	1				1	1	1			
340	1	1	1				1	1	1			
440	1	1	1	1	1		1	1	1	1	1	
540	/	/	/	1	1		1	1	/	/	1	
640	1	1	1	1	1		1	1	1	1	1	
740	1	1	1		1	1	1	1	1		1	1
840	1	1	1				1	1	1			
940	1	1	1		1	1	1	1	1		1	1

● TCH10


Slider type		Standar	d slider		Short slider				
Silder type	Single slider			slider	lider Single		Double slider		
Lead (mm)	10	20	10	20	10	20	10	20	
280	1	1			1	1			
380	✓	/			✓	✓			
480	✓	1			✓	✓			
580	✓	/	✓	✓	1	✓	/	/	
680	1	/	1	1	1	1	1	✓	
780	\	✓	✓	1	\	\	1	1	
880	1	✓	1	1	1	1	1	✓	
980	\	✓	✓	✓	✓	1	1	1	
1 080	✓	✓		1	1	✓		✓	
1 180	/	/		/	✓	✓		/	
1 280	\	✓		1	√	\		1	
1 380	1	/		1	1	1		/	

Availability

Model No.	Lead (mm)	Slider	Rail length (mm)
TCLIOG	E 10 20	Single	600
TCH06	5, 10, 20	Double	600
TCH09	E 10 20	Single	940
10009	5, 10, 20	Double	940
TCH10	10, 20	Single	1 380
ТСПТО	10, 20	Double	1 300

C-2-4. 3 Reference Number Coding and Accuracy Grade

Reference number coding for TCH Model

Special specifications Reference number: TC H 06 030 H 10 K -	XXB	
3: Toughcarrier for special specs	Design	n serial number
5: Toughcarrier high-thrust model*		
* For the specifications of the High-Thrust Model, se	e page C134.	

Reference number for accessories

1. Sensor unit	3. Cover unit					
Reference number: TC - SRH XX - 00	Reference number: TC — HV XX XXX K 00					
Toughcarrier	Toughcarrier					
Sensor unit	Cover unit					
Nominal size: 06, 09 and 10	Nominal size: 06, 09 and 10					
Control no. : see page C117	Stroke (nominal)					
	Slider specs: refer to the body reference no.					
	Control no.: See pages C118 to C120					
2. Sensor rail	4. Motor bracket					
Reference number: TC - SRL X - XXXX	Reference number: TC - BKH XX - XXX - 00					
Toughcarrier	Toughcarrier					
Sensor rail	Motor bracket					
Nominal size: 06 is 6, 09 is 9, and 10 is 1.	Nominal size: 06, 09 and 10					
Body rail length	Dimension for motor mounting					
	Control no.					

◆ Accuracy grade

	Unit: µm

	•							
G	Grade High grade (H grade)			de)		Precision gr	ade (P grade)	
Strok	ke (mm)	Repeatability	Running parallelism	Backlash	Repeatability	Positioning	Running parallelism	Backlash
31101	(IIIIII)		(vertical)			accuracy	(vertical)	
to	200		14			20	8	
to	400		16			25	10	
to	600	±10	20	20 or loss	±3	30	12	3 or less
to	700	±10	23	20 or less	±S	30	- 15	3 01 1688
to	1 000		23			35	15	
to	1 200		30			40	20	

C-2-4. 4 Maximum Speed

Maximum speed (standard slider)

Maximum speed of a Toughcarrier actuator is determined by the critical speed of the ball screw shaft and the $d \cdot n$ value.

Do not exceed the maximum speed in the table below.

	Stroke (nominal)	Ball screw lead (mm)	Body rail length <i>L</i> 2	Maximum speed
	(HOHHHIai)	leau (IIIIII)	(mm)	(mm/s)
	50		150	
	100	1	200	1
	200	-	300	250
	300	5	400	250
	400	1	500	1
	500	1	600 150	1
	50		150	İ
TCH06	100]	200]
Single	200	10	300	500
slider	300	10	400	300
Siluei	400		500]
	500		600	
	50	_	150]
	100		200	
	200 300	20	300	1 000
	300		400	
	400	4	500	1
	500		600	
	130	_	300	250
	230 330	5	400 500	250
TCH06				
Double	130 230		300 400	-
slider	330	10	500	500
	430	-	600	-
	430	20	600	1 000
	100	20	240	1 000
	200	1	340	1
	300	-	440	1
	400	_	540	250
	500	5	640	
	600	1	740	
	700	i	840	1
	800		940	210
	100		240	
	200	1	340	1
TCH09	300	1	440	1
Single	400	10	540	500
slider	500] 10	640]
Siluei	600		740]
	700		840	
	800		940	410
	100		240	
	200		340	
	300		440	4 000
	400	20	540	1 000
	500		640	-
	600		740	
	700		840	820
	800		940	020

	Stroke (nominal)	Ball screw lead (mm)	Body rail length <i>L</i> ₂	Maximun speed
	(Hommai)	lead (IIIII)	(mm)	(mm/s)
	170		440	
	270	5	540	250
	370	1	640	1
TCH09	170		440	
Double	270		540	
slider	370	10	640	500
Siluei	470		740	
	670		940	
	470	20	740	1 000
	670		940	
	100		280	
	200		380	
	300		480	
	400 500		580 680	500
	600		780	
	700	10	880	
	800		980	
	900	-	1 080	440
	1 000		1 180	360
	1 100		1 280	300
TCH10	1 200	-	1 380	250
Single	100		280	230
slider	200	1	380	i
	300	1	480	1
	400		580	1 000
	500	1	680	1 000
	600	20	780	
	700	20	880	
	800	1	980	1
	900		1 080	870
	1 000		1 180	720
	1 100		1 280	600
	1 200		1 380	510
	270		580	ļ
	370	40	680	500
	470	10	780	500
	570		880 980	
	670 270		580	
TCH10 Double slider	370		680	
	470	1	780	1
	570	1	880	1 000
	670	20	980	1
	770	- 20	1 080	1
	870	1	1 180	930
	970	1	1 280	780
			1 380	650

Notes: 1) Please consult NSK before operating

Toughcarrier actuators near maximum speed.

- 2) Maximum rotational speed is (3000 min⁻¹).
- 3) Refer to the above table for maximum speed for each stroke.

Maximum speed (short slider)

Maximum speed of a Toughcarrier actuator is determined by the critical speed of the ball screw shaft and the $d \cdot n$ value.

Do not exceed the maximum speed in the table below.

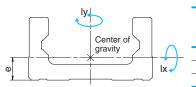
	Stroke (nominal)	Ball screw lead (mm)	Body rail length <i>L</i> ² (mm)	Maximum speed (mm/s)
TCH06	70 120 220 320 420 520	5	150 200 300 400 500 600	250
Single slider	70 120 220 320 420 520	10	150 200 300 400 500 600	500
TCH06	170 270 370	5	300 400 500	250
Double slider	170 270 370 470	10	300 400 500 600	500
	140 240 340 440 540 640	5	240 340 440 540 640 740	250
	740 840		840 940	240 190
TCH09 Single slider	140 240 340 440 540 640	10	240 340 440 540 640 740	500
	740		840	480
	840		940	380
	140 240 340 440 540 640	20	240 340 440 540 640 740	1 000
	740		840	960
	840		940	760

	Stroke	Ball screw	Body rail	Maximum
	(nominal)	lead (mm)	length L2	speed
	(HOHIIIIai)	leau (IIIII)	(mm)	(mm/s)
	250		440	
	350	5	540	250
	450		640	1
TCH09	250		440	
Double	350]	540	500
slider	450	10	640	300
Sildoi	550		740	400
	750		940	460
	550 750	20	740	1 000 930
	160	_	940 280	930
	260		380	1
	360	-	480	1
	460	-	580	500
	560	1	680	500
	660	1	780	1
	760	10	880	1
	860		980	490
	960		1 080	400
	1 060	1	1 180	330
TCUIO	1 160	1	1 280	280
TCH10	1 260	1	1 280 1 380	240
Single	160		280	
slider	260	1	380	1 000
	360	1	480	
	460		580	
	560		680	
	660	20	780	1
	760	20	880	
	860		980	980
	960		1 080	800
	1 060		1 180	660
	1 160 1 260		1 280	560
			1 380	480
	360 460		580 680	-
	560	10	780	500
	660	. 10	880	300
	760	1	980	1
TOUGE	360		580	
TCH10	460	1	680	1
Double slider	560	1	780	1 000
	660	1	880	1
	760	20	980	1
	860	1	1 080	980
	960	1	1 180	800
	1 060]	1 280	660
	1 160	1	1 380	560

Toughcarrier actuators near maximum speed.

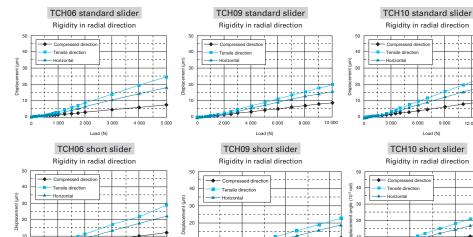
- 2) Maximum rotational speed is (3000 min⁻¹).
- 3) Refer to the above table for maximum speed for each stroke.

C101 C102 9 000


Load (N

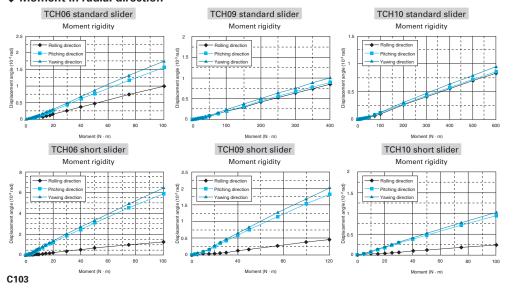
12 000

NSK


C-2-4. 5 Rigidity

Rigidity of rail

	Geometrical mom	ent of inertia×104	Center of gravity	Mass
Model no.	(mm⁴)		(mm)	(kg/100mm)
	lx	ly	е	W
TCH06	6.47	36.2	10.6	0.6
TCH09	28.4	162	15.7	1.32
TCH10	46	283	17.2	1.73


♦ Rigidity in radial direction

◆ Moment in radial direction

Load (N)

1 000 2 000

4 000

Load (N)

C-2-4. 6 Basic Load Ratings

♦ Basic load ratings for TCH model

Standard slider

Lead Shaft dia.						Basic static load ratings (N)		
Model no.	(mm)	(mm)	Ball screw C_a	Linear guide C	Support bearings C _a	Ball screw C_{0a}	Linear guide Co	Support bearing limit load (N)
	5		4 390			6 260		
TCH06	10	φ 12	2 740	20 900	6 600	3 820	45 000	2 700
	20		2 660			3 800		
	5	8 300	8 300			12 700		
TCH09	10	<i>φ</i> 15	8 140	44 900	8 800	12 800	96 900	5 090
	20		5 080			7 460		
TCH10	10	φ 20	12 800	62 400	9 600	21 400	132 000	5 670
ICHIU	20	φ 20	8 190	62 400	9 600	12 600	132 000	5 670

Short slider

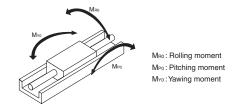
		Shaft dia.	Basic dy	Basic dynamic load ratings (N)			ad ratings (N)	Support hearing
Model no.	(mm)	(mm)	Ball screw C_a	Linear guide C	Support bearings C_a	Ball screw C_{0a}	Linear guide C_0	Support bearing limit load (N)
TCH06	5	<i>δ</i> 12	4 390	12 200	6 600	6 260	22 500	2 700
ТСПОО	10	φ12	2 740	12 200	0 000	3 820	22 500	2 700
	5		8 300			12 700		
TCH09	10	<i>φ</i> 15	8 140	27 900	8 800	12 800	52 500	5 090
	20		5 080			7 460		
TCH10	10	φ 20	12 800	38 700	9 600	21 400	71 500	5 670
101110	20	φ 20	8 190	36 700	3 000	12 600	71 500	5 070

Basic dynamic and static load ratings indicate values for one slider.
 The basic dynamic load rating for a linear guide is a load that allows for a 50-km rating fatigue life and is vertical and constant on the ball mounting surface.
 The basic dynamic load rating for a ball screw is a load in the axial direction that allows 90% of ball screws of a group of the same Toughcarriers to rotate 1

million revolutions under the same conditions without causing flaking by rolling contact fatigue.

• The basic dynamic load rating for support bearings is a load that allows 1 million revolutions under the same conditions.

Basic static load rating is load that results in combined permanent deformations at contact points of rolling elements and rolling surfaces of respective parts at a diameter of 0.01%.


◆ Basic static moment loads of linear guide

Standard slider

Model no.	Slider	Basic static moment loads (N·m)				
woder no.	Silder	Rolling Mro	Pitching M _{P0}	Yawing M _{Y0}		
TCH06	Single	800	340	340		
TCH09	Single	2 510	1 340	1 340		
TCH10	Single	3 980	2 150	2 150		

Short slider

Model no.	Slider	Basic static moment loads (N·m)			
woder no.	Silder	Rolling Mro	Pitching M _™	Yawing M _Y o	
TCH06	Single	400	85	85	
TCH09	Single	1 350	390	390	
TCH10	Single	2 150	630	630	

C-2-4. 7 Estimation of Life Expectancy

(1) Life of linear guide for Toughcarrier

Study the load to be applied to the linear guide of Toughcarrier (**Fig. 1**). Equivalent load F_{\circ} is determined by inputting the appropriate loads into the equations below. Use equation 1) for single sliders and equation 2) for double sliders.

For single sliders

For double sliders

For double sliders, calculation of the load applied to each slider is required.

Dynamic equivalent load is only for rolling moment.

This is the same procedure as for linear guide selection where two sliders are installed in a rail. Check the mean load for each slider, and calculate shortest life becomes the life of linear guide.

When lateral direction (F_H) and vertical direction (F_V) loads are applied to the center of the coordinate in **Fig. 1**,

$$F_{\text{HA}} = \frac{F_{\text{H}}}{2} + \frac{M_{\text{Y}}}{\ell}, F_{\text{VA}} = \frac{F_{\text{V}}}{2} + \frac{M_{\text{P}}}{\ell}$$

$$F_{\text{HB}} = \frac{F_{\text{H}}}{2} - \frac{M_{\text{Y}}}{\ell}, F_{\text{VB}} = \frac{F_{\text{V}}}{2} - \frac{M_{\text{P}}}{\ell}$$

[Slider A]

$$F_{\text{PA}} = Y_{\text{H}} \cdot F_{\text{HA}} + Y_{\text{V}} \cdot F_{\text{VA}} + Y_{\text{R}} \mathcal{E}_{\text{R}} \frac{M_{\text{R}}}{2} \qquad 2)$$

$$= Y_{\text{H}} \cdot \left[\frac{F_{\text{H}}}{2} + \frac{M_{\text{V}}}{\ell} \right] + Y_{\text{V}} \cdot \left[\frac{F_{\text{V}}}{2} + \frac{M_{\text{P}}}{\ell} \right] + Y_{\text{R}} \mathcal{E}_{\text{R}} \cdot \frac{M_{\text{R}}}{2}$$

Slider B

$$F_{\text{eB}} = Y_{\text{H}} \cdot F_{\text{HB}} + Y_{\text{V}} \cdot F_{\text{VB}} + Y_{\text{R}} \mathcal{E}_{\text{R}} \frac{M_{\text{R}}}{2} \qquad 2)'$$

$$= Y_{\text{H}} \left(\frac{F_{\text{H}}}{2} - \frac{M_{\text{V}}}{\ell} \right) + Y_{\text{V}} \left(\frac{F_{\text{V}}}{2} - \frac{M_{\text{P}}}{\ell} \right) + Y_{\text{R}} \mathcal{E}_{\text{R}} \frac{M_{\text{R}}}{2}$$

 $F_{\rm H}$: Lateral direction load acting on the slider (N)

 $F_{\rm v}\,$: Vertical direction load acting on the slider (N)

 $M_{\rm R}$: Rolling moment acting on the slider (N · m)

 M_P : Pitching moment acting on the slider (N · m)

 M_{Y} : Yawing moment acting on the slider (N · m)

ε _B: Dynamic equivalent coefficient to rolling moment

ε_P: Dynamic equivalent coefficient to pitching moment

ε , : Dynamic equivalent coefficient to yawing moment

ℓ : Sliders span (m)

*For dynamic equivalent coefficients, see Table 1.

$$Y_{H}$$
, Y_{V} , Y_{R} , Y_{P} , Y_{Y} : 1.0 or 0.5

In equations 1), 2) and 2') for obtaining equivalent load F_{er} the maximum value of Y in the values for each equation is assumed to be 1.0. For others it is assumed to be 0.5.

Fig.1 Direction of load

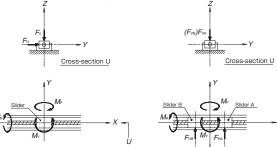
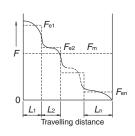



Fig. 2 Stepwise Fluctuating Load

If the loads acting on the slider fluctuate (in general, M_P and M_Y may fluctuate with the acceleration/deceleration of slider), the mean effective load is determined by Eq. 3).

Travelling distance under the equivalent load $F_{\rm e1}$: $L_{\rm 1}$ Travelling distance under the equivalent load $F_{\rm e2}$: $L_{\rm 2}$

Travelling distance under the equivalent load F_{en} : L_n

Mean effective load F_m is calculated by the following equation.

$$F_{\rm m} = \sqrt[13]{\frac{1}{L} (F_{\rm e1}^{\frac{10}{3}} \cdot L_1 + F_{\rm e2}^{\frac{10}{2^3}} \cdot L_2 + \dots + F_{\rm en3}^{\frac{10}{3}} \cdot L_{\rm n})} \cdots 3}$$

F_m: Mean effective load of fluctuating loads (N)

L: Total travelling distance (mm)

The life of linear guide for Toughcarrier is determined by Eq. 4).

$$L = 50 \times \left(\frac{C}{f_{\rm w} \cdot F_{\rm m}}\right)^{\frac{10}{3}} \dots 4)$$

L: Life of linear guide (km)

C: Basic dynamic load rating of linear guide (N)

 $F_{\rm m}$: Mean effective load acting on linear guide (N)

f_w: Load coefficient (see **Table 2**)

When the estimated life does meet clear the required life, the life of the linear guide is calculated again after following measures are taken,

1: Change from single slider to double slider.

2: Use a larger Toughcarrier.

(2) Life of Ball Screw (Support Bearing)

The mean effective load is determined from the axial load.

Axial direction mean effective load F_{m}

$$F_{\rm m} = \sqrt[3]{\frac{1}{L}(F_{\rm el}^3 \cdot L_1 + F_{\rm e2}^3 \cdot L_2 + \dots + F_{\rm en}^3 \cdot L_{\rm n})} \cdots 5)$$

The life of ball screw is determined by Eq. 6).

$$L = \ell \times \left(\frac{C_a}{f_w \cdot F_m}\right)^3 \times 10^6 \dots 6)$$

ℓ : Ball screw lead (mm)

L: Life of ball screw (mm)

C_a: Basic dynamic load rating of ball screw (N)

F_m: Mean effective load acting on ball screw (N)

f...: Load factor (see Table 2)

The life of a support bearing is calculated by Eq. 6). If the life of ball screw/support bearing does not meet the required life, use a larger size Toughcarrier. After applying the calculations mentioned above, selection of the Toughcarrier is completed.

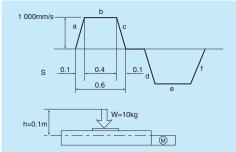
Table 2 Value of load factor

Operating conditions	Load factor f _w
Smooth operation with no mechanical shock	1.0 – 1.2
Normal operation	1.2 – 1.5
Operation with mechanical shock and vibration	1.5 – 3.0

*When the bottom of rail is not fastened, the load factor is 1.5 or greater.

Table 1 Dynamic equivalent coefficient

	TCH06				TCH09		TCH10		
	Rolling	Pitching	Yawing	Rolling	Pitching	Yawing	Rolling	Pitching	Yawing
Standard slider	56	93	93	39	51	51	33	44	44
Short slider	56	186	186	39	95	95	33	80	80


gnearrier

NSK

C-2-4. 8 Example Life Estimation

Example life estimation for Toughcarrier

Example-1

1. Use condition

Stroke : 500 mm

Maximum speed : 1 000 mm/s

Load mass : W = 10 kg

Acceleration : 9.80 m/s²

Setting position : Horizontal

Operating profile: See figure to above

2. Selection of model (interim selection)

First, select a greater ball screw lead as the

maximum speed is 1 000 mm/s.

The interim selection is TCH06050H20K00, a single slider specification TCH06 that has 500 mm stroke, as the stroke is 500 mm.

- 3. Calculation
- 3-1. Linear guide
- 3-1-1. Fatigue life: Multiply the result of Eq. 1) by the dynamic equivalent coefficient (**Table 1** single slider) to convert the load volume. From operation profile in the above figure, the acceleration is 10 m/s².

i) Constant speed
$$F_{e1} = Y_V \cdot F_V = Y_V \cdot W \cdot g$$

 $= 1 \cdot 10 \cdot 9.8 = 98 \text{ N}$
ii) Accelerating $F_{e2} = Y_V \cdot F_V + Y_P \cdot \varepsilon_P \cdot M_P$
 $= Y_V \cdot W \cdot g + Y_P \cdot \varepsilon_P hW\alpha$
 $= 0.5 \cdot 10 \cdot 9.8 + 1 \cdot 93 \cdot 0.1 \cdot 10 \cdot 10$
 $= 979 \text{ N}$
iii) Decelerating $F_{e1} = Y_V \cdot F_V + Y_P \cdot S_P \cdot M$

iii) Decelerating
$$\begin{aligned} F_{e3} &= Y_{\scriptscriptstyle V} \cdot F_{\scriptscriptstyle V} + Y_{\scriptscriptstyle P} \cdot \epsilon_{\scriptscriptstyle P} \cdot M_{\scriptscriptstyle P} \\ &= Y_{\scriptscriptstyle V} \cdot W \cdot g + Y_{\scriptscriptstyle P} \cdot \epsilon_{\scriptscriptstyle P} h W \alpha \\ &= 0.5 \cdot 10 \cdot 9.8 + 1 \cdot 93 \cdot 0.1 \cdot 10 \cdot 10 \\ &= 979 \ N \end{aligned}$$

Mean effective load F_m

$$\begin{split} F_{m} &= \frac{\frac{10}{3}}{\sqrt{\frac{1}{L}}} \left(F_{e1}^{\frac{10}{3}} \cdot L_{1} + F_{e2}^{\frac{10}{3}} \cdot L_{2} + F_{e3}^{\frac{10}{3}} \cdot L_{3} \right) \\ &= \frac{\frac{10}{3}}{\sqrt{\frac{1}{500}}} \left(98^{\frac{10}{3}} \cdot 400 + 979^{\frac{10}{3}} \cdot 50 + 979^{\frac{10}{3}} \cdot 50 \right) \\ &= 605 \text{ N} \end{split}$$

$$L = 50 \times \left(\frac{C}{f_{\rm w} \cdot F_{\rm m}}\right)^{\frac{10}{3}}$$
$$= 50 \times \left(\frac{20\ 900}{1.2 \cdot 605}\right)^{\frac{10}{3}}$$
$$= 3.65 \times 10^{6} \,\mathrm{km}$$

3-1-2. Static safety factor: Divide the basic static load rating by the maximum load.

$$F_{\rm S} = \frac{C_{\rm o}}{F_{\rm e}} = \frac{C_{\rm o}}{F_{\rm e2}} = \frac{45\,000}{979} = 45.9$$

3-2. Ball screw

3-2-1. Fatigue life: Obtain the axial load of each stage of operation referring to the operation profile, and then calculate the mean load.

By the process above, i) Constant speed

$$F_{e1} = \mu \cdot W \cdot g = 0.01 \cdot 10 \cdot 9.8 = 0.98 \text{ N}$$

ii) Accelerating

$$F_{e2} = F_{e1} + W \cdot \alpha = 0.98 + 10 \cdot 10 = 101 \text{ N}$$

iii) Decelerating

$$F_{e3} = F_{e1} + W \cdot \alpha = 0.98 - 10 \cdot 10 = 99 \text{ N}$$

Axial mean effective load

$$\begin{split} F_{m} &= \sqrt[3]{\frac{1}{L} \left(F_{e^{1}}^{3} \cdot L_{1} + F_{e^{2}}^{3} \cdot L_{2} + F_{e^{3}}^{3} \cdot L_{3}\right)} \\ &= \sqrt[3]{\frac{1}{500} \left(0.98^{3} \cdot 400 + 101^{3} \cdot 50 + 99^{3} \cdot 50\right)} \\ &= 59 \text{ N} \\ L &= \ell \times \left(\frac{C_{a}}{f_{w} \cdot F_{m}}\right)^{3} \times 10^{6} \\ &= 20 \times \left(\frac{2.660}{1.2 \cdot 59}\right)^{3} \times 10^{6} \\ &= 10.6 \times 10^{5} \text{ km} \end{split}$$

3-2-2. Static safety factor: Divide the basic static load rating by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{F_{\rm c}} = \frac{C_{\rm 0a}}{F_{\rm ca}} = \frac{3\,800}{101} = 37.6$$

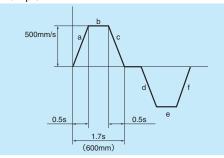
- 3-3. Support bearings
- 3-3-1. Fatigue life: Use the axial load $F_{\rm m}=59$ N that is the result of the calculation in 3-2-1, above.

$$L = \ell \times \left(\frac{C_a}{f_w \cdot F_m}\right)^3 \times 10^6$$

$$= 20 \times \left(\frac{6600}{1.2 \cdot 59}\right)^3 \times 10^6$$

$$= 1.62 \times 10^7 \text{ km}$$

3-3-2. Static safety factor: Divide the limit load by the maximum axial load.

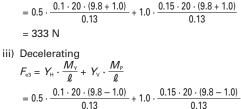

$$F_{\rm S} = \frac{C_{\rm 0a}}{F_{\rm e}} = \frac{C_{\rm 0a}}{F_{\rm e2}} = \frac{2\,700}{101} = 26.7$$

3-4. Results

TCH06050H20K00	Linear guide	Ball screw	Support bearings	
Fatiana life	3.65×	10.6×	1.62 ×	
Fatigue life	10 ⁶ km	10⁵ km	10 ⁷ km	
Static safety factor	45.9	37.6	26.7	

Example life estimation

Example-2


1. Use condition

Stroke : 600 mm Maximum speed: 500 mm/s

Load mass : W = 20 kg

Acceleration : 9.8 m/s² Setting position: Vertical

Operating profile: See fiure to above

Mean effective load F_{rr}

= 271 N

$$F_{m} = \frac{\frac{10}{3}}{1} \frac{1}{L} \left(F_{e1}^{\frac{10}{3}} \cdot L_{1} + F_{e2}^{\frac{10}{3}} \cdot L_{2} + F_{e3}^{\frac{10}{3}} \cdot L_{3} \right)$$

$$= \frac{\frac{10}{3}}{1} \frac{1}{600} \left(302^{\frac{10}{3}} \cdot 350 + 333^{\frac{10}{3}} \cdot 125 + 271^{\frac{10}{3}} \cdot 125 \right)$$

$$= 304 \text{ N}$$

$$L = 50 \times \left(\frac{C}{f_{w} \cdot F_{m}} \right)^{\frac{10}{3}}$$

$$= 50 \times \left(\frac{44900}{1.2 \cdot 304} \right)^{\frac{10}{3}}$$

$$= 4.63 \times 10^{8} \text{ km}$$

2. Selection of model (interim selection)

Select a 10 mm lead ball screw as the maximum speed is 500 mm/s.

The interim selection is TCH09067H10D00 (double slider specification) from the stroke and the vertical setting position.

3. Calculation

3-1. Linear guide

3-1-1. Fatigue life: Multiply the result of Eq. 2) and 2') by the dynamic equivalent coefficient (Table 1 double slider) to convert the load volume. From operation profile in the above figure, the acceleration is 1 m/s2. The interim slider span is 0.13.

Under this condition,

$$F_{\rm H} = 0$$
, $F_{\rm V} = 0$, $M_{\rm R} = 0$

in Eq. 2), and both sliders have the same load with different direction.

i) Constant speed

$$F_{e1} = Y_{H} \cdot \frac{\dot{M}_{Y}}{\ell} + Y_{V} \cdot \frac{M_{P}}{\ell}$$

$$= 0.5 \cdot \frac{0.1 \cdot 20 \cdot 9.8}{0.13} + 1.0 \cdot \frac{0.15 \cdot 20 \cdot 9.8}{0.13}$$

$$= 302 \text{ N}$$

ii) Accelerating

$$F_{\rm e2} = Y_{\rm H} \cdot \frac{M_{\rm Y}}{\ell} + Y_{\rm V} \cdot \frac{M_{\rm P}}{\ell}$$

3-1-2. Static safety factor: Divide the basic static load rating by the maximum load.

$$F_{\rm s} = \frac{C_{\rm 0}}{F_{\rm e}} = \frac{C_{\rm 0}}{F_{\rm e2}} = \frac{96\,900}{333} = 290$$

3-2. Ball screw

3-2-1. Fatigue life: Obtain the axial load of each stage of operation referring to the operation profile, and then calculate the mean load.

i) Constant speed

$$F_{\text{e1}} = W \cdot g = 20 \cdot 9.8 = 196 \text{ N}$$

ii) Accelerating

$$F_{e2} = F_{e1} + W \cdot \alpha = 196 + 20 \cdot 1.0 = 216 \text{ N}$$

iii) Decelerating

$$F_{e3} = F_{e1} - W \cdot \alpha = 196 - 20 \cdot 1.0 = 176 \text{ N}$$

Axial mean effective load F_m

$$\begin{split} F_{m} &= \sqrt[3]{\frac{1}{L} \left(F_{e1}^{\ 3} \cdot L_{1} + F_{e2}^{\ 3} \cdot L_{2} + F_{e3}^{\ 3} \cdot L_{3}\right)} \\ &= \sqrt[3]{\frac{1}{600} \left(196^{3} \cdot 350 + 216^{3} \cdot 125 + 176^{3} \cdot 125\right)} \\ &= 197 \text{ N} \\ L &= \ell \times \left(\frac{C_{a}}{f_{w} \cdot F_{m}}\right)^{3} \times 10^{6} \\ &= 10 \times \left(\frac{8140}{1 \cdot 2 \cdot 197}\right)^{3} \times 10^{6} \\ &= 4.08 \times 10^{5} \text{ km} \end{split}$$

3-2-2. Static safety factor: Divide the basic static load rating by the maximum axial load.

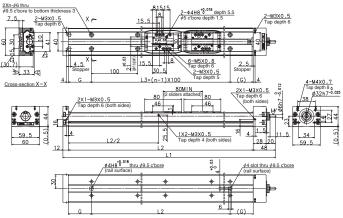
$$F_{\rm s} = \frac{C_{\rm 0a}}{F_{\rm e}} = \frac{C_{\rm 0a}}{F_{\rm e2}} = \frac{12\,800}{216} = 59.2$$

3-3. Support bearings

3-3-1. Fatique life: Use the axial load $F_m = 197 \text{ N}$ that is the result of the calculation in 3-2-1, above.

$$L = \ell \times \left(\frac{C_a}{f_w \cdot F_m}\right)^3 \times 10^6$$
$$= 10 \times \left(\frac{8800}{1.2 \cdot 197}\right)^3 \times 10^6$$
$$= 5.15 \times 10^6 \text{ km}$$

3-3-2. Static safety factor: Divide the limit load by the maximum axial load.

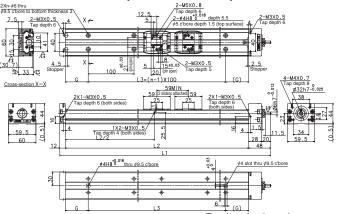

$$F_{\rm s} = \frac{C_{\rm 0a}}{F_{\rm o}} = \frac{C_{\rm 0a}}{F_{\rm o2}} = \frac{5.090}{216} = 23.5$$

3-4. Result

TCH09067H10D00	Linear guide	Ball screw	Support bearings
E .: 156	4.63×	4.08×	5.15×
Fatigue life	10 ⁸ km	10⁵ km	10⁵ km
Static safety factor	290	59.2	23.5

C-2-5 TCH Model Dimension Tables for Standard Products C-2-5. 1 TCH06 model

◆ TCH06 Standard Slider Specifications (with pin holes)



Toughcarrier dynamic torque specifications

Unit: N · cm

Model no.	Slider specifications	Ball screw lead	Accuracy grade					
iviouei no.	Slider specifications	(mm)	High grade	Precision grade				
		5	1.0 - 6.0	1.8 - 9.0				
	Single standard slider	10	1.1 - 7.2	2.0 - 10.6				
TCH06		20	1.6 - 9.5	2.2 - 12.9				
101100		5	1.2 - 7.2	2.0 - 10.1				
	Double standard sliders	10	1.2 - 9.5	2.2 - 12.9				
		20	1.8 – 14.1	2.8 – 17.5				

◆ TCH06 Short Slider Specifications (with pin holes)

Toughcarrier dynamic torque specifications

Unit: N · cm

Madal na	Slider specifications	Ball screw lead	Accuracy grade				
woder no.	Silder Specifications	(mm)	High grade	Precision grade			
TCH06	Single short slider	5	0.8 – 5.9	1.8 - 8.9			
	Single Short Slider	10	1.0 - 7.0	2.0 - 10.4			
	Double short sliders	5	1.0 - 7.0	2.0 - 10.0			
	Double Short Sliders	10	1.2 - 9.2	2.2 - 12.6			

TCH06 Standard Slider Specifications (Single)

Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mr	n)	No. of mounting holes		Mass
Tiererenee mamber	stroke (mm)	(mm)	lead (mm)	L ₁	L2	Lз	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH06005H05K00 (01)			5						2.94	
* TCH06005H10K00 (01)	50	63	10	210	150	100	25	2	3.38	2.2
* TCH06005H20K00 (01)			20						5.10	
* TCH06010H05K00 (01)			5						3.74	
* TCH06010H10K00 (01)	100	113	10	260	200	100	50	2	4.18	2.5
* TCH06010H20K00 (01)			20						5.90	
TCH06020H05K00 (01)			5						5.34	
TCH06020H10K00 (01)	200	213	10	360	300	200	50	3	5.78	3.3
TCH06020H20K00 (01)			20						7.50	
TCH06030H05K00 (01)			5]					6.84	
TCH06030H10K00 (01)	300	313	10	460	400	300	50	4	7.28	3.9
TCH06030H20K00 (01)			20						9.00	
TCH06040H05K00 (01)			5						8.44	
TCH06040H10K00 (01)	400	413	10	560	500	400	50	5	8.88	4.6
TCH06040H20K00 (01)			20						10.6	
TCH06050H05K00 (01)			5						10.1	
TCH06050H10K00 (01)	500	513	10	660	600	500	50	6	10.5	5.3
TCH06050H20K00 (01)			20]					12.2	

Items marked with * are unavailable for upside-down operation.

TCH06 Standard Slider Specifications (Double)

Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mn	n)	No. of mounting holes		Mass
Hererence number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
*TCH06013H05D00 (01)	130	133	5	360	300	200	50	3	5.47	3.6
* TCH06013H10D00 (01)		133	10					3	6.32	3.0
* TCH06023H05D00 (01)	230	233	5	460	400	300	50	4	7.06	4.2
* TCH06023H10D00 (01)	230		10						7.91	
* TCH06033H05D00 (01)	330	333	5	560	500	00 400	00 50	5	8.64	4.9
* TCH06033H10D00 (01)	330	333	10	300	300			5	9.49	4.5
TCH06043H10D00 (01)	430	433	10	660	600	500	50	6	11.08	5.6
TCH06043H20D00 (01)	430	433	20	000	600	300	50	0	14.4	5.6

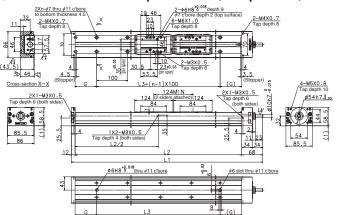
Items marked with * are unavailable for upside-down operation.

TCH06 Short Slider Specifications (Single)

Reference number	Nominal stroke (mm)	Stroke limit	Ball screw lead (mm)	В	ody len	gth (mr		No. of mounting holes	Inertia × 10 ⁻⁶ (kg · m ²)	Mass (kg)
	Stroke (IIIIII)	(111111)	read (mm)	L ₁	L ₂	L ₃	G	11	x 10 ' (kg · 111)	(Kg)
*TCH06007H05A00 (01)	70	84	5	210	150	100	25	2	2.87	2.1
* TCH06007H10A00 (01)	70	84	10	210	150	100	25		3.06	2.1
*TCH06012H05A00 (01)	120	134	5	260	200	100	50	2	3.67	2.4
*TCH06012H10A00 (01)	120	134	10	200	200	100	50		3.86	2.4
TCH06022H05A00 (01)	220	234	5	360	300	200	50	3	5.27	3.2
TCH06022H10A00 (01)	220	234	10	300	300	200	50)	5.46	3.2
TCH06032H05A00 (01)	320	334	5	460	400	300	50	4	6.77	3.8
TCH06032H10A00 (01)	320	334	10	460	400	300	50	4	6.96	3.0
TCH06042H05A00 (01)	420	434	5	560	500	400	50	5	8.37	4.5
TCH06042H10A00 (01)	420	434	10	500	500	400	50	o o	8.56	4.5
TCH06052H05A00 (01)	520	534	5	660	600	500	50	6	9.97	5.2
TCH06052H10A00 (01)	520	554	10	000	000	500	50	0	10.2	U.Z

Items marked with * are unavailable for upside-down operation.

TCH06 Short Slider Specifications (Double)

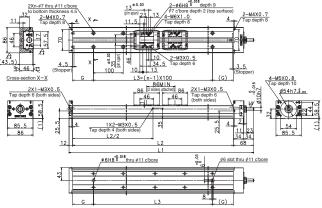

Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mr		No. of mounting holes	Inertia	Mass
	stroke (mm)	(mm)	lead (mm)	L1	L ₂	L3	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH06017H05B00 (01)	170	175	5	360	300	200	50	2	5.34	3.4
* TCH06017H10B00 (01)		1/5	10	360		200	50	٥	5.81	3.4
TCH06027H05B00 (01)	270	275	5	460	400	300	50	4	6.93	4.0
TCH06027H10B00 (01)	270	2/5	10	400	400	300	30	4	7.40	4.0
TCH06037H05B00 (01)	370	375	5	560	500	400	50	-	8.51	4.7
TCH06037H10B00 (01)	370	3/5	10	560	500	400		5	8.98	
TCH06047H10B00 (01)	470	475	10	660	600	500	50	6	10.57	5.4

Items marked with * are unavailable for upside-down operation.

C111 C112

C-2-5. 2 TCH09 Model

♦ TCH09 Standard Slider Specifications (with pin holes)



Toughcarrier dynamic torque specifications

Unit: N · cm

Model no	Slider specifications	Ball screw lead	Accuracy grade				
iviouei iio.	Silder specifications	(mm)	High grade	Precision grade			
		5	2.8 - 7.7	4.2 – 12.8			
	Single standard slider	10	3.7 - 9.5	4.5 – 15.1			
TCH09		20	3.7 – 12.6	5.1 – 17.9			
1CHU9		5	3.2 - 8.7	4.5 – 14.1			
	Double standard sliders	10	4.2 - 12.6	5.1 – 17.9			
		20	5.7 – 18.9	6.3 – 23.3			

♦ TCH09 Short Slider Specifications (with pin holes)

Toughcarrier dynamic torque specifications

Unit: N · cm

Model no.	Slider specifications	Ball screw lead	Accurac	cy grade
woder no.	Siluer specifications	(mm)	High grade	Precision grade
		5	2.0 - 6.9	3.5 – 12.0
	Single short slider	10	2.9 - 8.7	3.8 - 14.3
TCH09		20	2.9 – 11.8	4.3 – 17.1
TCHU9		5	2.5 - 7.9	3.8 – 13.3
	Double short sliders	10	3.4 – 11.8	4.3 – 17.1
		20	4.9 – 18.1	5.5 – 22.6

TCH09 Standard Slider Specifications (Single)

TCH09

Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mr	n)	No. of mounting holes		Mass
Reference number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH09010H05K00 (01) * TCH09010H10K00 (01) * TCH09010H20K00 (01)		108	5 10 20	320	240	100	70	2	9.13 11.0 18.6	6.5
TCH09020H05K00 (01) TCH09020H10K00 (01) TCH09020H20K00 (01)	200	208	5 10 20	420	340	200	70	3	14.2 16.0 23.6	7.9
TCH09030H05K00 (01) TCH09030H10K00 (01) TCH09030H20K00 (01)	300	308	5 10 20	520	440	300	70	4	18.1 19.9 27.5	9.4
TCH09040H05K00 (01) TCH09040H10K00 (01) TCH09040H20K00 (01)	400	408	5 10 20	620	540	400	70	5	21.9 23.8 31.4	10.8
TCH09050H05K00 (01) TCH09050H10K00 (01) TCH09050H20K00 (01)	500	508	5 10 20	720	640	500	70	6	25.9 27.7 35.3	12.3
TCH09060H05K00 (01) TCH09060H10K00 (01) TCH09060H20K00 (01)	600	608	5 10 20	820	740	600	70	7	29.4 31.3 38.9	13.6
TCH09070H05K00 (01) TCH09070H10K00 (01) TCH09070H20K00 (01)	700	708	5 10 20	920	840	700	70	8	33.5 35.4 43.0	15.0
TCH09080H05K00 (01) TCH09080H10K00 (01) TCH09080H20K00 (01)	800	808	5 10 20	1 020	940	800	70	9	37.4 39.3 46.9	16.4
to the test of										

Items marked with * are unavailable for upside-down operation.

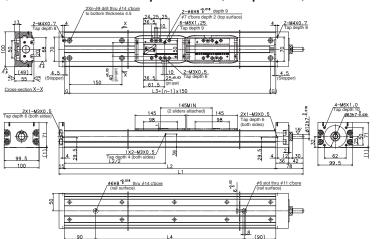
TCH09 Standard Slider Specifications (Double)

Reference number	Nominal	Stroke limit	Ball screw	В	ody len	gth (mr	n)	No. of mounting holes		Mass
Treference frumber	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
*TCH09017H05D00 (01) *TCH09017H10D00 (01)	170	184	5 10	520	440	300	70	4	19.47 22.89	10.3
* TCH09027H05D00 (01) * TCH09027H10D00 (01)	270	284	5 10	620	540	400	70	5	23.35 26.77	11.7
TCH09037H05D00 (01) TCH09037H10D00 (01)	370	384	5 10	720	640	500	70	6	27.22 30.64	13.2
TCH09047H10D00 (01) TCH09047H20D00 (01)	470	484	10 20	820	740	600	70	7	34.55 48.24	14.5
TCH09067H10D00 (01) TCH09067H20D00 (01)	670	684	10 20	1 020	940	800	70	9	42.27 55.96	17.3
6 I I II I										

Items marked with * are unavailable for upside-down operation.

TCH09 Short Slider Specifications (Single)

Reference number	Nominal	Stroke limit	Ball screw	Body length (mm)			n)	No. of mounting holes		Mass
Reference number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	G	n	× 10 ⁻⁶ (kg · m ²)	(kg)
*TCH09014H05A00 (01) *TCH09014H10A00 (01) *TCH09014H20A00 (01)		146	5 10 20	320	240	100	70	2	8.9 10.1 14.6	6.1
TCH09024H05A00 (01) TCH09024H10A00 (01) TCH09024H20A00 (01)	240	246	5 10 20	420	340	200	70	3	13.9 15.1 19.6	7.5
TCH09034H05A00 (01) TCH09034H10A00 (01) TCH09034H20A00 (01)	340	346	5 10 20	520	440	300	70	4	17.8 18.9 23.5	9.0
TCH09044H05A00 (01) TCH09044H10A00 (01) TCH09044H20A00 (01)	440	446	5 10 20	620	540	400	70	5	21.7 22.8 27.4	10.4
TCH09054H05A00 (01) TCH09054H10A00 (01) TCH09054H20A00 (01)	540	546	5 10 20	720	640	500	70	6	25.6 26.7 31.3	11.9
TCH09064H05A00 (01) TCH09064H10A00 (01) TCH09064H20A00 (01)	640	646	5 10 20	820	740	600	70	7	29.2 30.3 34.9	13.2
TCH09074H05A00 (01) TCH09074H10A00 (01) TCH09074H20A00 (01)	740	746	5 10 20	920	840	700	70	8	33.3 34.4 39.9	14.6
TCH09084H05A00 (01) TCH09084H10A00 (01) TCH09084H20A00 (01)	840	846	5 10 20	1 020	940	800	70	9	37.2 38.3 42.8	16.0

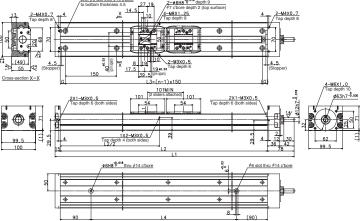

Items marked with * are unavailable for upside-down operation.

TCH09 Short Slider Specifications (Double)

Reference number	Nominal stroke (mm)	Stroke limit (mm)	Ball screw lead (mm)	B	Body length (mm)		No. of mounting holes	Inertia × 10 ⁻⁶ (kg · m ²)	Mass (kg)	
TCH09025H05B00 (01) TCH09025H10B00 (01)	250	260	5 10	520	440	300	70	4	18.96 20.86	9.5
TCH09035H05B00 (01) TCH09035H10B00 (01)	350	360	5 10	620	540	400	70	5	22.84 24.74	10.9
TCH09045H05B00 (01) TCH09045H10B00 (01)	450	460	5 10	720	640	500	70	6	26.71 28.61	12.4
TCH09055H10B00 (01) TCH09055H20B00 (01)	550	560	10 20	820	740	600	70	7	32.52 40.13	13.7
TCH09075H10B00 (01) TCH09075H20B00 (01)	750	760	10 20	1 020	940	800	70	9	40.24 47.85	16.5

C-2-5. 3 TCH 10 Model

◆ TCH10 Standard Slider Specifications (with pin holes)



Toughcarrier dynamic torque specifications

Unit: N · cm

Madalaa	Slider specifications	Ball screw lead	Accuracy grade				
viouei no.	Silder specifications	(mm)	High grade	Precision grade			
	Single standard slider	10	3.5 – 12.3	3.7 – 21.2			
TCH10	Single standard slider	20	4.1 – 16.6	4.3 – 25.5			
	Double standard sliders	10	4.1 – 16.6	4.3 – 25.5			
	Double Staridard Silders	20	5.4 – 25.2	5.6 – 34.1			

♦ TCH10 Short Slider Specifications (with pin holes)

Toughcarrier dynamic torque specifications

Unit: N · cm

Model no.	Slider specifications	Ball screw lead	Accuracy grade				
woder no.	Silder Specifications	(mm)	High grade	Precision grade			
	Single short slider	10	3.6 – 11.7	3.8 – 20.5			
TCH10	Single Short Slider	20	4.4 – 15.4	4.6 – 24.2			
TCITIO	Double short sliders	10	4.4 – 15.4	4.6 - 24.2			
	Double Short Silders	20	6.0 – 22.7	6.2 – 31.5			

TCH10 Standard Slider Specifications (Single)

TCH10

Reference number	Nominal	Stroke limit	Ball screw		Body length (mm)				No. of mounting		Mass
Reference number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	L ₄	G	holes n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH10010H10K00 (01)	100	126	10	373	280	150	100	65	2	42.72	9.6
*TCH10010H20K00 (01)	100	120	20	070	200	100	100	- 00		58.52	0.0
TCH10020H10K00 (01) TCH10020H20K00 (01)	200	226	10 20	473	380	300	200	40	3	54.97 65.62	11.5
TCH10020H20K00 (01)			10							67.22	
TCH10030H10K00 (01)	300	326	20	573	480	450	300	15	4	77.87	13.5
TCH10040H10K00 (01)	400	426	10	673	580	450	400	65	4	79.47	15.4
TCH10040H20K00 (01)	400	420	20	0/3	000	450	400	60	4	90.12	15.4
TCH10050H10K00 (01)	500	526	10	773	680	600	500	40	5	91.72	17.4
TCH10050H20K00 (01)	500	020	20	770	000	000	000	0		102.37	17.4
TCH10060H10K00 (01)	600	626	10	873	780	750	600	15	6	104.02	19.3
TCH10060H20K00 (01)	000	020	20	0,0	, 00	, 00	000			114.67	10.0
TCH10070H10K00 (01)	700	726	10 20	973	880	750	700	65	6	116.22	21.2
TCH10070H20K00 (01)										126.87	
TCH10080H10K00 (01) TCH10080H20K00 (01)	800	826	10 20	1 073	980	900	800	40	7	128.52 139.17	23.2
			10							140.70	
TCH10090H10K00 (01) TCH10090H20K00 (01)	900	926	20	1 173	1 080	1 050	900	15	8	151.35	25.2
TCH10030H20K00 (01)			10							152.94	
TCH10100H10K00 (01)	1 000	1 026	20	1 273	1 180	1 050	1 000	65	8	163.59	27.1
TCH10110H10K00 (01)			10							165.19	
TCH10110H10K00 (01)	1 100	1 126	20	1 373	1 280	1 200	1 100	40	9	175.84	29.1
TCH10120H10K00 (01)	1 200	1 226	10	1 473	1 380	1 350	1 200	15	10	177.43	31.1
TCH10120H20K00 (01)	1 200	1 220	20	14/3	1 300	1 350	1 200	15	10	188.08	31.1

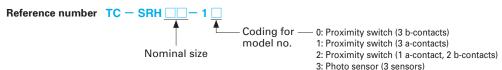
TCH10 Standard Slider Specifications (Double)

Items marked with * are unavailable for upside-down operation

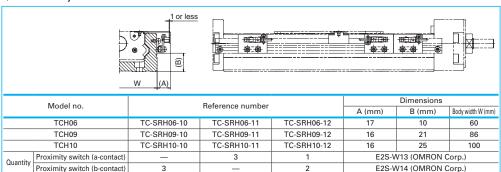
Reference number	Nominal	Stroke limit	Ball screw		Body	length	(mm)		No. of mounting		Mass
Reference number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	L4	G	holes n	× 10 ⁻⁶ (kg · m ²)	(kg)
* TCH10027H10D00 (01) * TCH10027H20D00 (01)	270	281	10 20	673	580	450	400	65	4	83.02 104.31	16.8
*TCH10037H10D00 (01) *TCH10037H20D00 (01)	370	381	10 20	773	680	600	500	40	5	95.27 116.56	18.8
TCH10047H10D00 (01) TCH10047H20D00 (01)	470	481	10 20	873	780	750	600	15	6	107.57 128.86	20.7
TCH10057H10D00 (01) TCH10057H20D00 (01)	570	581	10 20	973	880	750	700	65	6	119.77 141.06	22.6
TCH10067H10D00 (01) TCH10067H20D00 (01)	670	681	10 20	1 073	980	900	800	40	7	132.07 153.36	24.6
TCH10077H20D00 (01)	770	781	20	1 173	1 080	1 050	900	15	8	165.54	26.6
TCH10087H20D00 (01)	870	881	20	1 273	1 180	1 050	1 000	65	8	177.78	28.5
TCH10097H20D00 (01)		981	20	1 373	1 280	1 200	1 100	40	9	190.03	30.5
TCH10107H20D00 (01)	1 070	1 081	20	1 473	1 380	1 350	1 200	15	10	202.27	32.5

TCH10 Short Slider Specifications (Single)

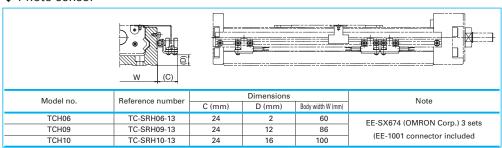
Items marked with * are unavailable for upside-down operation


Reference number	Nominal	Stroke limit	Ball screw		Body	length	(mm)		No. of mounting		Mass
Reference number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L ₃	L4	G	holes n	× 10 ⁻⁶ (kg · m ²)	(kg)
*TCH10016H10A00 (01) *TCH10016H20A00 (01)	160	170	10 20	373	280	150	100	65	2	41.19 47.36	8.9
TCH10026H10A00 (01) TCH10026H20A00 (01)	260	270	10 20	473	380	300	200	40	3	53.45 59.54	10.9
TCH10036H10A00 (01) TCH10036H20A00 (01)	360	370	10 20	573	480	450	300	15	4	65.70 71.79	12.8
TCH10046H10A00 (01) TCH10046H20A00 (01)	460	470	10 20	673	580	450	400	65	4	77.95 84.04	14.8
TCH10056H10A00 (01) TCH10056H20A00 (01)	560	570	10 20	773	680	600	500	40	5	90.20 96.29	16.7
TCH10066H10A00 (01) TCH10066H20A00 (01)	660	670	10 20	873	780	750	600	15	6	102.50 108.59	18.6
TCH10076H10A00 (01) TCH10076H20A00 (01)	760	770	10 20	973	880	750	700	65	6	114.70 120.79	20.6
TCH10086H10A00 (01) TCH10086H20A00 (01)	860	870	10 20	1 073	980	900	800	40	7	127.00 133.09	22.6
TCH10096H10A00 (01) TCH10096H20A00 (01)	960	970	10 20	1 173	1 080	1 050	900	15	8	139.18 145.27	24.5
TCH10106H10A00 (01) TCH10106H20A00 (01)	1 060	1 070	10 20	1 273	1 180	1 050	1 000	65	8	151.42 157.51	26.5
TCH10116H10A00 (01) TCH10116H20A00 (01)	1 160	1 170	10 20	1 373	1 280	1 200	1 100	40	9	163.67 169.76	28.4
TCH10126H10A00 (01) TCH10126H20A00 (01)	1 260	1 270	10 20	1 473	1 380	1 350	1 200	15	10	175.91 182.00	30.4

TCH10 Short Slider Specifications (Double)


Items marked with * are unavailable for upside-down operation

Reference number	ivoriiriai	Stroke IIIIII	Dali screw		воау	iengtn	(mm)		JIVO. OI IIIOUIIUIIG		iviass
Reference number	stroke (mm)	(mm)	lead (mm)	L ₁	L ₂	L3	L4	G	holes n	× 10 ⁻⁶ (kg · m ²)	(kg)
TCH10036H10B00 (01) TCH10036H20B00 (01)	360	369	10 20	673	580	450	400	65	4	79.97 92.14	15.6
TCH10046H10B00 (01) TCH10046H20B00 (01)	460	469	10 20	773	680	600	500	40	5	92.22 104.39	17.5
TCH10056H10B00 (01) TCH10056H20B00 (01)	560	569	10 20	873	780	750	600	15	6	104.52 116.69	19.4
TCH10066H10B00 (01) TCH10066H20B00 (01)	660	669	10 20	973	880	750	700	65	6	116.72 128.89	21.4
TCH10076H10B00 (01) TCH10076H20B00 (01)	760	769	10 20	1 073	980	900	800	40	7	129.02 141.19	23.4
TCH10086H20B00 (01)	860	869	20	1 173	1 080	1 050	900	15	8	153.37	25.3
TCH10096H20B00 (01)	960	969	20	1 273	1 180	1 050	1 000	65	8	165.61	27.3
TCH10106H20B00 (01)	1 060	1 069	20	1 373	1 280	1 200	1 100	40	9	177.86	29.2
TCH10116H20B00 (01)	1 160	1 169	20	1 473	1 380	1 350	1 200	15	10	190.10	31.2


C-2-6 Accessories C-2-6. 1 Sensor Unit

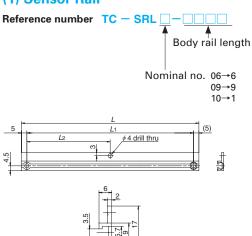
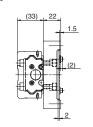
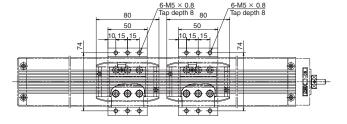

Proximity switch

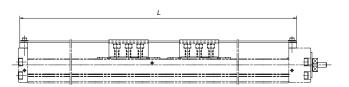
Photo sensor

(1) Sensor Rail

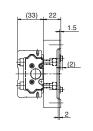


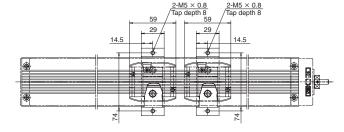

Model no.	Body rail			
woder no.	length	L	L1	L ₂
	150	168	158	79
	200	218	208	104
TCH06	300	318	308	154
TCHUB	400	418	408	204
	500	518	508	254
	600	618	608	304
	240	258	248	124
	340	358	348	174
Ì	440	458	448	224
TCH09	540	558	548	274
TCH09	640	658	648	324
	740	758	748	374
	840	858	848	424
	940	958	948	474
	280	298	288	144
	380	398	388	194
	480	498	488	244
	580	598	588	294
	680	698	688	344
TCH10	780	798	788	394
ICHIU	880	898	888	444
	980	998	988	494
	1 080	1 098	1 088	544
	1 180	1 198	1 188	594
	1 280	1 298	1 288	644
	1 380	1 398	1 388	694

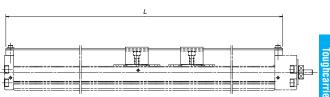
C-2-6. 2 Cover Unit


Accessories

◆ Cover Unit TC-HV06XXXK00 TC-HV06XXXD00

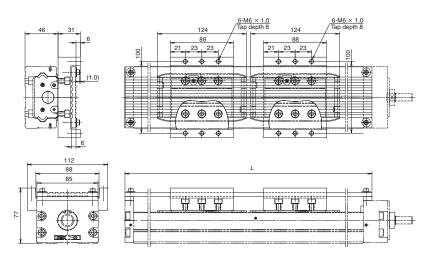




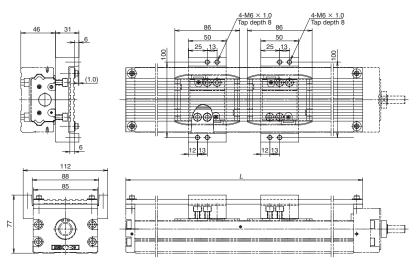


TC-HV06XXXA00 TC-HV06XXXB00

TCH06

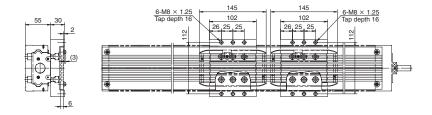

			Slider specifications						
Body rail length	Dimensions	Stan	dard	Sh	hort				
body rail leligtii	L	Single	Double	Single	Double				
150	170	TC-HV06005K00	_	TC-HV06007A00	- -				
200	220	TC-HV06010K00	_	TC-HV06012A00	_				
300	320	TC-HV06020K00	TC-HV06013D00	TC-HV06022A00	TC-HV06017B00				
400	420	TC-HV06030K00	TC-HV06023D00	TC-HV06032A00	TC-HV06027B00				
500	520	TC-HV06040K00	TC-HV06033D00	TC-HV06042A00	TC-HV06037B00				
600	620	TC-HV06050K00	TC-HV06043D00	TC-HV06052A00	TC-HV06047B00				

TCH Model


Accessories

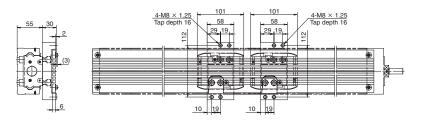
NSK

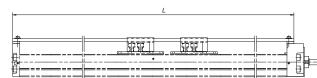
TC-HV09XXXK00 TC-HV09XXXD00


TC-HV09XXXA00 TC-HV09XXXB00

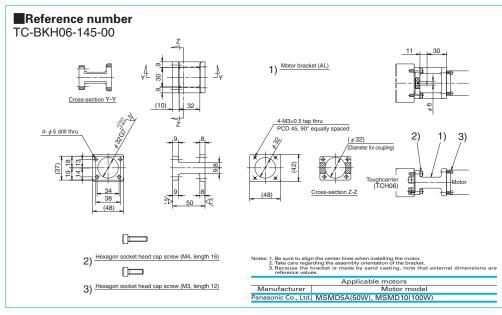
TCH09

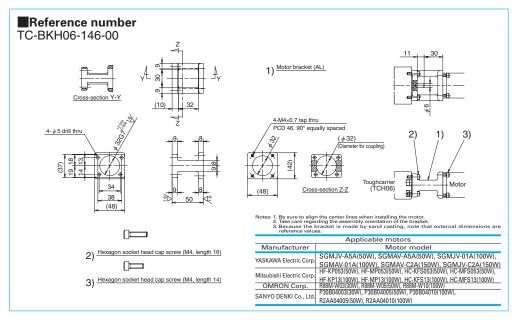
		Slider specifications							
Body rail length	Dimensions	Stan	dard	Sh	ort				
body rail leligtii	L	Single	Double	Single	Double				
240	264	TC-HV09010K00	_	TC-HV09014A00	_				
340	364	TC-HV09020K00	_	TC-HV09024A00	_				
440	464	TC-HV09030K00	TC-HV09017D00	TC-HV09034A00	TC-HV09025B00				
540	564	TC-HV09040K00	TC-HV09027D00	TC-HV09044A00	TC-HV09035B00				
640	664	TC-HV09050K00	TC-HV09037D00	TC-HV09054A00	TC-HV09045B00				
740	764	TC-HV09060K00	TC-HV09047D00	TC-HV09064A00	TC-HV09055B00				
840	864	TC-HV09070K00	_	TC-HV09074A00	_				
940	964	TC-HV09080K00	TC-HV09067D00	TC-HV09084A00	TC-HV09075B00				

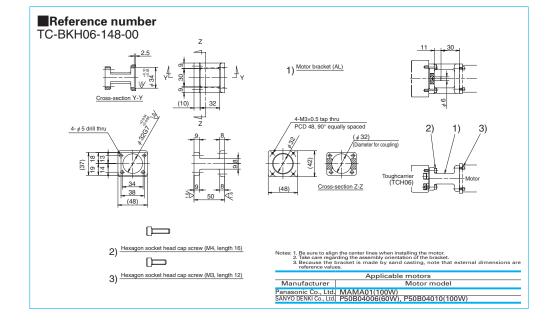

TC-HV10XXXK00 TC-HV10XXXD00

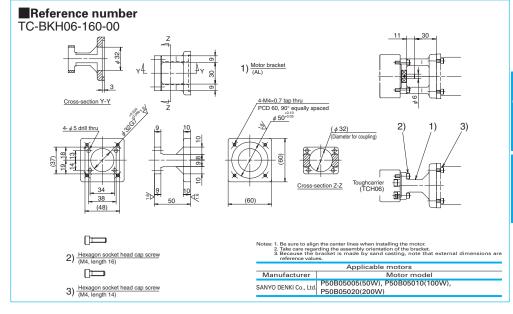


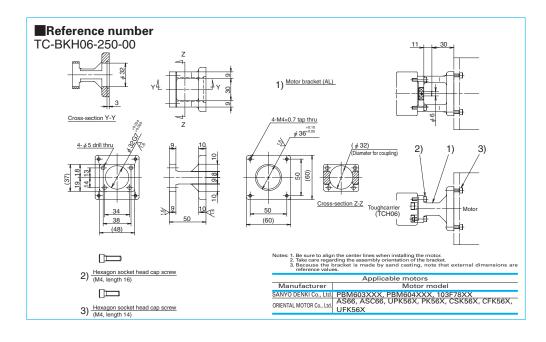
TC-HV10XXXA00 TC-HV10XXXB00

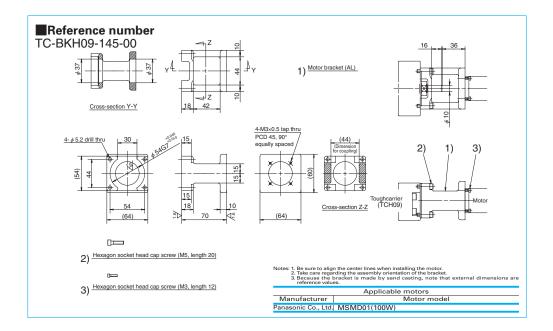

TCH10

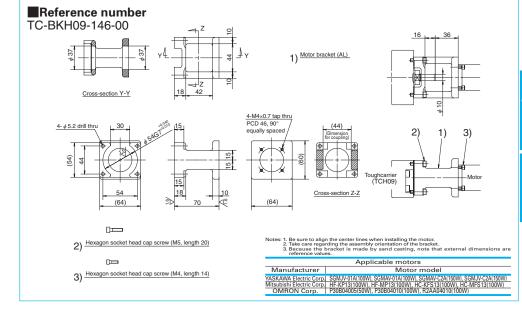

			Slider spe	cifications		
Body rail length	Dimensions	Standard		Short		
body rail length	L	Single	Double	Single	Double	
280	310	TC-HV10010K00	_	TC-HV10016A00	_	
380	410	TC-HV10020K00	_	TC-HV10026A00	_	
480	510	TC-HV10030K00	_	TC-HV10036A00	_	
580	610	TC-HV10040K00	TC-HV10027D00	TC-HV10046A00	TC-HV10036B00	
680	710	TC-HV10050K00	TC-HV10037D00	TC-HV10056A00	TC-HV10046B00	
780	810	TC-HV10060K00	TC-HV10047D00	TC-HV10066A00	TC-HV10056B00	
880	910	TC-HV10070K00	TC-HV10057D00	TC-HV10076A00	TC-HV10066B00	
980	1 010	TC-HV10080K00	TC-HV10067D00	TC-HV10086A00	TC-HV10076B00	
1 080	1 110	TC-HV10090K00	TC-HV10077D00	TC-HV10096A00	TC-HV10086B00	
1 180	1 210	TC-HV10100K00	TC-HV10087D00	TC-HV10106A00	TC-HV10096B00	
1 280	1 310	TC-HV10110K00	TC-HV10097D00	TC-HV10116A00	TC-HV10106B00	
1 380	1 410	TC-HV10120K00	TC-HV10107D00	TC-HV10126A00	TC-HV10116B00	

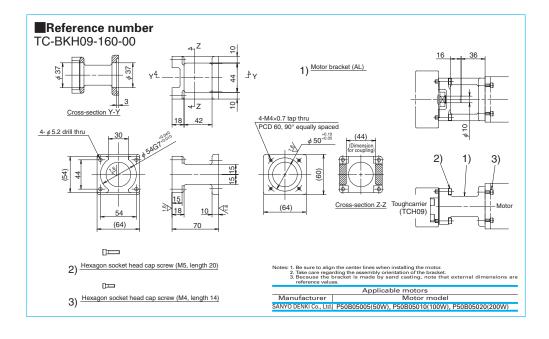

C-2-6. 3 Motor Bracket

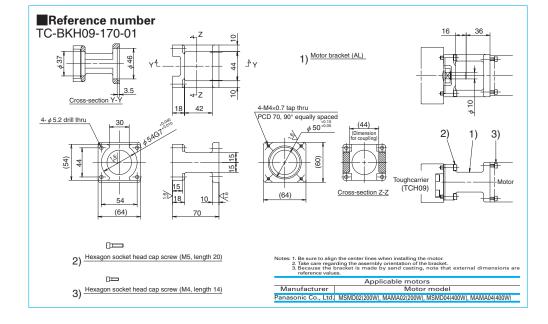

♦ Motor bracket

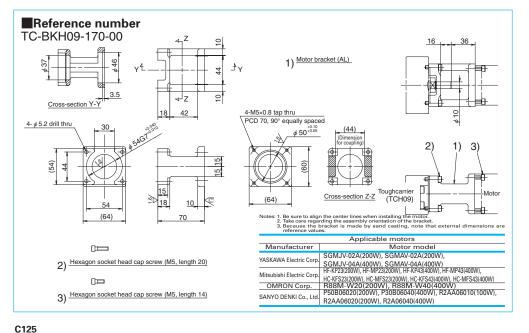

Motor models are subject to change at motor manufacturers. For details, please contact the manufacturer. For motors other than shown below, please contact NSK.

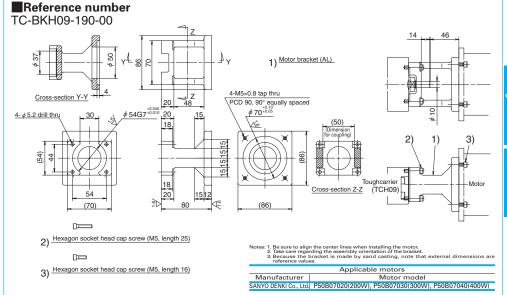


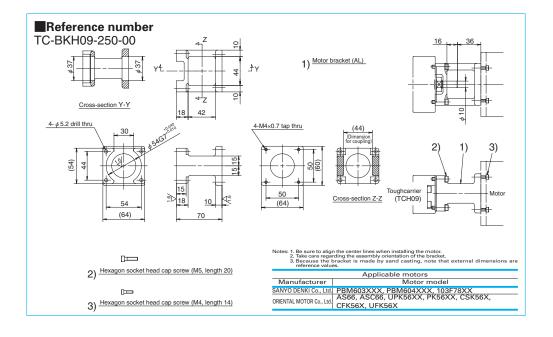


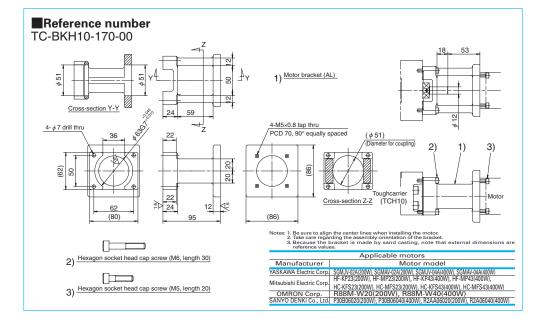


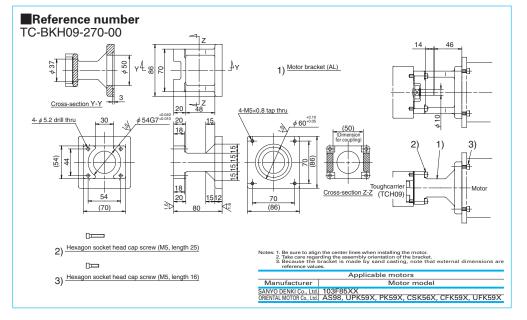


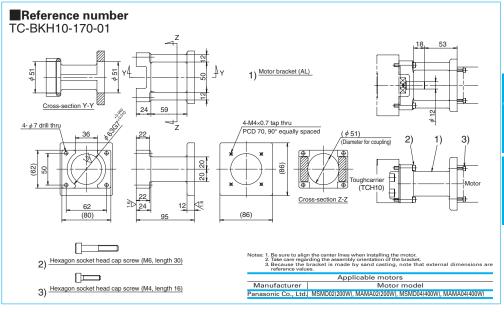


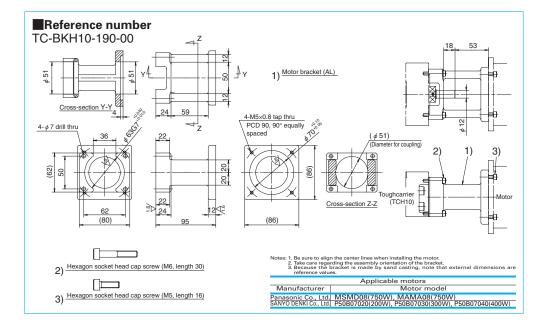


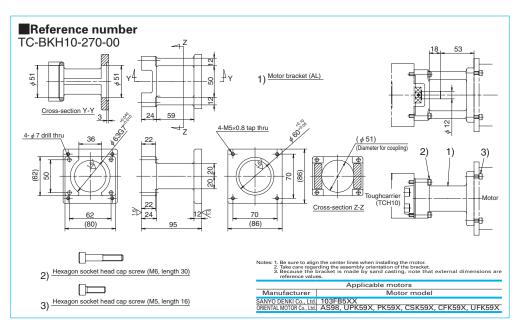












C127

Toughcarrier™ TCH Model

Accessories **NSK**

C-2-7 Motor Bracket Compatibility

fodel No.	Reference number	Motor manufacturer	Stepping motor model no.	2011	Ec.	0041		age of AC servo		202147	400147	750V
	TC-BKH06-145-00	Panasonic Co., Ltd.	model no.	30W	50W MSMD5A	60W	100W MSMD10	150W	200W	300W	400VV	750V
	TC-BKH00-145-00				SGMJV-A5A		SGMJV-01A	SGMJV-C2A				
	YASKAWA Electric Corp.			SGMAV-A5A		SGMAV-01A	SGMAV-C2A					
				HF-KP053		HF-KP13						
		Mitsubishi Electric Corp.			HF-MP053		HF-MP13					
	TC-BKH06-146-00	Witsubishi Electric Corp.			HC-KFS053		HC-KFS13					
					HC-MFS053		HC-MFS13					
		OMRON Corp.		R88M-W03	R88M-W05		R88M-W10					
		SANYO DENKI Co., Ltd.		P30B04003	P30B04005		P30B04010					
					R2AA04005		R2AA04010					
	TC-BKH06-148-00	Panasonic Co., Ltd.					MAMA01					
TCH06	TC-BKH06-160-00	SANYO DENKI Co., Ltd. SANYO DENKI Co., Ltd.		-	P50B05005	P50B04006	P50B04010 P50B05010		P50B05020			
	TC-BKH00-160-00	SAINTO DEINKI CO., LLG.	PBM603XXX		POUBUOUUS		POUBUOUTU		P50B05020			
		SANYO DENKI Co., Ltd.	PBM604XXX 103F78XX									
			AS66									
	TC-BKH06-250-00		ASC66	1								
			UPK56X									
		ORIENTAL MOTOR Co., Ltd.	PK56X									
			CSK56X									
			CFK56X UFK56X									
	TC-BKH09-145-00	Panagonia Ca 144	UFK56X				MSMD01					
	IC-BKH09-145-00	Panasonic Co., Ltd.		_			MSMD01 SGMJV-01A	SGMJV-C2A				-
		YASKAWA Electric Corp.					SGMJV-01A SGMAV-01A	SGMJV-C2A SGMAV-C2A				
				_			HF-KP13	JUIVIAV-UZA				
							HF-KP13 HF-MP13					
	TC-BKH09-146-00	Mitsubishi Electric Corp.					HC-KFS13					
							HC-MFS13					
					P30B04005		P30B04010					
		SANYO DENKI Co., Ltd.					R2AA04010					
	TC-BKH09-160-00	SANYO DENKI Co., Ltd.			P50B05005		P50B05010		P50B05020			
		V46/44/4 EL							SGMJV-02A		SGMJV-04A	
		YASKAWA Electric Corp.		1					SGMAV-02A		SGMAV-04A	
									HF-KP23		HF-KP43	
- 1		Mitsubishi Electric Corp.							HF-MP23		HF-MP43	
	TC-BKH09-170-00	Witsubishi Electric Corp.							HC-KFS23		HC-KFS43	
- 1									HC-MFS23		HC-MFS43	
		OMRON Corp.							R88M-W20		R88M-W40	
		SANYO DENKI Co., Ltd.							P30B06020		P30B06040	
							R2AA06010		R2AA06020		R2AA06040	
TCH09	TC-BKH09-170-01	Panasonic Co., Ltd.							MSMD02		MSMD04	
	TC-BKH09-190-00	OLLEGO DELIGIO IL I		-					MAMA02 P50B07020	P50B07030	MAMA04 P50B07040	
	TC-BKH09-190-00	SANYO DENKI Co., Ltd.	PBM603XXX						P50B07020	P50B07030	P50B07040	
		SANYO DENKI Co., Ltd.	PBM604XXX 103F78XX									
			AS66									
			ASC66									
	TC-BKH09-250-00		UPK56X									
		ORIENTAL MOTOR Co., Ltd.	PK56X	1					İ			
-			CSK56X									
			CFK56X									
			UFK56X									
-			AS98									
			UPK59X									
		ORIENTAL MOTOR Co., Ltd.	PK59X									
	TC-BKH09-270-00		CSK59X									
			CFK59X									
		SANYO DENKI Co., Ltd.	UFK59X 103F85XX	-						-		-
		SANTO DENKI CO., Ltd.	IUSPBAK	1					SGMJV-02A	l	SGMJV-04A	
		YASKAWA Electric Corp.							SGMJV-02A SGMAV-02A		SGMJV-04A SGMAV-04A	
				_					HF-KP23		HF-KP43	
									HF-MP23		HF-MP43	
	TC-BKH10-170-00	Mitsubishi Electric Corp.							HC-KFS23		HC-KFS43	
									HC-MFS23		HC-MFS43	
		OMRON Corp.							R88M-W20		R88M-W40	
		SANYO DENKI Co., Ltd.							P30B06020		P30B06040	
		SANYU DENKI Co., Ltd.							R2AA06020		R2AA06040	
	TC-BKH10-170-01	Panasonic Co., Ltd.							MSMD02		MSMD04	
CH10	10-081110-170-01	r anasonić CO., Ltd.							MAMA02		MAMA04	
		Panasonic Co., Ltd.										MSM
	TC-BKH10-190-00											MAM
	10-08(110-130-00	SANYO DENKI Co., Ltd.							P50B07020	P50B07030	P50B07040	
		SANYO DENKI Co., Ltd.	103FB5XX									
		Gravio Delvid Co., etc.				1				1		
		DATE DETAIL CO., Etc.	AS98	1								
		ONITO DEING CO., Etc.	UPK59X									
	TC-BKH10-270-00	ORIENTAL MOTOR Co., Ltd.	UPK59X PK59X									
	TC-BKH10-270-00		UPK59X									

C129 C130

C-2-8 Sensor Rail and Top Cover Unit Combinations

o Selisui	nali aliu i	oh cover	Offic Coffibi	Hations
Model No.	Reference number	Rail length (L2)	Sensor rail reference number	Cover unit reference number
	TCH06005H05K00			
	TCH06005H10K00			TC-HV06005K00
	TCH06005H20K00	150	TC-SRL6-0150	
	TCH06007H05A00			TO 111/00007400
	TCH06007H10A00			TC-HV06007A00
	TCH06010H05K00			
	TCH06010H10K00			TC-HV06010K00
	TCH06010H20K00	200	TC-SRL6-0200	
	TCH06012H05A00			TC UV06012400
	TCH06012H10A00			TC-HV06012A00
	TCH06020H05K00			
	TCH06020H10K00			TC-HV06020K00
	TCH06020H20K00			
	TCH06013H05D00			TO 111/0004 0D 00
	TCH06013H10D00	300	TC-SRL6-0300	TC-HV06013D00
	TCH06022H05A00	1		TC 111/000000 100
	TCH06022H10A00	7		TC-HV06022A00
	TCH06017H05B00			TO 111/00047D00
	TCH06017H10B00			TC-HV06017B00
	TCH06030H05K00			
	TCH06030H10K00			TC-HV06030K00
	TCH06030H20K00			
TCH06	TCH06023H05D00		TC-SRL6-0400	TO 1 11 /000000
	TCH06023H10D00	400		TC-HV06023D00
	TCH06032H05A00			TO 111/00000 400
	TCH06032H10A00			TC-HV06032A00
	TCH06027H05B00			TO 1 11 10 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	TCH06027H10B00			TC-HV06027B00
	TCH06040H05K00			
	TCH06040H10K00			TC-HV06040K00
	TCH06040H20K00			
	TCH06033H05D00			TO 111/00000D00
	TCH06033H10D00	500	TC-SRL6-0500	TC-HV06033D00
	TCH06042H05A00			TO 1 11 1000 10 10 0
	TCH06042H10A00			TC-HV06042A00
	TCH06037H05B00	7		TO 1 11/2000 TO 2
	TCH06037H10B00			TC-HV06037B00
	TCH06050H05K00			
	TCH06050H10K00			TC-HV06050K00
	TCH06050H20K00	7		
İ	TCH06043H10D00	1	TO ODL 0 0000	TO 111/000 40DCC
ļ	TCH06043H20D00	600	TC-SRL6-0600	TC-HV06043D00
	TCH06052H05A00	1		TO 111/1000 F0 45 7
İ	TCH06052H10A00	7		TC-HV06052A00
	TCH06047H10B00	7		TC-HV06047B00

[•] Sensor rail reference numbers are determined according to the rail length. Select a sensor rail appropriate for your requirements.

/lodel No.	Reference number	Rail length (L2)	Sensor rail reference number	Cover unit reference numb
	TCH09010H05K00 TCH09010H10K00	-		TC-HV09010K00
	TCH09010H20K00	-		TC-HV090T0K00
	TCH09014H05A00	240	TC-SRL9-0240	
	TCH09014H10A00			TC-HV09014A00
TCH0901	TCH09014H20A00			
	TCH09020H05K00			_
	TCH09020H10K00			TC-HV09020K00
	TCH09020H20K00	340	TC-SRL9-0340	
	TCH09024H05A00	-		TC-HV09024A00
	TCH09024H10A00 TCH09024H20A00	_		TC-HV09024A00
	TCH09030H05K00			
	TCH09030H10K00	-		TC-HV09030K00
	TCH09030H20K00	1		
	TCH09017H05D00			TC LIV/00017D00
	TCH09017H10D00	440	TC CDI 0 0440	TC-HV09017D00
	TCH09034H05A00] 440	TC-SRL9-0440	
	TCH09034H10A00			TC-HV09034A00
	TCH09034H20A00			
	TCH09025H05B00	_		TC-HV09025B00
	TCH09025H10B00			
	TCH09040H05K00 TCH09040H10K00	_		TC-HV09040K00
	TCH09040H10K00	-		TC-HV09040K00
	TCH09027H05D00	540		
TCH09	TCH09027H10D00			TC-HV09027D00
	TCH09044H05A00		TC-SRL9-0540	
	TCH09044H10A00			TC-HV09044A00
	TCH09044H20A00	1		
	TCH09035H05B00			TC-HV09035B00
	TCH09035H10B00			10-11/09033800
	TCH09050H05K00			
	TCH09050H10K00	_		TC-HV09050K00
	TCH09050H20K00	-	TC-SRL9-0640	
	TCH09037H05D00 TCH09037H10D00	640		TC-HV09037D00
	TCH09054H05A00			
	TCH09054H10A00			TC-HV09054A00
	TCH09054H20A00	1		
	TCH09045H05B00	T T	TO 111/000 45 DOO	
	TCH09045H10B00	1		TC-HV09045B00
	TCH09060H05K00			
	TCH09060H10K00			TC-HV09060K00
	TCH09060H20K00]		
	TCH09047H10D00	_		TC-HV09047D00
	TCH09047H20D00	740	TC-SRL9-0740	
	TCH09064H05A00 TCH09064H10A00	-		TC-HV09064A00
	TCH09064H10A00	1		10-11V03004A00
	TCH09055H10B00	1		
	TCH09055H20B00	1		TC-HV09055B00
	TCH09070H05K00			
	TCH09070H10K00	1		TC-HV09070K00
	TCH09070H20K00	840	TC-SRL9-0840	
	TCH09074H05A00]	10-311L3=0040	
	TCH09074H10A00	1		TC-HV09074A00
	TCH09074H20A00			
	TCH09080H05K00	-		TC HIVOOOONOO
	TCH09080H10K00	-		TC-HV09080K00
	TCH09080H20K00 TCH09067H10D00	-		
	TCH09067H10D00	1		TC-HV09067D00
	TCH09087H20D00	940	TC-SRL9-0940	
	TCH09084H10A00	†		TC-HV09084A00
	TCH09084H20A00	1		
	TCH09075H10B00	1		TC-HV09075B00
	TCH09075H20B00	1	1	10-04030/2800

Sensor rail reference numbers are determined according to the rail length. Select a sensor rail appropriate for your requirements.

C131 C132

[•] Shapes and numbers of spacer plates for cover units are selected according to slider specifications.

[•] Shapes and numbers of spacer plates for cover units are selected according to slider specifications.

r	Toug
	heari
II	Ē

Model No.	Reference number	Rail length (L2)	Sensor rail reference number	Cover unit reference numb
	TCH10010H10K00 TCH10010H20K00			TC-HV10010K00
	TCH10016H10A00	280	TC-SRL1-0280	TC-HV10016A00
	TCH10016H20A00 TCH10020H10K00			TC-HV10020K00
	TCH10020H20K00 TCH10026H10A00	380	TC-SRL1-0380	
	TCH10026H20A00			TC-HV10026A00
	TCH10030H10K00 TCH10030H20K00	480	TC-SRL1-0480	TC-HV10030K00
	TCH10036H10A00 TCH10036H20A00	400	10-31121-0400	TC-HV10036A00
	TCH10040H10K00 TCH10040H20K00			TC-HV10040K00
	TCH10027H10D00			TC-HV10027D00
	TCH10027H20D00 TCH10046H10A00	580	TC-SRL1-0580	
	TCH10046H20A00 TCH10036H10B00			TC-HV10046A00
	TCH10036H20B00			TC-HV10036B00
	TCH10050H10K00 TCH10050H20K00			TC-HV10050K00
	TCH10037H10D00 TCH10037H20D00			TC-HV10037D00
	TCH10056H10A00	680	TC-SRL1-0680	TC-HV10056A00
	TCH10056H20A00 TCH10046H10B00			TC-HV10046B00
	TCH10046H20B00 TCH10060H10K00			
	TCH10060H20K00 TCH10047H10D00		TC-SRL1-0780	TC-HV10060K00
	TCH10047H20D00	780		TC-HV10047D00
	TCH10066H10A00 TCH10066H20A00			TC-HV10066A00
	TCH10056H10B00 TCH10056H20B00			TC-HV10056B00
	TCH10070H10K00 TCH10070H20K00			TC-HV10070K00
TCH10	TCH10057H10D00	880	TC-SRL1-0880	TC-HV10057D00
	TCH10057H20D00 TCH10076H10A00			
	TCH10076H20A00 TCH10066H10B00			TC-HV10076A00
	TCH10066H20B00			TC-HV10066B00
	TCH10080H10K00 TCH10080H20K00		TC-SRL1-0980	TC-HV10080K00
	TCH10067H10D00 TCH10067H20D00			TC-HV10067D00
	TCH10086H10A00	980		TC-HV10086A00
	TCH10086H20A00 TCH10076H10B00			TC-HV10076B00
	TCH10076H20B00 TCH10090H10K00			
	TCH10090H20K00 TCH10077H20D00			TC-HV10090K00 TC-HV10077D00
	TCH10096H10A00	1 080	TC-SRL1-1080	TC-HV10096A00
	TCH10096H20A00 TCH10086H20B00			TC-HV10086B00
	TCH10100H10K00 TCH10100H20K00			TC-HV10100K00
	TCH10087H20D00	1 180	TC-SRL1-1180	TC-HV10087D00
	TCH10106H10A00 TCH10106H20A00			TC-HV10106A00
	TCH10096H20B00 TCH10110H10K00			TC-HV10096B00
	TCH10110H20K00			TC-HV10110K00
	TCH10097H20D00 TCH10116H10A00	1 280	TC-SRL1-1280	TC-HV10097D00 TC-HV10116A00
	TCH10116H20A00 TCH10106H20B00			TC-HV10116A00
	TCH10120H10K00			TC-HV10120K00
	TCH10120H20K00 TCH10107H20D00	1 380	TC-SRL1-1380	TC-HV10107D00
	TCH10126H10A00 TCH10126H20A00	1 300	10-311L1-1300	TC-HV10126A00
	TCH10126H20A00			TC-HV10116B00

[•] Sensor rail reference numbers are determined according to the rail length. Select a sensor rail appropriate for your requirements

C-2-9 Toughcarrier High-Thrust Model (Special product)

Specifications

The life of the feeding system is improved by use of higher load capacity ball screw and support bearings for standard Toughcarriers.

			TCH06	TCI	H09	TCI	H10	
	Shaft diameter (mm)		12	20		2	25	
	Lead	(mm)	10	10	20	20	25	
Ball screw	Basic dynamic loa Ca	d rating (N)	4 260	13 400	10 100	11 400	11 400	
	Basic static load ra Coa	ating (N)	6 260	25 400	18 700	23 600	23 600	
Lincou avido	Basic dynamic load rating C (N)		20 900	44	900	62	400	
Linear guide	Basic static load rating Co (N)		45 000	96	900	132	000	
Support bearings	Basic dynamic load rating (N)		5 900	21	000	23 000		
	Load limit	(N)	3 500	18	600*	26	600*	

^{*}Permissible axial load is 0.7 times the limiting axial load.

- 1) Only compatible with standard sliders.
- 2) Applicable strokes are as follows.

TCH06: Stroke 500 mm
TCH09: Stroke 800 mm
TCH10: Stroke 1 200 mm

3) High and precision grades are available for accuracy.

♦ Features

- Mounting dimensions are the same as Monocarrier MCH Models and standard Toughcarrier actuators. (Interchangeable)
- 2) Permissible rotational speed is faster than standard Toughcarrier actuators due to a different ball recirculation system.

C133

[·] Shapes and numbers of spacer plates for cover units are selected according to slider specifications.

C137

C137

C138

C139

C139

1. Sensor Specifications

1.2 Photo Sensor

2.2 Repeatability

3. Special Specifications

4. Maintenance

1.1 Proximity Switch

2.1 Positioning Accuracy

2.3 Running Parallelism

4.1 Maintenance Methods

4.2 NSK K1™ Lubricant Unit

5. NSK Clean Grease LG2 Specification

2. Characteristics and Evaluation Methods

C139 C139 C140 C141 C141 C141

C-3 Technical Materials

C-3 Technical Materials

ınical Material

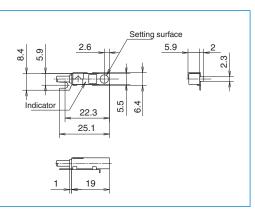
C135 C136

C-3-1 Sensor Specifications

C-3-1. 1 Proximity Switch

Use of OMRON E2S-W13 and E2S-W14

Item	E2S-W13 type	E2S-W14 type		
	/ '	E23-W 14 type		
Setting surface	Front face			
Sensing distance	1.6 mm ±15%			
Setting distance	0 to 1.2 mm			
Differential travel	10% max. of sensing distance			
Detectable objects	Ferrous metal			
Standard sensing object	Iron,12 × 12 × 1 mm			
Response frequency	1 kHz min.			
Power supply voltage (operating voltage range)	12 to 24 VDC; ripple (pp), 10% max (10 to 30 VDC)			
Current consumption	13 mA max. at 24 VDC with no load			
Control output (Switching Capacity)	NPN open collector output, 50 mA max. (30 VDC max.)			
Control output (Residual voltage)	1.0 V max. with a load current of 50 mA and a cable length of 1 m			
Indicator	Operation indicator (orange)			
Operating status (with sensing object approaching)	NO (Normally open contact) NC (Normally close con			
Wire lead length	1 000 mm			


Notes: 1) Take care to avoid errors with sensor wiring. 2) Please contact NSK for PNP output type.

Movement mode	Output type	Type	Time chart	Output circuit
NO	NPN	E2S-W13	Target object No No Output transistor (load) ON OFF ON OFF ON OFF	Main Black - Load
NC		E2S-W14	Target object Ves No Output transistor (load) ON OFF ON OFF ON OFF	*(Maximum load current: 50 mA)

E2S-W13 (Normally open contact)

E2S-W14 (Normally close contact)

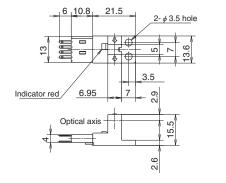
The external appearances are the same.

C-3-1, 2 Photo Sensor

Use of OMRON EE-SX674

ltem	EE-SX674 type
Slot width	5 mm
Standard reference object	Opaque, 2 × 0.8 mm
Differential distance	0.025 mm
Light source	GaAs infrared LED with peak wavelength of 940 nm
Indicator (without detecting object)	ON GaP red LED (peak emission wavelength, 690 nm)
Supply voltage	5 to 24 VDC ±10%; ripple (pp), 10% max.
Current consumption	35 mA max.
Control output	NPN open collector output models, 5 to 24 VDC, 100 mA load current
Response frequency	1 kHz max. (3 kHz typ.)
Ambient illumination	Fluorescent light, 1 000 lx max.
Ambient temperature	-25°C to 55°C (-13°F to 131°F) (for operating); -30°C to 80°C (-22°F to 176°F) (for storing)
Ambient humidity	5 to 85% RH (for operating); 5 to 95% RH (for storing)
Connecting method	EE-1001/1006 Connectors, soldering terminals
No. 4) T. C. C. C. C. C. C. C. C. C. C. C. C. C.	

Notes: 1) Take care to avoid errors with sensor wiring.


2) Please contact NSK for PNP output type.

Туре	Movement mode	Time chart	Connection terminal	Output circuit
EE-SX674	Light-ON	Incident Interrupted Indicator ON (red) OFF Output ON transistor OFF India 1 Operates (relay) Releases India 2 H	When terminals L and ⊕ are short circuited	Indicator (#)
EE-SA0/4	Dark-ON	Incident Interrupted Indicator ON (red) OFF Output ON transistor OFF Incident OFF I	When terminals L and ⊕ are open circuited	Main circuit — IC(Control output) T 5 to 24 V

EE-SX674 (Sensor)

EE-1001 (Connector)

A connector is mounted to the sensor in the right figure.

C-3-2. 1 Positioning Accuracy

Perform successive positioning from the reference position in a specific direction. Measure the difference between the actual and desired travel distances for each point from the reference position. Repeat this measurement seven times to determine the average value. Measure such average values over the entire travel distance at the intervals specified for each model and take the maximum difference of the average values determined at respective positions as the measured value.

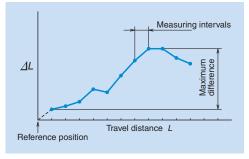


Fig. 1

C-3-2. 3 Running Parallelism (Vertical direction)

We specify the parallelism of slider to the datum bottom surface of rail. An indicator is moved in the axial slider making its stylus slightly touch the rail bottom surface. The slider is moved in the axial direction for the check. We define the total indicator reading as the running parallelism. During the check, the rail is not fixed to the table base. Please be aware that, in general applications, the rail is fixed to the machine base, and thus wobbly rolling error will be added to the running parallelism.

C-3-2. 2 Repeatability

Repeat positioning at any point seven times from the same direction to measure the stopping position and determine one half of the maximum difference of readings. Repeat this measurement over the entire travel distance at the intervals specified for each model. Take the maximum difference of the determined values as the measured value. Express one half of the maximum difference with a plus-or-minus (±) sign.

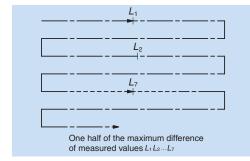


Fig. 2

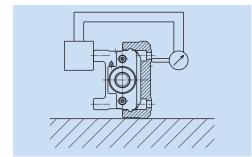


Fig. 3 Setting of indicator

C-3-3 Special Specifications

Please consult NSK if standard products do not meet your requirements.

(1) Surface Treatment

Fluoride low temperature chrome plating
 Note: Ball screw parts (including low temperature chrome plating.)

(2) Special Machining (Processing)

- i) Shaft end processing
- · Key way processing
- · One flat or two flats processing
- ii) Pin hole processing
- Slider
- Rail

Note: Due to interference with the internal construction, the position of pin holes is limited. Please consult with NSK about pin positions.

(3) Motor Bracket and Intermediate Plate for Motor Mounting

- We provide motor mounting brackets and intermediate plates that are not listed in the catalog.
- We assemble motors upon request if the motor is provided in advance.

Note: Motion check of the motor is unavailable.

(4) Reversed Motor Mount

A reversed motor mount is available. Please consult NSK.

Notes: 1) We do not check motor running condition.

Please refer to the bottom of page C89 to C91 for the configuration of reversed motor mounting for the MCH model.

(5) Right and Left Turn Thread

Right and left turn ball screws are available. Please consult with NSK for available leads.

(6) Ball-Screw-Less Specification (Only Linear Guide Part)

A ball-screw-less rail part with the same cross section of standard Monocarriers is available for a driven linear guide. It will lessen height adjustment work compared with a construction with two standard Monocarriers.

Note: Height grinding adjustment of the two-axis assembly is not available.

Technical Materials

C139 C140

NSK

C-3-4 Maintenance C-3-4.1 Maintenance Method

- For standard Monocarrier actuators we pack grease in the slider, linear guides, and ball screw.
- Monocarrier actuators are equipped with NSK K1 Lubrication Unit as a standard feature, therefore, you may use it for 5 years or 10 000 km depending on your application, whichever comes first, without maintenance. However, replenishment of grease may extend life substantially.
- 3. The NSK K1 Lubrication Unit is ideal in environments where oily dust exists. However, the life may be shorter than described in Clause 2 above. Such cases require increasing the frequency of replenishment.

 A Nozzle for the NSK grease pump for MCH Monocarrier actuators is available as an option. NSK reference number: NSK HGP NZ8

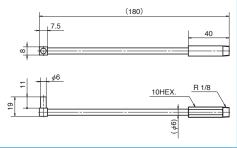


Fig. 4 NSK HGP NZ8

Precautions for handling

- 1. Please consult with NSK when the motor is coupled to the ball screw using a pulley because there is a restriction on allowable load to the end of ball screw shaft.
- 2. To extend high performance of NSK K1 lubrication unit, please observe the following.

1. Temperature range Ambient temperature: 50°C

Max. instantaneous temperature: 80°C

2. Use of chemicals Never leave a Monocarrier actuators in close proximity of

grease removing organic solvents such as hexane or thinner.

Never immerse it in an antirust solvent that contains kerosene.

Note: Other oils, such as water-based and oil based cutting oil, and grease do not cause any problems.

C-3-4. 2 NSK K1[™] Lubricant Unit

NSK K1 lubrication units exhibit outstanding features, confirmed by abundant experimental data, along with proven performance of linear guides and ball screws equipped with NSK K1.

(1) High-Speed Durability Test of Linear Guides without Lubricant

Results of high-speed durability testing of a linear guide without lubricant are shown in **Fig.** 5 While the linear guide cannot be operated without lubricant for even short periods without damage, installation of the NSK K1 permits the linear guide to run over 25 000 km without any problems.

	Test piece: LH30AN (Preload Z1)
Conditions	Speed: 3.3 m/s
	Stroke: 1 800 mm
No lubricant	All grease removed
NSK K1	All grease removed + NSK K1

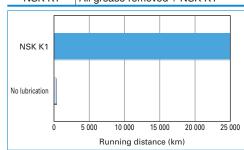


Fig. 5 Results of high-speed durability test of linear guides without lubricant

(2) High-Speed Durability Test of Ball Screws without Lubricant

Results of high-speed durability testing of a ball screw without lubrication are shown in Fig. 6 While the ball screw cannot be operated without lubricant at 8.5 km without damage, the installation of the NSK K1 permits the ball screw to run over 10 000 km without any problems.

Conditions	Test piece: BS2020 (Ball screw)
	Shaft diameter: 20 mm
	Lead: 20 mm
	Load: none
	Speed: 1.3 m/s (4 000 min ⁻¹)
	Stroke: 600 mm
No lubricant All grease removed	
NSK K1	All grease removed + NSK K1

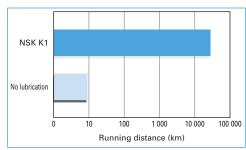


Fig. 6 Results of high-speed durability test of ball screws without lubricant

NSK K1 Lubrication Units for food processing and medical devices are available.

For safe food processing and medical care, NSK provides Monocarrier actuators equipped with special NSK K1 Lubrication Units made of materials approved by the FDA.

Dimensions are the same as the standard NSK K1 Lubrication Unit, and special handling is not required.

C-3-5 NSK Clean Grease LG2 Specification

Features

This grease was developed by NSK to be exclusively used for linear guides and ball screws in cleanrooms. Compared to fluoride grease commonly used in clean rooms, LG2 has several advantages such as: higher lubrication function, longer lubrication life, more stable torque (resistant to wear), and higher rust prevention. In dust generation, LG2 is more than equal to fluoride grease in keeping dust volume low. Since the base oil is not a special oil but a mineral oil, LG2 can be handled in the same manner as general grease.

Applications

LG2 is lubrication grease for rolling contact machine components such as linear guides and ball screws for processing equipment for semiconductors and flat panel display which require highly clean environments at normal pressure in normal temperatures. It cannot be used in a vacuum environment.

Nature

Lithium soap base
Mineral oil + Synthetic hydrocarbon oil
199
201°C
1.40% (99°C, 22 hr)
Satisfactory (Method B, 100°C, 24 hr)
0.8% (100°C, 24 hr)
32 mm²/s (40°C)

Other

BLOCK

Other

1. Special Environments D1
1.1 Specifications for Special Environments D1
1.2 Lubrication and Materials D3
1.3 Rust Prevention and Surface Treatment····· D5
1.4 Measures Against Special Environments D7
1.5 Compatibility with Special Environments D11
1.6 Precautions for Handling D12
2. Lubrication ····· D13
2.1 Grease Lubrication ······ D13
2.2 Oil Lubrication ····· D24
3. RoHS Compliance D24

1 Special Environments

1.1 Specifications for Special Environments

1. Linear guide

Table 1.1 Linear guide specifications

Environment	Condition	NSK linear guide specifications				
LIIVII OIIIII EIIL	Condition	Rail, slide	Steel balls/rollers	Ball recirculation component	Lubrication/surface treatment	Explanation Page No.
		Standard material	Standard material	Standard material	LG2, LGU Grease	D8
	Atmosphere,	Otanidara materiar	Otanidara material	Otanidara material	NSK K1 lubrication unit	D10
	normal temperature				LG2, LGU Grease	D8
Cleanroom	normar temperature				NSK K1 lubrication unit	D10
		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
	Atmosphere-Vacuum up to 200°C					
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
	Atmosphere-Vacuum up to 200°C		Maria de la compania de la compania de la compania de la compania de la compania de la compania de la compania			
Vacuum	Atmosphere-Vacuum up to 300°C	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Molybdenum disulfide	
	High vacuum up to 500°C				Special silver film	D7
	Vanar ataam	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel		
	Vapor, steam	Standard material	Standard material	Standard material		D5
	Asid alkali	Standard material	Standard material		Fluoride low temperature chrome plating	D5
	Acid, alkali		Martensitic stainless steel			D5
Corrosive	A -: -! -!!!: -!	Martensitic stainless steel		Austenitic stainless steel	Fluoride low temperature chrome plating	D5
	Acid, alkali, clean				LG2, LGU Grease	D8
	Strong acid,				Fluoride low temperature chrome plating	D5
	strong alkali				Fluoride grease	
	Organic solvent				Fluoride grease	
	Atmosphere	Standard material	Standard material		FT 100K C	
1151.	up to 150°C				ET-100K Grease	
High	Atmosphere up to 200°C	Manaanikin sasialaan sasal	Managaratic activity and a	Austenitic stainless steel	Fluoride grease	
temperature	Atmosphere up to 200°C,	iviartensitic stainless steel	Martensitic stainless steel		Eleccide access	
	Corrosion resistant				Fluoride grease	
Low temperature	-273°C and higher	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Solid lubricant	
Dadiaastiva	Atmoonhous	Standard material	Standard material	Standard material	Dediction resistant areas	
Radioactive	Atmosphere	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Radiation resistant grease	
	Fine particles,	Standard material	Standard material	Standard material		D10
Foreign	wooden chips		Martensitic stainless steel	Austenitic stainless steel	NSK K1 lubrication unit	D10
matter	Water,	Martensitic stainless steel	Standard material	Standard material	I NON KI IUDIICAUON UNIT	D10
	under water		Martensitic stainless steel	Austenitic stainless steel		D10

2. Ball screw

Table 1.2 Ball screw specifications

Environment	Condition		NSK Ball screv	w specification		Technical Explanation
LIIVII UIIIIIEIIL	Condition	Screw shaft, ball nut	Steel balls	Ball Recirculation component	Lubrication/surface treatment	Page No.
		Standard material	Standard material Standard material		LG2, LGU Grease	D8
	Atmaanhara	Standard material	Standard material	Standard material	NSK K1 lubrication unit	D10
Cleanroom	Atmosphere,				LG2, LGU Grease	D8
	normal temperature				NSK K1 lubrication unit	D10
		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
	Atmosphere-Vacuum up to 200°C					
	Atmosphere-Vacuum up to 200°C, Corrosion resistant	Ceramic	Ceramic	Ceramic	Fluoride grease	
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
Vacuum	Atmosphere-Vacuum up to 200°C	Martaneitia etainlase etaal	Martensitic stainless steel	Austenitic stainless steel		
vacuum	Atmosphere-Vacuum up to 300°C	iviarteristito starilless steer	Ivialtensitic stailless steer	Austennic stanness steer	Molybdenum disulfide	
	High vacuum up to 500°C				Special silver film	D7
		Standard material	Standard material		Fluoride low temperature	D5
Corrosive	Acid, alkali, clean Martensitic stainless steel		Martensitic stainless steel	Austenitic stainless steel	chrome plating	D5
Corrosive		Precipitation hardening stainless steel	Precipitation hardening stainless steel	Austenitic stainless steel	Fluorido aroso	
	Strong acid, strong alkali, clean, nonmagnetic	Ceramic	Ceramic		Fluoride grease	
N	Atmosphere-Vacuum, clean	Special austenitic stainless steel	Ci-	A	Fluoride grease	
Nonmagnetic	Atmosphere-Vacuum, up to 200°C, clean	Ceramic	Ceramic	Ceramic Austenitic stainless steel		
	Atmosphere up to 200°C	Standard material	Standard material		Fluoride grease	
High	Atmosphere up to 200°C	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
temperature	Atmosphere up to 500°C,	Ceramic	Ceramic	Austennic stanness steer	Fluoride grease	
	corrosion resistance	Cerannic	Ceramic		Fluoride grease	
Low temperature	-273°C and higher	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Solid lubricant	
Radioactive	Atmoonhous	Standard material	Standard material	Standard material	Dediction resistant areas	
nadioactive	Atmosphere	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Radiation resistant grease	
F	Fine particles,	Standard material	Standard material	Standard material		D10
Foreign	wooden chips	Managemental and the control of the	Managements and the second	Aa.ida aadala	NSK K1 lubrication unit	D10
matter	Water, under water	iviartensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel		D10

D1 D2

1.2 Lubrication and Materials

1. Lubrication

Grease can be used for high rotation and magnetic field. However, grease evaporates or solidifies in special environment such as vacuum, high temperature, and low temperature. Solid lubricant is used when it is difficult to use grease. Functions of solid lubricant differ greatly by condition where it is used. It is important to select the most suitable solid lubrication for the environment.

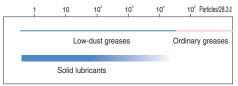


Fig. 2.1 Lubrication in clean environment

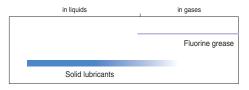


Fig. 2.3 Lubrication in corrosive environment

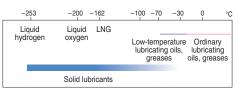


Fig. 2.5 Lubrication in low temperature

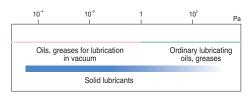


Fig. 2.2 Lubrication in vacuum

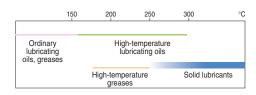


Fig. 2.4 Lubrication in high temperature

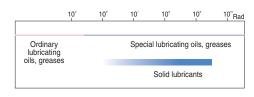


Fig. 2.6 Lubrication in radioactive environment

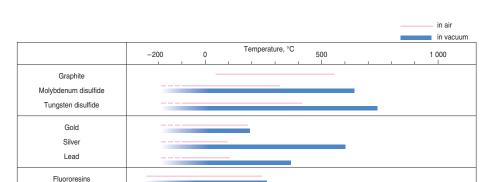


Fig. 2.7 Temperature range for using solid lubricants

2. Materials

Iron metals are used in vacuum, high temperature, and high speed environments as the basic material. We generally use nonmagnetic stainless steel for nonmagnetic materials.

Table 2.1 Characteristics of metal materials

Application	Type of steel	Linear expansivity ×10 ⁻⁶ /°C	Young's modulus GPa	Hardness* HB
For clean environment,	Martensitic stainless steel SUS440C	10.1	200	580
corrosion resistance, low temperature,	Austenitic stainless steel SUS304	16.3	193	150
high temperature, radioactive resistance	Precipitation hardening stainless steel SUS630	10.8	200	277 – 363
Nonmagnetic	Nonmagnetic stainless steel	17.0	195	420

^{*)} Hardness of steel is usually indicated by Rockwell C Scale. For comparison, these figures are expressed by Brinell number.

1.3 Rust Prevention and Surface Treatment

1. Fluoride low temperature chrome plating NSK linear guides, ball screws, and Monocarrier/ Toughcarrier actuators are used in various applications and environments, from industrial machinery to semiconductor/FPD manufacturing and aerospace equipment. Preventing rust from developing in these applications is crucial, particularly for machines around water such as part/device washers and for semiconductor/FPD manufacturing equipment involved in chemical wet processing. NSK applies a fluororesin coating to an electrolytic black plating (fluoride low-temperature chrome plating) on these products for optimal rust resistance.

What is "Fluoride low temperature chrome plating?"

This type of black chrome plating forms a black film (1 to 2 µm in thickness) on the metal surface. Fluoroplastic coating is added to the film to increase corrosion resistance.

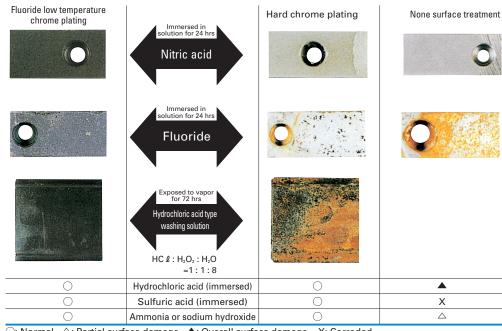
- Accuracy control is easily manageable due to low temperature treatment and to the absence of hydrogen embrittlement.
- Product accuracy is less affected due to the thin film which has high corrosion resistance.
- This method is superior to other surface treatments in durability on the rolling surface.
- Inexpensive compared with products with other surface treatment and stainless steel products.

Do not use organic solvent because it adversely affects antirust property of the plating.

Humidity chamber test

Table 3.1 Results of the humidity test

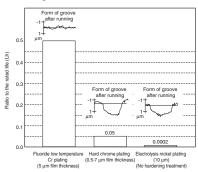
Charac	cterist	Test sample	Fluoride low temperature chrome plating (recommended)	Hard chrome plating (reference)	Electroless nickel plating (reference)	Equivalent to SUS440C material	Standard steel
Onara	otoriot	Тор	(Ground) B	(Ground) B	(Ground) A	(Ground) C	(Ground) D
	ng	Side	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
	Rusting	Bottom	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
	Ŗ	End	(Machined) A	(Machined) C	(Machined) A	(Machined) C	(Machined) E
		Chamfer/grinding recess	(Drawn) A	(Drawn) D	(Drawn) A	(Drawn) C	(Drawn) E
Corrosion-resistant property	t (ma	t conditions> Testing chamber: High emperature, highly moist whamber tide by DABAI ESPEC) Temperature: 70°C Relative humidity: 95%		6	0	O	O
Corrosio	Tim "rar tem con Ran	Testing time: 96 h Te to "ramp-up" and mp-down" condition of the operature and the humidity ditions np-up: 5 h The product of the operature and the humidity ditions np-up: 5 h The product of the operature and the humidity ditions np-up: 5 h The product of the operature and the operature and the humidity ditions np-up: 5 h					
		Film thickness	5 µm	0.5 – 7 μm	10 µm	_	_


Rusting

A: No rust C: Spotty rust B: Not rusted, but slightly discolored

Chemical corrosion resistance test

Table 3.2 Results of the corrosion resistance test


Rail base material: Equivalent to SUS440C Test conditions Chemical density: 1 mol/L

○: Normal △: Partial surface damage ▲: Overall surface damage X: Corroded

Surface treatment durability test

Peeling resistance of surface treatment

Total evaluation

Table 3.3 Evaluation

	Available length	Rust prevention ability	Quality stability	Durability	Cost
Fluoride low temperature chrome plating	© (4 m)	0	0	0	0
Hard chrome plating	△ (2 m)	0	Х	\triangle	\triangle
Electroless nickel plating	© (4 m)	0	Δ	Х	Δ
Material equivalent to SUS440C	(3.5 m)	0	0	0	Δ
	O. Eveeller		\bigcirc .	ملطمهنين	i

O: Excellent

: Suitable in use

 \triangle : Not so good for use

X: Problem in use

Fig. 3.1 Results of durability test

1.4 Measures Against Special Environments

1. In vacuum

Silver-film plated ball screw

Ball screws that are plated by soft metal (special silver film) as a solid lubricant are developed the application for vacuum environment such as semiconductor manufacturing equipment and surface modification systems.

Durability test in high vacuum

Test equipment and conditions

Table 4.1 shows ball screw specifications. Fig. 4.1 is a schematic of the testing system in vacuum chamber. Table 4.2 shows testing conditions.

Table 4.1 Ball screw specifications

	ew specifications		
	Shaft diameter	12 mm	
	Lead	4 mm	
	Steel ball diameter	2.381 mm	
Nu	mbers of circuit of balls	2.5 turns, 1 circuit	
Axis load (preload)		29.4 N	
Max	ximum surface pressure (preload volume)	about 690 MPa	
	Shaft	SUS630	
Material	Nut	SUS440C	
/ate	Ball tube	SUS304	
2	Steel balls	SUS440C	
	Solid lubricant	Special silver film	

Table 4.2 Testing conditions

Rotational speed	300 min ⁻¹
Vacuum chamber	1.3×10⁵ – 1.3×10⁴ Pa
pressure	1.6/10 1.6/10 14
Stroke	160 mm

Evaluation method

It is understood that the rolling bearing with solid lubrication reaches end of life when the lubrication film deteriorates, resulting in sudden rise of friction torque. In this test, ball screw rotation torque was constantly measured to study durability and operation. Results were then evaluated.

Test results

Fig. 4.2 shows two distinctive examples obtained in the torque characteristic test.

Photo 4.1 Vacuum testing system

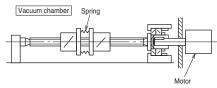


Fig. 4.1 Schematic of the testing system

Test results of the ball screw (a)

The torque tendency was stable until about 1 \times 10 7 rev. Then the torque characteristics slightly deteriorated. At about 1.35 \times 10 7 rev, the torque suddenly rose. At this point, it was determined that the ball screw reached the end of its life.

Test results of the ball screw (b)

Torque value is a little higher in the test (a). The value is also little unstable. The torque momentarily soared several times during the test (some 10 N·cm). It is thought this is attributable to the repeated peeling/sticking of the surface film made of soft metal (silver, etc.).

When the torque finally soared at 1.13×10^7 rev., it was determined that the ball screw reached the end of its life.

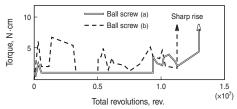


Fig. 4.2 Torque variation

Table 4.3 Ball screw durability

	Classification	Ball screw (a)	Ball screw (b)
	Total revolutions (rev.)	1.35×10 ⁷	1.13×10 ⁷
-ife	Total traveling distance (km)	54.0	45.2
	Total traveling hours*(h)	750	628

^{*)} Total traveling hours when operated constantly at 300 min⁻¹

Conclusion

Table 4.3 explains results of the two ball screw durability tests.

From these results and other findings, it is estimated that a life of more than 1×10^7 rev. is possible with a load of about 29.4 N.

Torque may soar momentarily before the ball screw reaches its final life due to peeling/sticking of the surface film made of soft metal like silver. For this reason, it is recommendable to select a drive motor with extra torque capacity.

2. Clean environment

NSK Clean Grease LG2 and LGU

LG2 and LGU "clean" greases are utilized for low-dust specifications of NSK products such as linear guides, ball screws, Monocarriers, Megatorque Motors, XY modules and XY tables. These greases are excellent for cleanrooms thanks to their lower particle emissions and better resistance to corrosion than fluorine greases. Their proven track record makes them particularly suitable for semiconductor production equipment.

Features

- Remarkably low dust emission
- Long life -- More than ten times longer than fluoride greases, and equivalent to ordinary greases.
- Excellent rust prevention -- Significantly higher capacity than fluorine greases.
- Low and stable torque -- 20% or less than that of fluorine greases

Table 4.4 Nature of Clean Grease LG2 and LGU

Name	Thickener	Base oil	Base oil kinematic viscosity mm²/s (40°C)	Consistency	Dropping point °C
Clean Grease LG2	Lithium soap	Synthetic hydrocarbon oil + mineral oil	32	199	201
Clean Grease LGU	Diurea	Synthetic hydrocarbon oil	95.8	201	260

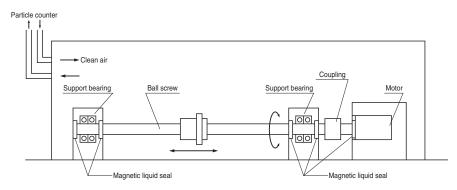
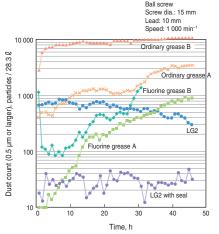



Fig. 4.3 Setting to measure dust generated by ball screw

D7

Feature 1: Remarkably low dust emission

Compared with fluoride greases, dust emission by LG2 is low and stable for long period of time.

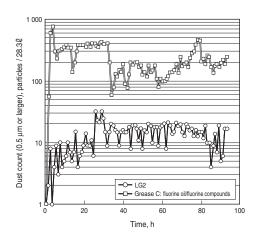


Fig. 4.4 Comparison in dust emission characteristics

Fig. 4.5 Dust emission from linear guide (Linear guide: LU09)

● Feature 2: Long life

Life is ten times or longer than fluorine greases, and equivalent to ordinary greases. This stretches maintenance intervals.

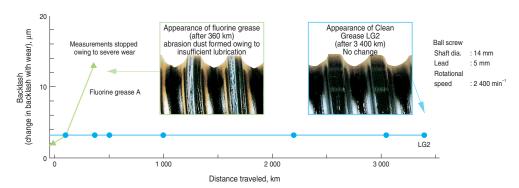


Fig. 4.6 Results of ball screw durability test

● Feature 3: Excellent rust prevention capacity

The rust prevention capacity is significantly higher than fluoride greases. Handling and preparation for operation are easy.

Ball screw rust prevention test (test conditions: 96 hr at humidity 95%, temperature 70°C)

Photo 4.2

Ball screw

Table 4.5 Rust prevention test on bearing

Туре	Rusting after 7 days
NSK Clean Grease LG2	No rust
Fluorine grease B	Rusted

Test conditions: 19 mg is sealed in ball bearing 695

: Temp. 90°C, Humidity 60%

Evaluation : Studied by microscope

● Feature 4: Stable torque

Torque is 20% or lower than fluorine greases.

Shaft dia:: 25 mm Lead: 5 mm Preload: 294 N 1.0 0.8 Fluorine grease A 0.2 0.2 LG2 0 100 200 300 400 500 Rotational speed, min⁻¹

Fig. 4.7 Comparison of torque characteristics

Total evaluation

Table 4.6 Evaluation

Characteristic	LG2	Fluorine grease	General grease
Dust generation	0	O- A	△ – X
Torque	0	Х	O- △
Durability	0	△ – X	0
Rust prevention ability	0	△ – X	0

○: Suitable △: Not very suitable X: Problem in use

3. Environment with foreign matters

NSK Linear Guides Dust-resistant VH model

High-performance end seals with a multi-lip structure prevent the entry of various kinds of foreign matter. The VH model is equipped with the NSK K1-L™ lubrication unit as standard. The outstanding lubrication support provided by NSK K1-L units further improves resistance to dust and durability. For NSK Linear Guides dust-resistant VH model, refer to page A125. For NSK Linear Guides dust-resistant DV model, refer to page A199.

And For Iubrication unit NSK K1-L, refer to the catalog "NSK Linear Guides™ NSK K1-L Lubrication Unit" (CAT No.E3335).

RA model: Specification with highly dustresistant V1 seals

RA25, RA30, RA35, RA45, RA55, and RA65 have specifications featuring dust-resistant V1 end seals with enhanced abrasion resistance. Refer to the catalog "NSK Linear Guides Roller Guide with highly dust-resistant V1 seals and V1 bottom seals" (CAT No.E3334).

Special environment which linear guide can tolerate

1.5 Comptability With Special Environments

1. Linear guides

ge-		Special	environn	ent which	h linear g	juide can	
Model	Model No.	Cleanroom	Vacuum	Corrosive	High- temperature	Hygienic	Dust- contaminated
NH	NH15	0		0		0	
	NH20	0	0	0	0	0	
	NH25	0	0	0	0	0	
	NH30	0	0	0	0	0	
INH	NH35	0		0	0	0	
	NH45	0		0	0		
	NH55	0		0			
	NH65	0		0			
	VH15	0		0			0
	VH20	0		0			0
	VH25	0		Ó			Ó
VH	VH30	0		0			0
	VH35	Ô		Ô			Ô
	VH45	Õ		Õ			Ŏ
	VH55	Õ		Õ			Õ
	NS15	Ŏ	0	Ŏ	0	0	
	NS20	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ	
NS	NS25	0	ŏ	0	Ŏ	ő	
	NS30	Ŏ	Ö	Ö	0*	Ö	
	NS35	1 0		ŏ		ŏ	
	LW17	1 0		ŏ	O*	ŏ	
	LW21	1 6		0	0*	<u> </u>	
1 \ \ /	LW27	l ŏ		ŏ	0	ŏ	
LVV	LW35	<u> </u>		<u> </u>		ŏ	
	LW50	1 0		<u> </u>			
	DH15	 ~		<u> </u>		0	
	DH15	1 8		8		8	
	DH25	1 6		0		8	
		1 0		0		8	
DH	DH30			9		2	
	DH35	0		9		0	
	DH45	0		0			
	DH55	2		0			
	DH65	0		0			
	DV15	0		0			0
	DV20	0		0			0
	DV25	0		0			0
DV	DV30	0		0			0
	DV35	0		0			0
	DV45	0		0			0
	DV55			0			0
	DS15	0		0		0	
	DS20	0		0		0	
DS	DS25	0		0		0	
	DS30	0		0		0	
	DS35	0		0		0	

*) Dust-resistant parts for these models are not
compatible with high temperatures.

		Opcolai	CITALLOLLI	ICITE VVIIIC	ii iiiicai g	juiuc cuii	tolciate
Mode	Model No.	Cleanroom	Vacuum	Corrosive	High- temperature	Hygienic	Dust- contaminated
	PU09	0		0	,	0	
PU		Ö		ŏ		ŏ	
	PU15	Ö		ŏ		ŏ	-
_		0		0		0	
	LU05	_					
	LU07	0		0			
	LU09_L	0	0	0	0	0	
LU		0		0		0	
	LU12_L	0	0	0	0	0	
	LU12_R	0		0		0	
	LU15	0	0	0	0*	0	
	PE09	0		0		0	
PE	PE12	0		0		0	
	PE15	0		0		0	
_	LE05	Õ		Õ			
	LE07	Õ	0	Õ	O*		
	LE09 L	Ŏ	Õ	Õ	0*	0	
	LE09_E	0		0		- 6	-
LE	LE12 L	0	0	0	0	0	_
		0	0	0	0	0	
	LE12_R	0	0	0	0	0	
	LE15_L		0	0	0	0	
_	LE15AR	0		0		0	
/iniature LH	LH08	0		0			
Ę.	LH10	0		0			
ē	LH12	0	0	0	O*	0	
	RA15	0		0			
	RA20	0		0			
	RA25	0		0			
	RA30	0		0			
RA	RA35	0		0			
	RA45	Õ		Õ			
	RA55	Õ		0			
	RA65	Ô		0			_
_	RB30	ŏ		ŏ			
	RB35	ŏ		0			
RB	RB45	Õ		0			
ND	RB55	0		0			
	RB65	0					
_				0			
	LA25	0		0			
	LA30	0		0			
LA	LA35	0		0			
_, .	LA45	0		0			
	LA55	0		0			
	LA65	0		0			
НА	HA25	0		0			
	HA30	0		0			
	HA35	Ó		0			
	HA45	Õ		Õ			
	HA55	Õ		Õ			
_	HS15	Ö		ŏ			_
	HS20	0	-	0			
HS		0		0			-
113	******	2	-	<u> </u>			-
	HS30 HS35	0	-	2			
	I H535	()			1	1	1

1.6 Precautions for Handling

2. Ball screws

Model	Special environment				
	Clean	Vacuum	Rust prevention	High temp.	Foreign matter
KA Model	0	0	0		
For Contaminated environments VSS Type					0
Made-to-order ball screw	0*	0*	0*	0*	0*

^{*}Available for made-to-order ball screws.

Please consult NSK.

3. Monocarriers

Please consult with NSK for special environmental use.

Please observe the following precautions to maintain ball screw and linear guide performance in special environments over a long period.

NSK

- Products are washed to remove oil, and wrapped in a way to protect them from moisture. Use the product as soon as possible after opening the package.
- After opening, store the ball slide (interchangeable linear guide) and ball nut (R model ball screw) in a clean, air-tight container such as desiccater with desiccating agent (e.g. silica gel). Do not apply rust preventive oil or paper or product that vaporizes rust preventive agents.
- Wear plastic gloves and handle products in clean place.

D11 D12

2. Lubrication

There are two types of lubricating methods -- grease and oil -- for NSK linear products.

Use a lubricant agent and method most suitable to condition requirements and purpose to optimize the functions of the ball screw, linear guide, or Monocarrier. Note that Monocarriers typically use grease.

In general, lubricants with low base oil kinematic viscosity are used for high-speed operation, in which thermal expansion has a large impact, and in low temperatures.

Lubrication with high base oil kinematic viscosity is used for oscillating operations, low speeds, and high temperatures.

The following provides more details on grease and oil lubrication methods.

2.1 Grease Lubrication

Grease lubrication is widely used because it does not require a special oil supply system or piping. Grease lubricants made by NSK include:

- Various types of grease in bellows tubes that can be instantly attached to a grease pump;
- NSK Grease Units that consist of a hand grease pump and various nozzles. They are compact and easy to use.

1. NSK grease lubricants

Table 1.1 shows the marketed general grease widely used for linear guides, ball screws and monocarrier for specific uses, conditions and purposes.

Table 1.1 Grease lubricant for linear guides, ball screws, and monocarriers

Type	Thickener	Base oil	Base oil kinematic viscosity	Range of use	Purpose
			mm²/s (40°C)	temperature (°C)	
AS2	Lithium	Mineral oil	130	-10 to 110	For general use at high load
PS2	Lithium	Synthetic oil + synthetic hydrocarbon oil	15.9	-50 to 110	For low temperature and high frequency operation
LR3	Lithium	Synthetic oil	30	-30 to 130	For high speed, medium load
LG2	Lithium	Mineral oil + synthetic hydrocarbon oil	32	-20 to 70	For claeanroom environments
LGU	Diurea	Synthetic hydrocarbon oil	95.8	-30 to 120	For claeanroom environments
NF2	Urea	Synthetic hydrocarbon oil	26	-40 to 100	For fretting resistance

(1) NSK Grease AS2

Features

An environmentally friendly and widely used grease for high load applications. AS2 is a mineral oil based grease containing lithium thickener and several additives. It is superb in load resistance as well as stable against oxidization. It not only maintains good lubrication over a long period of time, but also demonstrates superb capability in retaining water. Even containing a large amount of water, AS2 resists softening and grease loss.

Application

AS2 is a standard grease for general NSK linear guides, ball screws and monocarriers. It is prevalently used in many applications because of its high base oil viscosity, high load resistance, and stability against oxidization.

(2) NSK Grease LR3

Features

LR3 contains a special synthetic oil for high temperatures and stability, and a carefully selected anti-oxidation agent. This grease dramatically increases lubrication life under high temperature conditions. It is used for high speed and medium loads. Lubrication life exceeded 2 000 hours in the endurance test at 150°C. Its rust prevention capacity in severe conditions such as water and moist environments is further strengthened.

Application

LR3 is a standard grease for PSS model (shaft dia. 15 mm or over), FSS model, FA model (except shaft dia. 10 mm with lead of 4 mm and shaft dia. 12 mm with lead of 5 mm) and VFA model ball screws. It is ideal for operation with medium load at high speeds such as positioning in high tact material handling

(3) NSK Grease PS2

Features

The major base oil component is synthetic oil with mineral oil. PS2 is excellent for low-temperature operation and suits high-speed and light-load applications.

Application

PS2 is a standard grease for NSK miniature linear guides and ball screws. It is especially superb for low temperature operation, but also functions well in normal temperatures, making it ideal for small equipment with light load.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil
Consistency	275
Dropping point	181°C
Volume of evaporation	0.24% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr
Oil separation	2.8% (100°C, 24 hr)
Base oil kinematic viscosity	130 mm²/s (40°C)

equipment.

Nature

Thickener	Lithium soap base
Base oil	Synthetic oil
Consistency	228
Dropping point	208°C
Volume of evaporation	0.58% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	1.9% (100°C, 24 hr)
Base oil kinematic viscosity	30 mm ² /s (40°C)

Nature

Lithium soap base
Synthetic oil + Synthetic hydrocarbon oil
275
190°C
0.60% (99°C, 22 hr)
Satisfactory (Method B, 100°C, 24 hr)
3.6% (100°C, 24 hr)
15.9 mm²/s (40°C)

D13 Cquipment with right load.

(4) NSK Grease LG2

Features

This grease was developed by NSK to be exclusively used for linear guides, ball screws, and Monocarriers in cleanrooms. Compared to fluorine grease which are commonly used in cleanrooms, LG2 has several advantages such as:

- · Higher Iubrication function
- Longer lubrication life
- More stable torque (resistant to wear)
- · Higher rust prevention.

In dust generation, LG2 is more than equal to fluorine grease in keeping dust volume low. Since the base oil is not a special oil but a mineral oil, LG2 can be handled in the same manner as general greases.

Application

LG2 is a lubrication grease for rolling element products such as linear guides, ball screws, and Monocarriers for semiconductor and flat panel display (FPD) processing equipment which require a highly clean environment. Because LG2 is exclusively for cleanroom environments at normal temperatures, however, it cannot be used in a vacuum environment. Refer to "Special environment" on page D8 for detailed data on the superb characteristics of NSK Grease LG2.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil + Synthetic hydrocarbon oil
Consistency	199
Dropping point	201°C
Volume of evaporation	1.40% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.8% (100°C, 24 hr)
Base oil kinematic viscosity	32 mm²/s (40°C)

(5) NSK Grease LGU

Features

This is a proprietary urea base grease of NSK featuring low dust emissions exclusively for linear guides, ball screws, and Monocarriers used in clean-rooms.

In comparison with fluorine base grease, which has

been used commonly in cleanrooms, LGU has better lubricating properties, longer duration of lubricant, better torque variation, much better anti-rust properties, and equivalent or better dust emissions. In addition, this grease can be handled in the same way as the other common grease because high-grade synthetic oil is used as the base oil.

LGU grease contains much fewer metallic elements compared to LG2 grease. It can be used in high temperature environments.

Application

This is exclusive lubrication grease for linear guides, ball screws, and Monocarriers installed in equipment that requires cleanliness like LG2 grease, and it can be used in temperatures –30 to 120°C.

This grease cannot be used in vacuum.

Nature

Thickener	Diurea
Base oil	Synthetic hydrocarbon oil
Consistency	201
Dropping point	260°C
Volume of evaporation	0.09% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.6% (100°C, 24 hr)
Base oil kinematic viscosity	95.8 mm²/s (40°C)

(6) NSK Grease NF2

Features

NF2 uses high-grade synthetic oil as the base oil and urea base organic compound as the thickener. It has remarkable anti-fretting properties. It can be used in a wide temperature range and has superior lubrication life.

Application

This grease is suitable for ball screws and linear guides applications with oscillating operations. Allowable temperature range is -40 to 100°C.

Nature

etic hydrocarbon oil
С
% (99°C, 22 hr)
actory (Method B, 100°C, 24 hr)
(100°C, 24 hr)
ım²/s (40°C)

Precautions for handling

- Wash the linear guides and ball screws to remove oil prior to applying Clean Grease LG2 or LGU, so the grease functions are fully utilized.
- Clean grease is exclusively used for cleanroom environments at normal temperatures.

Note) Refer to NSK Grease Unit Catalog (CAT. No.3317) for details of NSK Grease.

2. Before use of NSK Precision Products

Wipe off the rust preventive oil before use.

If grease is not applied, apply grease, and move ball slide or ball nut a few strokes so the grease permeates into the ball slide and inside the nut. (Move the ball slide or the ball nut 5 to 10 times with full stroke.)

Then wipe off the excess grease.

How to replenish grease and volume of grease to be replenished

Use a grease fitting if an exclusive grease supply component is not used. Supply the required amount through grease fitting by a grease pump.

Wipe off old grease and accumulated dust before supplying new grease. If grease fitting is not used or there is no oil filler due to size limitations, apply grease directly to the rail or to the ball groove of the screw shaft. Remove the seal if possible, move a ball slide or ball nut a few strokes so that the grease permeates into the ball slide, nut and inside the slide. Once grease is replenished, another supply is not required for a long time. But under some operational conditions, it is necessary to periodically replenish grease. The following are replenishing methods.

* When replenishing using a grease pump:

Use a grease pump and fill the inside of ball slide, ball nut and monocarrier slider with grease. Supply grease until it comes out from the ball slide, ball nut or monocarrier slider area. Move ball slide, ball nut or monocarrier slider by hand while filling them with grease, so the grease permeates all areas. Do not operate the machine immediately after replenishing. Always try the system a few times to spread the grease throughout the system and to remove excess grease. Trial operations are necessary because the resistance to sliding force and screw torque greatly increases immediately after replenishment (full-pack state) and may cause problems. The agitating resistance of grease is responsible for this phenomenon. Wipe off excess grease that accumulates at end of rail and screw shaft after trial runs so the grease does not move to other areas.

- * When there is an exclusive grease supply system and the volume from the spout can be controlled, the criterion is:
- All at once, replenish the amount that fills about 50% of the internal space of the ball slide or the internal space of the ball nut. This method eliminates waste of grease and is efficient.

Tables 1.2, 1.3 and **1.4** show internal spaces of ball slide, ball nut and monocarrier slider for reference.

Other

Table 1.2 Internal space of the slide of linear guide

NH, DH Models

Unit: cr					
Model	NH, DH				
Model No.	High-load type	Super-high-load type			
15	3	4			
20	6	8			
25	9	13			
30	13	20			
35	22	30			
45	47	59			
55	80	100			
65	139	186			

PU 111 Models

Unit: c							
Model	PU		L	U			
Model No.	Standard type	High-load type	Standard type	High-load type			
05	-	-	0.1	-			
07	ı	ı	0.1	-			
09	0.2	0.3	0.2	0.3			
12	0.3	0.4	0.3	0.4			
15	0.8	1.1	0.8	1.1			

VH, DV Models Unit: cm³

Model	VH,	DV
Model No.	High-load type	Super-high-load typ
15	3	4
20	6	8
25	9	13
30	13	20
35	22	30
45	47	59
55	80	100

PE, LE Models

•					Unit: cm ³
Model	PE			LE	
Model No.	Standard type	High-load type	Medium-load type	Standard type	High-load type
05	-	-	0.1	0.1	-
07	-	-	0.1	0.2	0.3
09	0.4	0.5	0.2	0.4	0.5
12	0.5	0.7	0.3	0.5	0.7
15	1.2	1.6	0.8	1.2	1.6

NS, DS Models

		Unit: cm	
Model	NS, DS		
Model No.	Medium-load type	High-load type	
15	2	3	
20	3	4	
25	5	8	
30	8	12	
35	12	19	

Miniature LH Model

	Unit: cm
Model Model No.	LH
08	0.2
10	0.4
12	1.2

IW Model

LVV WOOD	Unit: cm ³
Model Model No.	LW
17	3
21	3
27	7
35	24
50	52

RA Model

Model	RA		
Aodel No.	High-load type	Super-high-load type	
15	1	1.5	
20	2	2.5	
25	3	3.5	
30	5	6	
35	6	8	
45	10	13	
55	15	20	
65	33	42	

Unit: cm3

RB Model

ı	Unit: cm³	
RB		
High-load type	Super-high-load type	
5	6	
6	8	
10	13	
15	20	
33	42	
	High-load type 5 6 10 15	

LA Model

		Unit: cm
Model	LA	
Model No.	High-load type	Super-high-load ty
25	8	12
30	14	18
35	21	29
45	38	48
55	68	86
65	130	177

HA, HS Models

,	Unit: cm	
Model Model No.	НА	HS
15	-	5
20	-	9
25	16	16
30	27	25
35	42	40
45	67	-
55	122	-

Table 1.3 Inside space of ball nut Tube recirculation (single nut)

	Unit: cm³		Unit: cm³		Unit: cm³		Unit: cm³
Nut model	Inside space	Nut model	Inside space	Nut model	Inside space	Nut model	Inside space
1004 – 2.5	0.8	2004 – 5	2.7	2520 – 2.5	12	3225 – 2.5	17
1205 – 2.5	1.2	2005 – 5	4.3	2525 - 1.5	7.5	3232 - 1.5	15
1210 - 2.5	1.4	2010 - 2.5	4.7	2805 – 5	6	3610 – 5	32
1405 - 2.5	2.2	2020 - 1.5	4.2	2805 - 10	9	4005 – 10	14
1408 – 2.5	2.1	2504 – 5	3.2	2806 – 5	6	4010 – 5	30
1510 – 2.5	2.3	2505 – 5	5	2806 – 10	9.5	4012 – 5	34
1605 – 2.5	2.6	2506 – 5	7	3205 – 5	7	4510 – 5	34
1616 – 1.5	2.1	2510 – 3	9.5	3206 – 5	9.5	5010 – 5	37
				3210 – 5	22	5010 – 10	59

Deflector (bridge) recirculation

(single nut)	Unit: cm³
Nut model	Inside space
2505 – 6	6.5
2510 – 4	10
3205 – 8	9.5
3210 – 6	28
4010 – 8	42
5010 – 8	52

End cap recirculation

	Unit: cm³	
Nut model	Inside space	
1520 – 1.5	1.9	
1632 – 1	2	
2040 – 1	2.8	
2550 – 1	4.2	

Note:

Nut model: shaft diameter, lead, total ball turns Please consult NSK for other specifications. Refer to B110 to B146 for Compact FA Model.

Table 1.4 Monocarrier slide internal space

MCM Mod	el	Unit: cm³			Unit: cm³	MCH Mode	el	Unit: cm³
Model No.		Internal Space	Model No.		Internal Space	Model No.		Internal Space
B4CB400	1	0.3		5	8.3	MCH06	5	2.8
MCM02	2	0.3	MCM06	10	6.5		10	2.7
	1	1		20	5.5	MCL06	20	2.7
	2	0.9		5	11.6		5	5.8
MCM03	10	1.8		10	9.8	MCH09	10	5.8
	12	1.7	MCM08	20	8.7		20	5.6
	5	4.2		30	4.3		10	10.9
MCM05	10	4		10	19.4	MCH10	20	10.1
	20	2.1	MCM10	20	17.4			
	30	2.0		30	8.8			

4. Intervals of checks and replenishments

Even high-quality grease gradually deteriorates and loses its lubricating functionality. Additionally, grease in the slide and ball nut is gradually removed by stroke movement. In some environments, the grease may become dirty and foreign matter may enter the slide and the ball nut. New grease should be supplied depending on the frequency of use. The following is a guide of intervals of grease replenishment for linear guides and ball screws.

Table 1.5. Intervals of checks and replanishments for grease lubrication

Table 1.5 littervals of checks and repletiis filterits for grease lubrication									
Intervals of checks Items to check		Intervals of replenishments							
3-6 months Dirt, foreign matters such as		Usually once per year. Every 3 000 km for material handling							
	cutting chips	system that travels more than 3 000 km per year. Replenish							
		if check results warrant it necessary.							

Notes: 1) As a general rule, do not mix greases of different brands.

- 2) Grease viscosity varies by temperature. Viscosity is particularly high in winter due to low temperatures. Pay attention to increases in linear guide and monocarrier sliding resistance and ball screw and monocarrier torque in such conditions.
- 3) When the ambient temperature is low, or in Winter, if it is difficult to pump out the grease from the container, wait until the grease is softened.
- 4) In locations where coolant is dispersed or scattered, emulsification of lubricants and rinsing with water may significantly deteriorate the integrity of the lubricant and efficiency of the grease. Protect the grease unit from coolant by shielding it with a cover, etc.

5. NSK Grease Unit

Easily supply grease to NSK linear products with this manual grease pump by simply attaching a bellows

tube filled with grease. We offer several types of grease (80 g) to suit your needs.

Grease in bellows tube

(1) Composition of NSK Grease Unit

Components and grease types are shown below.

	Name	(Tube color)	Reference number
NSK Grease Unit			
— NSK Grease —	NSK Grease AS2	(Brown)	NSK GRS AS2
(80 g in a bellows tube)	—— NSK Grease PS2	(Orange)	NSK GRS PS2
	NSK Grease LR3	(Green)	NSK GRS LR3
	NSK Grease LG2	(Blue)	NSK GRS LG2
	—— NSK Grease LGU	(Yellow)	NSK GRS LGU
	NSK Grease NF2	(Gray)	NSK GRS NF2
NSK Hand Grease Pump U	nit		
— NSK Hand Grease P (Straight nozzle NS	ump K HGP NZ1 One nozzle is p	provided with han	NSK HGP d pump.)
Grease nozzle (used	with hand grease pump)		
	——— NSK straight nozzle		NSK HGP NZ1
	——— NSK chuck nozzle		NSK HGP NZ2
<u> </u>	NSK drive-in fitting	nozzle	NSK HGP NZ3
<u> </u>	NSK point nozzle		NSK HGP NZ4
	NSK flexible nozzle		NSK HGP NZ5
	NSK flexible extens	ion pipe	NSK HGP NZ6
	——— NSK straight extens	sion pipe	NSK HGP NZ7
	NSK nozzle for MCI	4	NSK HGP NZ8

(2) NSK Grease (80 g in bellows tube)

Refer to pages D14 and D15 for characteristics and other details.

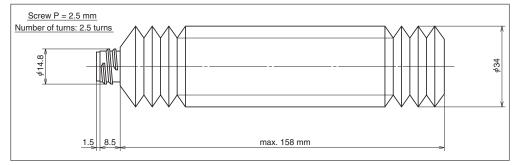


Fig. 1.1 Bellows tube

(3) NSK Manual Grease Pump Unit

a) NSK Hand Grease Pump (Reference number: NSK HGP)

Features

- Light-weight ······ Can be operated by one hand, no worry to make a mistake.
- Inserting by high pressure ···· Insert at 15 Mpa.
- No leaking ····· Does not leak when held upside down.
- Easy to change grease ···· Simply attach grease in bellows tube.
- Remaining grease ····· Can be confirmed through slit on tube.
- Several nozzles ······ Six types of nozzles to choose from.

Specifications

- Discharge pressure · · 15 Mpa
- Spout volume ······ 0.35 cc/shot
- Mass of main body ... Without nozzle 240 g
 Provided nozzle 90 g
- Grease tube outer diameter ϕ 38.1
- Accessory Several nozzles for unique applications can be attached

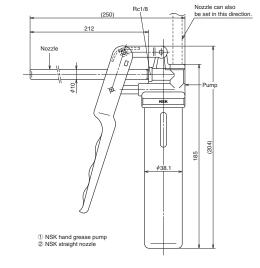


Fig. 1.2 NSK Hand Grease Pump with NSK straight nozzle

*Unopened bellows tubes contain a small amount of air that may take several dozen pumps to flush out. Be sure to pump out all air from the bellows tube before use.

b) Nozzles

Table 1.6 Nozzles that can be attached to NSK Hand Grease Pumps

Name	Designation code	Use	Dimensions
NSK straight nozzle	NSK HGP NZ1	Application Used with grease fittings A, B, and C under the JIS B1575 standard.	R1/8
NSK chuck nozzle	NSK HGP NZ2	Same as above except the nozzle and fitting are coupled by a chucking mechanism at the tip that makes pressing the pump unnecessary.	R1/8
NSK drive-in fitting nozzle	NSK HGP NZ3	Exclusively used with the $-\phi 3$ drive-in grease fitting.	30 11 M6V1.0 0 35 120
NSK point nozzle	NSK HGP NZ4	Used for linear guides that do not have a grease fitting. Supplies grease directly to the ball grooves or to the inside through an opening in the slide.	TIP. \$1.5 P1/8 P1/8 P1/8 P1/8
NSK flexible nozzle	NSK HGP NZ5	Features a flexible chuck nozzle. Used where straight nozzles can't be used.	14HEX. 14HEX. R1/8
NSK flexible extension pipe	NSK HGP NZ6	Used for longer reach. A flexible extension pipe connects the grease pump and nozzle.	Rp1/8 14HEX. 14HEX. R1/8
NSK straight extension pipe	NSK HGP NZ7	Used for longer reach. A straight extension pipe connects the grease pump and nozzle.	Rp1/8 12HEX. R1/8
NSK nozzle for MCH	NSK HGP NZ8	For MCH Model grease replenishment	7.5. (180) © 40

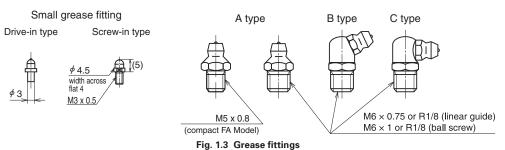


Table 1.7 Grease fittings used for NSK linear guides

Model	Model number	Tap hole for grease fitting	Standard grease fitting	Straight nozzle NZ1	Chuck nozzles NZ2	Drive-in fitting nozzle NZ3	Point nozzle NZ4	Flexible nozzle NZ5
	NH15	φ3	Drive-in type					
NH	NH20, 25, 30, 35*	M6×0.75	B type	0	0			0
	NH45, 55, 65	Rc1/8	B type	0	0			0
	VH15	φ3	Drive-in type					
VH	VH20, 25, 30, 35*	M6×0.75	B type	0	0			0
	VH45, 55	Rc1/8	B type	0	0			0
NO.	NS15	φ3	Drive-in type					
NS	NS20, 25, 30, 35*	M6×0.75	B type	0	0			0
	LW17	φ3	Drive-in type					
LW	LW21, 27, 35*	M6×0.75	B type	0	0			0
	LW50	Rc1/8	B type	0	0			0
	DH15	φ3	Drive-in type					
DH	DH20, 25, 30, 35*	M6×0.75	B type	0	0			0
	DH45, 55, 65	Rc1/8	B type	Ō	Ō			Ō
	DV15	φ3	Drive-in type		_			
DV	DV20, 25, 30, 35*	M6×0.75	B type	0	0			0
	DV45, 55	Rc1/8	B type	Ō	Ō			Ō
	DS15	φ3	Drive-in type					
DS	DS20, 25, 30, 35*	M6×0.75	B type	0	0			0
	PU09, 12	_	-				0	
PU	PU15	φ3	Drive-in type					
LU	LU05, 07, 09, 12, 15		- "				0	
	PE09, 12	_	_				Ō	
PE	PE15	φ3	Drive-in type					
LE	LE05, 07, 09, 12, 15	_	_				0	
	LH08, 10	_	_				Ŏ	
Miniature LH	LH12	φ3	Drive-in type					
	RA15, 20	φ3	Drive-in type			Ŏ		
RA	RA25, 30, 35*	M6×0.75	B type	0				
	RA45, 55, 65	Rc1/8	B type	Ŏ	Ŏ			Ŏ
	RB30	φ3	Drive-in type			0		
RB	RB35, 45	M6×0.75	B type	0				
	RB55, 65	Rc1/8	B type	ŏ	Ŏ			Ŏ
	LA25, 30, 35*	M6×0.75	B type	Ŏ	ŏ			Ŏ
LA	LA45, 55, 65	Rc1/8	B type	Ŏ	Ŏ			Ŏ
	HA25, 30, 35*	M6×0.75	B type	ŏ	Ŏ			Ŏ
HA	HA45, 55	Rc1/8	B type	ŏ	ŏ			Ŏ
	HS15	φ3	Drive-in type					
HS	HS20, 25, 30, 35*	M6×0.75	B type	0	0	\vdash		
	uck nozzle, avoid interference	<u> </u>						

^{*)} If using a chuck nozzle, avoid interference with table and rail.

Note: 1) Use a point nozzle to apply grease directly to the ball groove etc. of PU, LU, PE, LE, and Miniature LH models.

²⁾ A long threaded grease fitting is required for dust-resistant parts. Please refer to the sections pertaining to the lubrication and dust-resistant parts of each model.

Table 1.8 Applicable grease nozzles for ball screws

Category	Type/Appli	cation	N	lodel	Tap hole for grease fitting	Standard grease fitting	Straight nozzle NZ1	Chuck nozzle NZ2	Drive-in fitting nozzle NZ3	Point nozzle NZ4	Flexible nozzle NZ5
	C	High-accuracy, clean	USS		ME OO	A type	0	0		0	0
	Compact FA	General	PSS		M5×0.8	A type	○*1	O*1		0	O*1
		Transfer equipment				A type	○*1	O*1		0	O*1
	Ministure	ina laad	B.4.A	Shaft dia. 12 or less	-	-				0	
	Miniature, f	ine iead	MA	Shaft dia. 16 or over	M6×1	-				0	
	Small equi	pment	FA		M6×1	-	O*2	O*2		0	O*2
Finished	Machine	41-	SA	Shaft dia. 36 or less	M6×1	-	0	0		0	0
shaft end	iviaciine	toois	SA	Shaft dia. 40 or over	Rc1/8	-	0	0		0	0
	Stainless steel		KA	Shaft dia. 12 or less and lead 2 or less	M3×0.5	_			0	0	
				except above	M6×1	_	O*2	O*2		0	O*2
	Transfer equipment		\ /F A	Shaft dia. 12 or less	φ 2.7	-				0	
			VFA	Shaft dia. 15 or over	φ 3.5	-				0	
			RMA		-	-				0	
	N.4::		NAC	Shaft dia. 12 or less	-	-				0	
	Miniature, f	ine iead	MS	Shaft dia. 16 or over	M6×1	-				0	
	Small equi	pment	FS		M6×1	-	O*2	O*2		0	O*2
			SS	Shaft dia. 36 or less	M6×1	-	0	0		0	0
	Machine	tools	55	Shaft dia. 40 or over	Rc1/8	-	0	0		0	0
			HSS		M6×1	_	0	0		0	0
Blank			RMS		-	-				0	
shaft end			RNFTL	Shaft dia. 12 or less	M3×0.5	-			0	0	
Silait Gila			RINFIL	Shaft dia. 14 or over	M6×1	-	0	0		0	0
			RNFBL	Shaft dia. 12 or less	M3×0.5	-			0	0	
	Transfer equ	uipment	ININEDL	Shaft dia. 14 or over	M6×1	-	0	0		0	0
			RNCT		-	-				0	
			RNFCL	Shaft dia. 12 or less	M3×0.5	-			0	0	
			MINFUL	Shaft dia. 15 or over	M6×1	-	0	0		0	0
			RNSTL		M6×1	-	0	0		0	0

^{*1} Unavailable for shaft dia. 25 mm
*2 Installation of nozzle may not be possible with A-type grease fitting.

Notes: 1) NSK ball screws are not normally equipped with grease fittings excluding the Compact FA model. Tap holes are provided for users to install grease fittings as necessary.

- 2) Small (screw-in) fittings are available for M3 x 0.5 tap holes. Please contact NSK.
- 3) VFA models do not support grease fittings. Apply grease directly inside the nut through the oil hole using a point nozzle.
- 4) MA, RMA, MS, RMS, and RNCT models have no tap hole, apply grease directly to the screw shaft and ball grooves using a point nozzle.

Table 1.9 Applicable grease nozzles for Monocarriers

Model	Model No.	Tap hole for grease fitting	Standard grease fitting	Straight nozzle NZ1	Chuck nozzles NZ2	Drive-in fitting nozzle NZ3	Flexible nozzle NZ5	MCH- exclusive fitting nozzle NZ8
	MCM02	-	-					
MCM	MCM03,05,08,10	φ3	Drive-in type			0		O*
	MCM06	M6×0.75	A type	0	0		0	
MCH	MCH06,09,10	φ3	Drive-in type					0

^{*)} Use of NZ3 is recommended.

2.2 Oil Lubrication

Required amount of new oil is regularly supplied by:

- Manual or automatic intermittent supply system;
- Oil mist lubricating system via piping.

Equipment for oil lubrication is more costly than grease lubrication. However, oil mist lubricating system supplies air as well as oil, raising the inner pressure of the ball slide. This prevents foreign matters from entering, and the air cools the system. Use an oil of high atomizing rate such as ISO VG 32 to 68 for the oil mist lubrication system.

ISO VG 68 to 220 are recommended for common intermittent replenishment system. Approximate volume of oil Ω for a ball slide of linear guide per hour can be obtained by the following formula.

For ball-type linear guides excluding the LA model:

 $Q \ge n/150 \text{ (cm}^3/\text{hr)}$ For LA, RA, and RB models: $Q \ge n/100 \text{ (cm}^3/\text{hr)}$ n: Linear guide code
e.g. When NH45 is used, n = 45Therefore, $Q = 45/150 = 0.3 \text{ cm}^3/\text{hr}$

Similarly, approximate oil supply volume Q to ball screw can be obtained by the following formula.

 $Q = d/15 \text{ (cm}^3/\text{hr)}$

d: Nominal shaft diameter of the ball screw

e.g. When the shaft diameter is 50,

d = 50

Therefore,

 $Q = 50/15 = 3.3 \text{ cm}^3/\text{hr}$

For oil lubrication by gravity drip, the oil supply position and installation position of the ball slide or ball nut are crucial. In case of linear guide, unless it is installed to a horizontal position, the oil flows only on the down side, and does not spread to all raceway surface. This may cause insufficient lubrication. For ball screw lubrication as well, oil does not spread if the oil orifice is installed at the bottom, causing insufficient lubrication. Please consult NSK to correct such situations prior to use. NSK has internal design which allows oil lubricant to flow throughout the system. Table 2.1 shows the criterion of intervals of oil checks and replenishments.

Table 2.1 Intervals of checks and replenishments

Method Intervals of checks		Items to check	Replenishment or intervals of changes
Automatic intermittent supply	Weekly	Volume of oil, dirt, etc.	Replenish at each check. Suitable volume for tank capacity.
Oil bath	Daily before operation	Oil surface	Make a suitable criterion based on consumption

Notes: 1) As with grease lubrication, do not mix oil lubricant with different types.

- Some components of the linear guide and ball screw are made of plastic. Avoid using an oil that adversely affects synthetic resin.
- 3) When using oil mist lubricating systems, please confirm oil supply amounts at each outlet part.

3. RoHS Compliance

Please contact NSK for country-specific details on RoHS compliance.

APPENDICES

Appendices

- 1. Conversion from International System of Units (SI) · · · · E1 2. N-kgf Force conversion table
- E3
- 3. kg-lb Mass conversion table E4
- 4. Hardness conversion table · · E5
- 5. Toelrance for shaft diameters E7
- 6. Tolerance for housing bore diameters E9

E1 -E10

1. Conversion from International System of Units (SI)

Comparison of SI, CGS, and engineering system units

Items System of units	Length	Mass	Time	Temperature	Acceleration	Force	Stress	Pressure	Energy	Power
SI	m	kg	s	K, °C	m/s²	N	Pa	Pa	J	W
CGS system	cm	g	s	°C	Gal	dyn	dyn/cm²	dyn/cm²	erg	erg/s
Engineering system	m	kgf • s²/m	s	°C	m/s²	kgf	kgf/m²	kgf/m²	kgf • m	kgf • m/s

Conversion factors from SI units

lkawa	SI unit		Units other than	SI units	Conversion factor from SI unit	
Item	Name of unit	Abbreviation	Name of unit	Abbreviation	Conversion factor from 51 unit	
Angle	Radian	rad	Degree	0	180/π	
			Minute	•	10 800/π	
			Second	"	648 000/π	
Length	Meter	m	Micron	μ	10 ⁶	
			Angstrom	Å	1010	
Area	Square meter	m²	Are	а	10-2	
			Hectare	ha	10-⁴	
Volume	Cubic meter	m³	Liter	I, L	10 ³	
			Deciliter	dl, dL	10⁴	
Time	Second	s	Minute	min	1/60	
			Hour	h	1/3 600	
			Day	d	1/86 400	
Numbers of vibration numbers of frequency	Hertz	Hz	Cycle	S ⁻¹	1	
Rotational speed	Times per second	S ⁻¹	Times per minute	rpm	60	
Velocity	Meter per second	m/s	Kilometer per hour	km/h	3 600/1 000	
			Knot	kn	3 600/1 852	
Acceleration	Meter per square second	m/s²	Gal	Gal	10 ²	
			G	G	1/9.806 65	
Mass	Kilogram	kg	Ton	t	10 ⁻³	
Force	Newton	N	Weight kilogram	kgf	1/9.806 65	
			Weight ton	tf	1/(9.806 65×10³)	
			Dyne	dyn	10⁵	
Torque and	Newton meter	N•m	Weight kilogram	kgf • m	1/9.806 65	
moment of force			meter			
Stress	Pascal	Pa	Weight kilogram per square centimeter	kgf/cm²	1/(9.806 65×10 ⁴)	
	(Newtons per square meter)	(N/m^2)	Weight kilogram per square millimeter	kgf/mm²	1/(9.806 65×10 ⁶)	

Prefixes for SI units

Powers of 10	Prefix Name Code	Powers of 10	Prefix Name Code
10 ¹⁸	exa E	10 ⁻¹	deci d
10 ¹⁵	peta P	10 ⁻²	centi c
10 ¹²	tera T	10 ⁻³	milli m
10°	giga G	10 ⁻⁶	micro μ
10°	mega M	10 ⁻⁹	nano n
103	kilo k	10 ⁻¹²	pico p
10 ²	hecto h	10 ⁻¹⁵	femto f
10 ¹	deca da	10 ⁻¹⁸	atto a

Conversion factors from SI units (continued from previous page)

	SI unit		Units other than			
Item	Name of unit	Abbreviation	Name of unit	Abbreviation	Conversion factor from SI unit	
Pressure	Pascal	Pa	Weight kilogram per square meter	kgf/m²	1/9.806 65	
	(newton per square meter)	(N/m^2)	Water column meter	mH₂O	1/(9.806 65×10³)	
			Mercurial column millimeter	mmHg	760/(1.013 25×10 ⁵)	
			Torr	Torr	760/(1.013 25×10 ⁵)	
			Bar	bar	10-5	
			Atmosphere	atm	1/(1.013 25×10 ⁵)	
Energy	Joule	J	Erg	erg	10 ⁷	
	(newton meter)	(N • m)	Calorie (international)	cal₁⊤	1/4.186 8	
			Weight kilogram meter	kgf • m	1/9.806 65	
			Kilowatt hour	kW • h	1/(3.6×10 ⁶)	
			Metric horsepower/hour	PS • h	≈3.776 72×10 ⁻⁷	
Electric power,	Watt	W	Weight kilogram meter per second	kgf • m/s	1/9.806 65	
power	(joules per second)	(J/s)	Kilo calorie per hour	kcal/h	1/1.163	
			Metric horsepower	PS	≈1/735.498 8	
Viscosity, Viscosity index	Pascal second	Pa•s	Poise	Р	10	
Kinematic viscosity,	Square meter	m²/s	Stokes	St	10⁴	
Kinematic viscosity index	per second		Centistokes	cSt	10 ⁶	
Temperature, Difference in temperature	Kelvin, Celsius degrees	K, °C	Degree	°C	[See Note (1)]	
Electrical current, magnetomotive force	Ampere	А	Ampere	Α	1	
Electrical power, electromotive force	Volt	V	(Watt per ampere)	(W/A)	1	
Magnetic field intensity	Ampere per meter	A/m	Oersted	Oe	$4\pi/10^{3}$	
Magnetic flux density	Tesla	Т	Gauss	Gs	104	
			Gamma	γ	10°	
Electrical resistance	Ohm	Ω	(Volt per ampere)	(V/A)	1	

Note (1) Conversion from TK to θ °C is : θ = T – 273.15. To indicate temperature difference: $\Delta T = \Delta \theta$. ΔT and $\Delta \theta$ indicate temperature differences measured by Kelvin and Celsius respectively.

Remarks: Names and abbreviations of the unit in parentheses indicate the definition of the unit shown above the parentheses or left to the parentheses.

Conversion example 1 N = 1/9.806 65 kgf

NSK

lb

kg

2. N-kgf Force conversion table

[Using this table]

To convert between units, find the figure in the shaded column that corresponds to the number in the unit you wish to convert. Then, look to the appropriate column on the right or left in the same row for the converted value, For example, from this table:

10 N = 1.0197 kgf, while 10 kgf = 98.066 N.

1 N = 0.1019716 kgf 1 kgf = 9.80665 N

3. kg-lb Mass conversion table

[Using this table]

To convert between units, find the figure in the shaded column that corresponds to the number in the unit you wish to convert. Then, look to the appropriate column on the right or left in the same row for the converted value, For example, from this table 10 kg = 22.046 lb, while 10 lb = 4.536 kg.

1 kg = 2.2046226

1 lb = 0.45359237

N		kgf	N		kgf	N		kgf	kg		lb	kg		lb	kg		lb
9.8066	1	0.1020	333.43	34	3.4670	657.05	67	6.8321	0.454	1	2,205	15.422	34	74.957	30.391	67	147.71
19.613	2	0.1020	343.23	35	3.5690	666.85	68	6.9341	0.454	2	4.409	15.876	35	77.162	30.844	68	147.71
29.420	3	0.3059	353.04	36	3.6710	676.66	69	7.0360	1.361	3	6.614	16.329	36	79.366	31.298	69	152.12
39.227	4	0.4079	362.85	37	3.7729	686.47	70	7.1380	1.814	4	8.818	16.783	37	81.571	31.751	70	154.32
49.033	5	0.5099	372.65	38	3.8749	696.27	71	7.2400	2.268	5	11.023	17.237	38	83.776	32.205	71	156.53
.0.000		0.000	072.00	•	0.07.10	000.27	, ,	7.2.00	2.200	ŭ		.,,,,,	•	30.770	02.200	, ,	
58.840	6	0.6118	382.46	39	3.9769	706.08	72	7.3420	2.722	6	13.228	17.690	39	85.980	32.659	72	158.73
68.647	7	0.7138	392.27	40	4.0789	715.89	73	7.4439	3.175	7	15.432	18.144	40	88.185	33.112	73	160.94
78.453	8	0.8158	402.07	41	4.1808	725.69	74	7.5459	3.629	8	17.637	18.597	41	90.390	33.566	74	163.14
88.260	9	0.9177	411.88	42	4.2828	735.50	75	7.6479	4.082	9	19.842	19.051	42	92.594	34.019	75	165.35
98.066	10	1.0197	421.69	43	4.3848	745.31	76	7.7498	4.536	10	22.046	19.504	43	94.799	34.473	76	167.55
107.87	11	1.1217	431.49	44	4.4868	755.11	77	7.8518	4.990	11	24.251	19.958	44	97.003	34.927	77	169.76
117.68	12	1.2237	441.30	45	4.5887	764.92	78	7.9538	5.443	12	26.455	20.412	45	99.208	35.380	78	171.96
127.49	13	1.3256	451.11	46	4.6907	774.73	79	8.0558	5.897	13	28.660	20.865	46	101.41	35.834	79	174.17
137.29	14	1.4279	460.91	47	4.7927	784.53	80	8.1577	6.350	14	30.865	21.319	47	103.62	36.287	80	176.37
147.10	15	1.5296	470.72	48	4.8946	794.34	81	8.2597	6.804	15	33.069	21.772	48	105.82	36.741	81	178.57
156.91	16	1.6315	480.53	49	4.9966	804.15	82	8.3617	7.257	16	35.274	22.226	49	108.03	37.195	82	180.78
166.71	17	1.7335	490.33	50	5.0986	813.95	83	8.4636	7.711	17	37.479	22.680	50	110.23	37.648	83	182.98
176.52	18	1.8355	500.14	51	5.2006	823.76	84	8.5656	8.165	18	39.683	23.133	51	112.44	38.102	84	185.19
186.33	19	1.9375	509.95	52	5.3025	833.57	85	8.6676	8.618	19	41.888	23.587	52	114.64	38.555	85	187.39
196.13	20	2.0394	519.75	53	5.4045	843.37	86	8.7696	9.072	20	44.092	24.040	53	116.84	39.009	86	189.60
205.94	21	2.1414	529.56	54	5.5065	853.18	87	8.8715	9.525	21	46.297	24.494	54	119.05	39.463	87	191.80
215.75	22	2.2434	539.37	55	5.6084	862.99	88	8.9735	9.979	22	48.502	24.948	55	121.25	39.916	88	194.01
225.55	23	2.3453	549.17	56	5.7104	872.79	89	9.0755	10.433	23	50.706	25.401	56	123.46	40.370	89	196.21
235.36	24	2.4473	558.98	57	5.8124	882.60	90	9.1774	10.886	24	52.911	25.855	57	125.66	40.823	90	198.42
245.17	25	2.5493	568.79	58	5.9144	892.41	91	9.2794	11.340	25	55.116	26.308	58	127.87	41.277	91	200.62
254.97	26	2.6513	578.59	59	6.0163	902.21	92	9.3814	11.793	26	57.320	26.762	59	130.07	41.730	92	202.83
264.78	27	2.7532	588.40	60	6.1183	912.02	93	9.4834	12.247	27	59.525	27.216	60	132.28	42.184	93	205.03
274.59	28	2.8552	598.21	61	6.2203	921.83	94	9.5853	12.701	28	61.729	27.669	61	134.48	42.638	94	207.23
284.39	29	2.9572	608.01	62	6.3222	931.63	95	9.6873	13.154	29	63.934	28.123	62	136.69	43.091	95	209.44
294.20	30	3.0591	617.82	63	6.4242	941.44	96	9.7893	13.608	30	66.139	28.576	63	138.89	43.545	96	211.64
304.01	31	3.1611	627.63	64	6.5262	951.25	97	9.8912	14.061	31	68.343	29.030	64	141.10	43.998	97	213.85
313.81	32	3.2631	637.43	65	6.6282	961.05	98	9.9932	14.515	32	70.548	29.030	65	143.30	43.996	98	216.05
323.62	33	3.3651	647.24	66	6.7301	970.86	99	10.095	14.969	33	70.546	29.464	66	145.51	44.452	99	218.26
323.02	00	3.3031	077.27	00	0.7001	370.00	00	.0.000	17.303		, 2., 55	20.007	00	170.01	77.500	00	210.20

4. Hardness conversion table

	Rockwell C Scale		Brinell h	ardness	Rockwe A Scale	ell hardness B Scale	
	hardness	Vickers hardness	Standard ball	Tungsten	Load 588.4 N	Load 980.7 N	Shore hardness
	(1 471 N)			carbide ball	Brale indenter	Diameter 1.5888 mm {1/16 in} sphere	naraness
ı	68	940	_	_	85.6	_	97
	67	900	_	_	85.0	_	95
	66	865	_	_	84.5	_	92
	65	832	_	739	83.9	_	91
	64	800	_	722	83.4	_	88
	63	772	_	705	82.8	_	87
	62	746	_	688	82.3	_	85
	61	720	_	670	81.8	_	83
	60	697	_	654	81.2	_	81
	59	674	_	634	80.7	_	80
	58	653	_	615	80.1	_	78
	57	633	_	595	79.6	_	76
	56	613	_	577	79.0	_	75
	55	595	_	560	78.5	_	74
	54	577	_	543	78.0	_	72
	53	560	_	525	77.4	_	71
	52	544	500	512	76.8	_	69
	51	528	487	496	76.3	_	68
	50	513	475	481	75.9	_	67
	49	498	464	469	75.2	_	66
	48	484	451	455	74.7	_	64
	47	471	442	443	74.1	_	63
	46	458	432	432	73.6	_	62
	45	446	421	421	73.1	-	60
	44	434	409	409	72.5	-	58
	43	423	400	400	72.0	_	57
	42	412	390	390	71.5	_	56
	41	402	381	381	70.9	_	55
	40	392	371	371	70.4	_	54
	39	382	362	362	69.9	_	52
			!				

Rockwell C Scale		Brinell h	ardness	Rockwe	ell hardness	
				A Scale	B Scale	
hardness	Vickers		_	Load 588.4 N	Load 980.7 N	Shore
(4. 474. NI)	hardness	Standard ball	Tungsten	LOAG 500.4 N	LOAU 300.7 N	hardness
(1 471 N)			carbide ball	Brale	Diameter 1.5888 mm	
				indenter	{1/16 in} sphere	
38	372	353	353	69.4	_	51
37	363	344	344	68.9	_	50
36	354	336	336	68.4	(109.0)	49
35	345	327	327	67.9	(108.5)	48
34	336	319	319	67.4	(108.0)	47
33	327	311	311	66.8	(107.5)	46
32	318	301	301	66.3	(107.0)	44
31	310	294	294	65.8	(106.0)	43
30	302	286	286	65.3	(105.5)	42
29	294	279	279	64.7	(104.5)	41
28	286	271	271	64.3	(104.0)	41
27	279	264	264	63.8	(103.0)	40
26	272	258	258	63.3	(102.5)	38
25	266	253	253	62.8	(101.5)	38
24	260	247	247	62.4	(101.0)	37
23	254	243	243	62.0	100.0	36
22	248	237	237	61.5	99.0	35
21	243	231	231	61.0	98.5	35
20	238	226	226	60.5	97.8	34
(18)	230	219	219	_	96.7	33
(16)	222	212	212	_	95.5	32
(14)	213	203	203	_	93.9	31
(12)	204	194	194	_	92.3	29
(10)	196	187	187	_	90.7	28
(8)	188	179	179	_	89.5	27
(6)	180	171	171	_	87.1	26
(4)	173	165	165	_	85.5	25
(2)	166	158	158	_	83.5	24
(0)	160	152	152	_	81.7	24
(0)	100	102	102	ļ	01.7	4-7

E6 E6

NSK

5. Tolerances for Shaft Diameters

diame	fication of ter (mm)	. d6	e6	f6	g5	g6	h5	h6	h7	h8	h9	h10	js5	js6
Over	or less	- 20 - 26	- 14 - 20	- 6 - 12	- 2 - 6	- 2 - 8	0 - 4	0 - 6	0 -10	0 - 14	0 - 25	0 - 40	± 2	± 3
3	6	- 30 - 38	- 20 - 20 - 28	- 12 - 10 - 18	- 4 - 9	- 6 - 4 - 12	0 - 5	0 - 8	0 -12	0 - 18	0 - 30	0 - 48	± 2.5	± 4
6	10	- 40 - 49	- 25 - 34	- 13 - 22	- 5 -11	- 5 - 14	0 - 6	0 - 9	0 -15	0 - 22	- 36	0 - 58	± 3	± 4.5
10	18	- 50 - 61	- 32 - 43	- 16 - 27	- 6 -14	- 6 - 17	- 8	0 -11	0 -18	0 - 27	0 - 43	0 - 70	± 4	± 5.5
18	30	- 65 - 78 - 80	- 40 - 53 - 50	- 20 - 33 - 25	- 7 -16 - 9	- 7 - 20 - 9	0 - 9 0	0 -13 0	0 -21 0	- 33 0	0 - 52 0	0 - 84 0	± 4.5	± 6.5
30	50	- 96	- 66	- 25 - 41	-20	- 25	-11	-16	-25	- 39	- 62	-100	± 5.5	± 8
50	80	-100 -119	- 60 - 79	- 30 - 49	-10 -23	- 10 - 29	0 -13	0 -19	0 -30	0 - 46	0 - 74	0 -120	± 6.5	± 9.5
80	120	-120 -142	- 72 - 94	- 36 - 58	–12 –27	- 12 - 34	0 -15	0 -22	0 -35	0 - 54	0 - 87	0 -140	± 7.5	±11
120	180	-145 -170	- 85 -110	- 43 - 68	-14 -32	- 14 - 39	0 -18	0 -25	0 -40	0 - 63	0 -100	0 -160	± 9	±12.5
180	250	-170 -199	-100 -129	- 50 - 79	-15 -35	- 15 - 44	0 -20	0 –29	0 -46	0 - 72	0 –115	0 –185	±10	±14.5
250	315	-190 -222	-110 -142	- 56 - 88	-17 -40	- 17 - 49	0 -23	0 -32	0 -52	0 - 81	0 -130	0 –210	±11.5	±16
315	400	-210 -246	-125 -161	- 62 - 98	-18 -43	- 18 - 54	0 -25	0 -36	0 -57	0 - 89	0 -140	0 -230	±12.5	±18
400	500	-230 -270	-135 -175	- 68 -108	-20 -47	- 20 - 60	0 -27	0 -40	0 -63	0 - 97	0 -155	0 -250	±13.5	±20
500	630	-260 -304	-145 -189	- 76 -120	_	- 22 - 66	_	0 -44	0 -70	0 -110	0 -175	0 -280	_	±22
630	800	-290 -340	-160 -210	- 80 -130	_	- 24 - 74	_	0 -50	0 -80	0 -125	0 –200	0 -320	_	±25
800	1 000	-320 -376	-170 -226	- 86 -142	_	- 26 - 82	_	0 -56	0 -90	0 -140	0 -230	0 -360	_	±28
1 000	1 250	-350 -416	-195 -261	- 98 -164	_	- 28 - 94	_	0 -66	0 -105	0 -165	0 -260	0 -420	_	±33
1 250	1 600	-390 -468	-220 -298	-110 -188	_	- 30 -108	_	0 -78	0 -125	0 -195	0 -310	0 -500	_	±39
1 600	2 000	-430 -522	-240 -332	-120 -212	_	- 32 -124	_	0 -92	0 -150	0 -230	0 -370	0 -600	_	±46

U	I	11	ι.	μ	Ш	ı

													Οπι. μπ
j5	j6	j7	k5	k6	k7	m5	m6	n6	р6	r6	r7	diamete	
	+ 4	+ 6	+ 4	+ 6	+10	+ 6	+ 8	+ 10	+ 12	+ 16	+ 20	Over	or less
± 2 + 3	- <u>2</u> + 6	- 4 + 8	0 + 6	+ 9	+13	+ 2	+ 2	+ 4	+ 6	+ 10 + 23	+ 10	_	3
<u> </u>	- 2 + 7	- 4 +10	+ 1 + 7	+ 1 +10	+ 1 +16	+ 4	+ 4 + 15	+ 8 + 19	+ 12 + 24	+ 15 + 28	+ 15 + 34	6	6
<u> </u>	- 2 + 8	- 5 +12	+ 1 + 9	+ 1 +12	+ 1 +19	+ 6 +15	+ 6 + 18	+ 10 + 23	+ 15 + 29	+ 19 + 34	+ 19 + 41	10	10
<u> - 3</u> + 5	- 3 + 9	- 6 +13	+ 1	+ 1 +15	+ 1	+ 7 +17	+ 7	+ 12 + 28	+ 18 + 35	+ 23 + 41	+ 23 + 49	18	30
<u> - 4</u> + 6	- 4 +11	- 8 +15	+ 2 +13	+ 2 +18	+ 2 +27	+ 8 +20	+ 8 + 25	+ 15 + 33	+ 22 + 42	+ 28 + 50	+ 28 + 59	30	50
	- 5	-10	+ 2	+ 2	+ 2	+ 9	+ 9	+ 17	+ 26	+ 34 + 60	+ 34 + 71	50	65
+ 6 - 7	+12 - 7	+18 -12	+15 + 2	+21 + 2	+32 + 2	+24 +11	+ 30 + 11	+ 39 + 20	+ 51 + 32	+ 41 + 62	+ 41 + 73	65	80
										+ 43	+ 43 + 86	80	100
+ 6 - 9	+13 - 9	+20 -15	+18 + 3	+25 + 3	+38 + 3	+28 +13	+ 35 + 13	+ 45 + 23	+ 59 + 37	+ 51 + 76	+ 51 + 89	100	120
										+ 54 + 88	+ 54 +103	120	140
+7	+14	+22	+21	+28	+43	+33	+ 40	+ 52	+ 68	+ 63 + 90	+ 63 +105	140	160
-11	-11	–18	+ 3	+ 3	+ 3	+15	+ 15	+ 27	+ 43	+ 65 + 93	+ 65	160	180
										+ 68 +106 + 77	+ 68 +123 + 77	180	200
+ 7 -13	+16 -13	+25 -21	+24 + 4	+33 + 4	+50 + 4	+37 +17	+ 46 + 17	+ 60 + 31	+ 79 + 50	+ 77 +109 + 80	+ 77 +126 + 80	200	225
-13	-13	-21	* *	T 4	T 4	T17	т 17	+ 31	7 30	+113 + 84	+130 + 84	225	250
+7			+27	+36	+56	+43	+ 52	+ 66	+ 88	+126 + 94	+146 + 94	250	280
-16	±16	±26	+ 4	+ 4	+ 4	+20	+ 20	+ 34	+ 56	+130 + 98	+150 + 98	280	315
+7	. 10	+29	+29	+40	+61	+46	+ 57	+ 73	+ 98	+144 +108	+165 +108	315	355
-18	±18	-28	+ 4	+ 4	+ 4	+21	+ 21	+ 37	+ 62	+150 +114	+171 +114	355	400
+7	±20	+31	+32	+45	+68	+50	+ 63	+ 80	+108	+166 +126	+189 +126	400	450
–20	120	-32	+ 5	+ 5	+ 5	+23	+ 23	+ 40	+ 68	+172 +132	+195 +132	450	500
_	_	_	_	+44	+70	_	+ 70	+ 88	+122	+194 +150	+220 +150	500	560
				0	0		+ 26	+ 44	+ 78	+199 +155	+225 +155	560	630
_	_	_	_	+50	+80	_	+ 80	+100	+138	+225 +175	+255 +175	630	710
				0	0		+ 30	+ 50	+ 88	+235 +185	+265 +185	710	800
_	_	_	_	+56 0	+90 0	_	+ 90 + 34	+112	+156 +100	+266 +210	+300 +210 +310	800	900
					0		+ 34	+ 30	+100	+276 +220 +316	+220 +355	900	1 000
_	_	_	_	+66 0	+105 0	_	+106 + 40	+132 + 66	+186 +120	+250 +326	+250 +365	1 000	1 120
					0		+ 40	7 00	T120	+320 +260 +378	+260 +425	1 120	1 250
_	_	_	_	+78 0	+125 0	_	+126 + 48	+156 + 78	+218 +140	+300 +408	+300 +455	1 250	1 400
							. 10	. , ,	. 170	+330	+330	1 400	1 600
_	_	_	_	+92 0	+150 0	_	+150 + 58	+184 + 92	+262 +170	+370 +492	+370 +550	1 600	1 800
				·	Ů		. 00	" "	,	+400	+400	1 800	2 000

6. Toelrances for Housing Bore Diameters

	cation of er (mm) or less	. E6	F6	F7	G6	G 7	H6	H7	H8	J6	J7	JS6	JS7
_	3	+ 20 + 14	+ 12 + 6	+ 16 + 6	+ 8 + 2	+ 12 + 2	+ 6	+ 10 0	+ 14 0	+ 2 - 4	+ 4 - 6	± 3	± 5
3	6	+ 28 + 20	+ 18 + 10	+ 22 + 10	+ 12 + 4	+ 16 + 4	+ 8	+ 12 0	+ 18	+ 5 - 3	± 6	± 4	± 6
6	10	+ 34 + 25	+ 22 + 13	+ 28 + 13	+ 14 + 5	+ 20 + 5	+ 9	+ 15 0	+ 22	+ 5 - 4	+ 8 - 7	± 4.5	± 7.5
10	18	+ 43 + 32	+ 27 + 16	+ 34 + 16	+ 17 + 6	+ 24 + 6	+ 11	+ 18	+ 27	+ 6 - 5	+10 - 8	± 5.5	± 9
18	30	+ 53 + 40	+ 33 + 20	+ 41 + 20	+ 20 + 7	+ 28 + 7	+ 13 0	+ 21	+ 33	+ 8 - 5	+12 - 9	± 6.5	±10.5
30	50	+ 66 + 50	+ 41 + 25	+ 50 + 25	+ 25 + 9	+ 34 + 9	+ 16	+ 25 0	+ 39	+10 - 6	+14 -11	± 8	±12.5
50	80	+ 79 + 60	+ 49 + 30	+ 60 + 30	+ 29 + 10	+ 40 + 10	+ 19	+ 30	+ 46	+13 - 6	+18 -12	± 9.5	±15
80	120	+ 94 + 72	+ 58 + 36	+ 71 + 36	+ 34 + 12	+ 47 + 12	+ 22	+ 35	+ 54	+16 - 6	+22 -13	±11	±17.5
120	180	+110 + 85	+ 68 + 43	+ 83 + 43	+ 39 + 14	+ 54 + 14	+ 25	+ 40	+ 63	+18 - 7	+26 -14	±12.5	±20
180	250	+129 +100	+ 79 + 50	+ 96 + 50	+ 44 + 15	+ 61 + 15	+ 29	+ 46	+ 72	+22 - 7	+30 –16	±14.5	±23
250	315	+142 +110	+ 88 + 56	+108 + 56	+ 49 + 17	+ 69 + 17	+ 32	+ 52 0	+ 81	+25 - 7	+36 -16	±16	±26
315	400	+161 +125	+ 98 + 62	+119 + 62	+ 54 + 18	+ 75 + 18	+ 36	+ 57 0	+ 89	+29 - 7	+39 –18	±18	±28.5
400	500	+175 +135	+108 + 68	+131 + 68	+ 60 + 20	+ 83 + 20	+ 40	+ 63	+ 97	+33 - 7	+43 -20	±20	±31.5
500	630	+189 +145	+120 + 76	+146 + 76	+ 66 + 22	+ 92 + 22	+ 44	+ 70	+110	_	_	±22	±35
630	800	+210 +160	+130 + 80	+160 + 80	+ 74 + 24	+104 + 24	+ 50	+ 80	+125	_	_	±25	±40
800	1 000	+226 +170	+142 + 86	+176 + 86	+ 82 + 26	+116 + 26	+ 56	+ 90	+140	_	_	±28	±45
1 000	1 250	+261 +195	+164 + 98	+203 + 98	+ 94 + 28	+133 + 28	+ 66	+105 0	+165 0	_	_	±33	±52.5
1 250	1 600	+298 +220	+188 +110	+235 +110	+108 + 30	+155 + 30	+ 78 0	+125 0	+195	_	_	±39	±62.5
1 600	2 000	+332 +240	+212 +120	+270 +120	+124 + 32	+182 + 32	+ 92 0	+150 0	+230 0	_	_	±46	±75

Unit:	ıım
OTHE.	μιιι

K5	K6	K7	M5	M6	M7	N5	N6	N7	P6	P7	Classific diamete Over	eation of er (mm) or less
0 - 4	0 - 6	0 - 10	- 2 - 6	- 2 - 8	- 2 - 12	- 4 - 8	- 4 - 10	- 4 - 14	- 6 - 12	- 6 - 16	_	3
0 - 5	+ 2 - 6	+ 3 - 9	- 3 - 8	- 1 - 9	0 - 12	- 7 -12	- 5 - 13	- 4 - 16	- 9 - 17	- 8 - 20	3	6
+ 1 - 5	+ 2 - 7	+ 5 - 10	- 4 -10	- 3 - 12	0 - 15	- 8 -14	- 7 - 16	- 4 - 19	- 12 - 21	- 9 - 24	6	10
+ 2 - 6	+ 2 - 9	+ 6 - 12	- 4 -12	- 4 - 15	0 - 18	- 9 -17	- 9 - 20	- 5 - 23	- 15 - 26	- 11 - 29	10	18
+ 1 - 8	+ 2 -11	+ 6 - 15	- 5 -14	- 4 - 17	0 - 21	-12 -21	- 11 - 24	- 7 - 28	- 18 - 31	- 14 - 35	18	30
+ 2 - 9	+ 3 -13	+ 7 - 18	- 5 -16	- 4 - 20	0 - 25	-13 -24	- 12 - 28	- 8 - 33	- 21 - 37	- 17 - 42	30	50
+ 3 -10	+ 4 -15	+ 9 - 21	- 6 -19	- 5 - 24	0 - 30	-15 -28	- 14 - 33	- 9 - 39	- 26 - 45	- 21 - 51	50	80
+ 2 -13	+ 4 -18	+ 10 - 25	- 8 -23	- 6 - 28	0 - 35	-18 -33	- 16 - 38	- 10 - 45	- 30 - 52	- 24 - 59	80	120
+ 3 -15	+ 4 –21	+ 12 - 28	- 9 -27	- 8 - 33	0 - 40	–21 –39	- 20 - 45	- 12 - 52	- 36 - 61	- 28 - 68	120	180
+ 2 -18	+ 5 -24	+ 13 - 33	–11 –31	- 8 - 37	0 - 46	-25 -45	- 22 - 51	- 14 - 60	- 41 - 70	- 33 - 79	180	250
+ 3 -20	+ 5 -27	+ 16 - 36	-13 -36	- 9 - 41	0 - 52	-27 -50	- 25 - 57	- 14 - 66	- 47 - 79	- 36 - 88	250	315
+ 3 -22	+ 7 –29	+ 17 - 40	–14 –39	- 10 - 46	0 - 57	-30 -55	- 26 - 62	- 16 - 73	- 51 - 87	- 41 - 98	315	400
+ 2 -25	+ 8 -32	+ 18 - 45	-16 -43	- 10 - 50	0 - 63	-33 -60	- 27 - 67	- 17 - 80	- 55 - 95	- 45 -108	400	500
_	0 -44	0 - 70	_	- 26 - 70	- 26 - 96	_	- 44 - 88	- 44 -114	- 78 -122	- 78 -148	500	630
_	0 -50	0 - 80	_	- 30 - 80	- 30 -110	_	- 50 -100	- 50 -130	- 88 -138	- 88 -168	630	800
_	0 –56	0 - 90	_	- 34 - 90	- 34 -124	_	- 56 -112	- 56 -146	-100 -156	-100 -190	800	1 000
_	0 -66	0 -105	_	- 40 -106	- 40 -145	_	- 66 -132	- 66 -171	-120 -186	-120 -225	1 000	1 250
_	0 -78	0 -125	_	- 48 -126	- 48 -173	_	- 78 -156	- 78 -203	-140 -218	-140 -265	1 250	1 600
_	0 –92	0 –150	_	- 58 -150	- 58 -208	_	- 92 -184	- 92 -242	-170 -262	–170 –320	1 600	2 000

Worldwide Sales Offices

Nissei Bldg., 1-6-3 Ohsaki, Shinagawa-ku, Tokyo 141-8560, Japan P: +81-3-3779-7111 F: +81-3-3779-7431 Africa South Africa NSK SOUTH AFRICA (PTY) LTD. 25 Galaxy Avenue, Linbro Business Park, Sandton 2146, South Africa P: +27-011-458-3600 F: +27-011-458-3608 Asia and Oceania Australia: NSK AUSTRALIA PTY. LTD. MELBOURNE & 100 Logis Boulevard, Dandenong South, Victoria, 3175, Australia P: +61-3-9765-4400 F: +61-3-9765-4466 SYDNEY Suite A315, 20 Lexington Drive, Bella Vista, New South Wales, 2153, Australia P: +61-2-9839-2300 F: +61-2-8824-5794 BRISBANE 1/69 Selhurst Street, Coopers Plains, Queensland 4108, Australia P: +61-7-3347-2600 F: +61-7-3345-5376 Unit 1, 71 Tacoma Circuit, Canning Vale, Western Australia 6155, Australia P: +61-8-9256-5000 F: +61-8-9256-1044 New Zealand NSK NEW ZEALAND LTD Unit F. 70 Business Parade South, Highbrook, Business Park Auckland 2013, New Zealand AUCKI AND P: +64-9-276-4992 F: +64-9-276-4082 China: NSK (SHANGHAI) TRADING CO., LTD. JIANGSU No.8 NSK Rd., Huagiao Economic Development Zone, Kunshan, Jiangsu, China (215332) P: +86-512-5796-3000 F: +86-512-5796-3300 NSK (CHINA) INVESTMENT CO., LTD. No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332) JIANGSU \$ P: +86-512-5796-3000 F: +86-512-5796-3300 BEIJING Room 1906, Beijing Fortune Bldg., No.5 Dong San Huan Bei Lu, Chao Yang District, Beijing, China (100004) P: +86-10-6590-8161 F: +86-10-6590-8166 Unit 4604, 46/F., Metropolitan Tower, 183 Naniing Road, Heping District, TIAN JIN Tianiin, China (300051) P: +86-22-8319-5030 F: +86-22-8319-5033 CHANGCHUN Room 902-03, Changchun Hongwell International Plaza, No.3299 Renmin Street, Changchun, Jilin, China (130061) P: +86-431-8898-8682 F: +86-431-8898-8670 SHENYANG No.7, 15 Street, Shenyang Economic & Technological Development Area, Shenyang, Liaoning, China (110141) P: +86-24-2550-5017 F: +86-24-2334-2058 DALIAN Room 1805 Xiwang Tower, No.136 Zhongshan Road, Zhongshan District, Dalian, Liaoning, China (116001) P: +86-411-8800-8168 F: +86-411-8800-8160 Room A1 22F, Golden Eagle International Plaza, No.89 Hanzhong Road, Nanjing, NANJING Jiangsu, China (210029) P: +86-25-8472-6671 F: +86-25-8472-6687 FUZHOU Room 1801-1811, B1#1A Class Office Building, Wanda Plaza, No.8 Aojiang Road, Euzhou, China (350009) P: +86-591-8380-1030 F: +86-591-8380-1225 WUHAN Room 1512, No.198Yuncai Road, Office Building, Oceanwide City Square, JiangHan, District, WuHan, China (400039) P: +86-27-8556-9630 F: +86-27-8556-9615 QINGDAO Room 802, Farglory International Plaza, No.26 Xianggang Zhong Road, Shinan District, Qingdao, Shandong, China (266071) P: +86-532-5568-3877 F: +86-532-5568-3876 GUANGZHOU New Town, Guangzhou, Guangdong, China (510627) P: +86-20-3817-7800 F: +86-20-3786-4501 CHANGSHA Room 3209, Huayuan International Center, No.36, Section 2, Xiangjiang Middle Road, Tianxin District, Changsha, Hunan, China (410002) P: +86-731-8571-3100 F: +86-731-8571-3255 LUOYANG Room 955, HUA-YANG PLAZA HOTEL, NO.88 Kaixuan W.Rd., Jian Xi District, Luoyang, Henan Province, China (471003) P: +86-379-6069-6188 F: +86-379-6069-6180 XPAN

NSK LTD.-HEADQUARTERS, TOKYO, JAPAN SHENZHEN TAIPEI ⅓ TAICHUNG India: GURGAON Indonesia: PRAI Philippines MANILA SINGAPORE

Room 1011-16, Yuexiu Financial Tower, No.28 Zhujiang Road East, Zhujiang

Room 1007, B Changan Metropolls Center, No.88 Nanguanzheng Steet, Xi'an, Shanxi, China (710068) P: +86-29-8765-1896 F: +86-29-8765-1895 Room 612, Commercial Apartment, Athestel Hotel, No.288, Keyuan Rd.4, CHONGOING Jiulongpo District, Chongqing, China (400039) P: +86-23-6806-5310 F: +86-23-6806-5292 CHENGDU Room1117, Lippo Tower, No.62 North Kehua Road, Chengdu, Sichuan, China (610041) P: +86-28-8528-3680 F: +86-28-8528-3690

NSK CHINA SALES CO., LTD.

No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332) P: +86-512-5796-3000 F: +86-512-5796-3300

NSK HONG KONG LTD.

HONG KONG A Suite 705, 7th Floor, South Tower, World Finance Centre, Harbour City, T.S.T,

Kowloon, Hong Kong, China

P: +852-2739-9933 F: +852-2739-9323

Room 624-626, 6/F, Kerry Center, Renminnan Road, Shenzhen, Guangdong, China P: +86-755-25904886 F: +86-755-25904883

Taiwan:

TAIWAN NSK PRECISION CO., LTD.

10F-A6, No.168, Sec.3, Nanjing East Rd., Zhongshan Dist., Taipei City 104,

P: +886-2-2772-3355 F: +886-2-2772-3300

3F. -2, No. 540, Sec. 3, Taiwan Blvd., Xitun Dist., Taichung City 407, Taiwan P: +886-4-2708-3393 F: +886-4-2708-3395

Rm. A1, 9F., No.189, Sec. 1, Yongfu Rd., West Central Dist., Tainan City 700,

P: +886-6-215-6058 F: +886-6-215-5518

NSK BEARINGS INDIA PRIVATE LTD.

CHENNAL & TVH Beliciaa Towers, 2nd Floor, Block I, No.71/1, MRC Nagar Main

Road, MRC Nagar, Chennai, Tamil Nadu, India - 600028

P: ±91-44-28479600

Unit No. 202, 2nd Floor, 'A' Block, Iris Tech Park, Sector-48, Sohna Road,

Gurgaon, Haryana, India-122018

P: +91-124-4838000

MUMBA No.321, A Wing, Ahura Centre, 82, Mahakali Caves Road, Andheri East,

Mumbai, Maharashutra, India-400093

P: +91-22-28387787

JAMSHEDPUR 36. Maharani Mansion Ground Floor, Circuit House Area P.O.- Bistupur, East

Singhbhum, Jamshedour, Jharkhand, India-831011

P: +91-657-2421144

PT. NSK INDONESIA

ΙΔΚΔΒΤΔ Summitmas II 6th Floor JI Jend Sudirman Kay 61-62 Jakarta 12190 Indonesia

P: +62-21-252-3458 F: +62-21-252-3223

NSK KOREA CO., LTD.

Posco Center (West Wing) 9F, 440, Teheran-ro, Gangnam-gu,

Seoul, 06194, Korea

P: +82-2-3287-0300 F: +82-2-3287-0345

Malaysia:

NSK BEARINGS (MALAYSIA) SDN. BHD.

SHAH ALAM & No. 2. Jalan Pemaiu, U1/15. Seksyen U1. Hicom Glenmarie Industrial Park.

40150 Shah Alam, Selangor, Malaysia

P: +60-3-7803-8859 F: +60-3-7806-5982

No.24, Jalan kikik, Taman Inderawasih, 13600 Prai, Penang, Malaysia

P: +60-4-3902275 F: +60-4-3991830

JOHOR BAHRU 88 Jalan Ros Merah 2/17, Taman Johor Java, 81100 Johor Bahru, Johor, Malaysia

P: +60-7-3546290 F: +60-7-3546291

No.10&10A, Jalan Industri Paloh, Kawasan Perindustrian Ringan Paloh,

30200 Ipoh, Perak, Malaysia

P: +60-5-2555000 F: +60-5-2553373

NSK REPRESENTATIVE OFFICE

8th Floor The Salcedo Towers 169 H.V. Dela Costa St., Salcedo Villege Makati

City, Philippines 1227

P: +63-2-893-9543 F: +63-2-893-9173

Singapore

NSK INTERNATIONAL (SINGAPORE) PTE LTD.

238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684 P: ±65-6496-8000 F: ±65-6250-5845

NSK BEARINGS (THAILAND) CO.,LTD.

BANGKOK 26 Soi Onnuch 55/1 Pravet Subdistrict, Pravet District, Bangkok 10250, Thailand

P: +66-2320-2555 F: +66-2320-2826

Vietnam:

NSK VIETNAM CO., LTD.

Techno Center, Room 204-205, Thang Long Industrial Park, Dong Anh District. HANO

Hanoi, Vietnam

P: +84-24-3955-0159 F: +84-24-3955-0158

NSK REPRESENTATIVE OFFICE

HO CHI MINH CITY Unit 609, The Landmark Building, 5B Ton Duc Thang Street, District 1,

Ho Chi Minh City, Vietnam

P: +84-28-3822-7907 F: +84-28-3822-7910

Worldwide Sales Offices

Europe

United Kinadom

NSK FUROPE LTD. (FUROPEAN HEADQUARTERS)

Belmont Place, Belmont Road, Majdenhead, Berkshire SL6 6TB, U.K. MAIDENHEAD Northern Road, Newark, Nottinghamshire NG24 2JF, U.K.

P: +44-1628-509-800 F: +44-1628-509-808

NSK UK LTD. NEWARK

France NSK FRANCES AS

> Quartier de l'Europe, 2 Bue Georges Guynemer, 78283 Guyancourt, France PARIS

P: +33-1-30-57-39-39 F: +33-1-30-57-00-01

Germany

NSK DEUTSCHLAND GMBH

DUSSELDORF A Harkortstrasse 15, D-40880 Ratingen, Germany P: +49-2102-4810 F: +49-2102-4812-290

Liebknechtstrasse 33, D-70565 Stuttgart-Vaihingen, Germany STUTTGART

P: +49-711-79082-0 F: +49-711-79082-289 WOLFSBURG Tischlerstrasse 3, D-38440 Wolfsburg, Germany P: +49-5361-27647-10 F: +49-5361-27647-70

NSK ITALIA S.P.A.

MILANO Via Garibaldi 215, Garbagnate Milanese (Milano) 20024, Italy

P: +39-299-5191 F: +39-299-025778

Netherlands:

NSK EUROPEAN DISTRIBUTION CENTRE B.V.

Brakman 54, 5047 SW Tilburg, Netherlands TILBURG

P: +31-13-4647647 F: +31-13-4641082 Poland:

NSK POLSKA SP.Z O.O.

WARSAW Ul. Migdalowa 4/73, 02-796, Warsaw, Poland

P: +48-22-645-1525 F: +48-22-645-1529

Spain: NSK SPAIN S.A.

BARCELONA

C/Tarragona, 161 Cuerpo Bajo, 2a Planta, 08014, Barcelona, Spain

P: +34-93-289-2763 F: +34-93-433-5776

Turkey:

NSK RULMANLARI ORTA DOGU TIC. LTD. STI.

Cevizli Mahallesi. D-100 Güney Yanyolu, Kuriş Kule İş Merkezi No:2 Kat:4, P.K.: ISTANBUL

34846, Cevizli-Kartal-Istanbul, Turkev

P: +90-216-5000-675 F: +90-216-5000-676

United Arab Emirates:

NSK BEARINGS GULF TRADING CO.

DUBA JAFZA View 19, Floor 24 Office LB192402/3, PO Box 262163, Downtown Jebel Ali,

Dubai, U.A.E.

P: +971-(0)4-804-8200 F: +971-(0)4-884-7227

North and South America

United States of America:

NSK AMERICAS, INC. (AMERICAN HEADQUARTERS)

4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.

P: +1-734-913-7500 F: +1-734-913-7511

NSK CORPORATION

4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.

P: +1-734-913-7500 F: +1-734-913-7511

NSK PRECISION AMERICA, INC.

3450 Bearing Drive, Franklin, Indiana 46131, U.S.A.

P: +1-317-738-5000 F: +1-317-738-5050

SAN JOSE 780 Montague Expressway, Suite 505, San Jose, California, 95131, U.S.A. P: +1-408-944-9400 F: +1-408-944-9405

NSK LATIN AMERICA, INC.

11601 NW 107 Street, Suite 200, Miami Florida, 33178, U.S.A.

P: +1-305-477-0605 F: +1-305-477-0377

NSK CANADA INC

317 Rutherford Road South, Brampton, Ontario, L6W 3R5, Canada

P: +1-888-603-7667 F: +1-905-890-1938 MONTREAL 2150-32E Avenue Lachine Quebec Canada H8T 3H7

P: +1-514-633-1220 F: +1-800-800-2788

NSK ARGENTINA SRL

BUENOS AIBES Garcia del Bio 2477 Piso 7 Oficina "A" (1429) Buenos Aires-Argentina

P: +54-11-4704-5100 F: +54-11-4704-0033

Brazil: NSK BRASIL LTDA.

SUZANO ☆ Av. Vereador João Batista Fitipaldi, 66, Vila Maluf, Suzano-SP-Brazil-CEP 08685-000

P: Phone F: Fax \$\sigma: Head Office

P: ±55-11-4744-2500

JOINVILLE Rua Blumenau, 178, sala 910, Centro, Joinville-SC-Brazil-CEP 89204-250 P: +55-47-3422-2239

NSK PERU S.A.C.

LIMA Calle Teniente Enrique Palacios 360 Oficina 311 Miraflores, Lima, Peru

P: +51-493-4385

NSK RODAMIENTOS MEXICANA, S.A. DE C.V.

SILAO, GUANAJUATO Circuito Mexiamora Oriente No. 331, Parque Industrial Santa Fe I, Puerto

Interior Silao Guanajuato Mexico C.P. 36275 P: +52-472-500-9500 F: +52-472-103-9403

> <As of December 2023> For the latest information, please refer to the NSK website,

Every care has been taken to ensure the accuracy of data in this publication, but NSK Ltd. accepts no liability for any loss or damage incurred from errors or omissions. As we pursue continuous improvement, all content (text, images, product appearances, specifications, etc.) contained in this publication is subject to change without notice. Unauthorized copying and/or use of the contents of this publication is strictly prohibited. Please investigate and follow the latest product export laws, regulations, and permit

